Crib Sheet: Properties of Morphisms of Schemes

by Johan de Jong, transcribed and expanded by Kiran Kedlaya

Surgeon General's Warning: Not reading EGA before using this crib sheet may be hazardous to your health. In particular, certain definitions (e.g., projective) do not match Hartshorne.

Here are some properties of a morphism $f : X \to Y$ of schemes. Abbreviations: LS = (Zariski) local on the source, LT = (Zariski) local on the target/base.

- quasicompact For every affine open $V \subseteq Y$, $f^{-1}(V)$ is a quasi-compact topological space. Equivalent: for every affine open $V \subseteq Y$, $f^{-1}(V)$ is a finite union of affine opens of X. [LT]
- quasiseparated The diagonal $\Delta_f : X \to X \times_Y X$ is quasicompact.
- separated The diagonal $\Delta_f : X \to X \times_Y X$ is a closed immersion.
 - affine For every affine open $V \subseteq Y$, $f^{-1}(V)$ affine. Equivalent: $X \cong$ Spec_Y(\mathcal{A}) for some quasicoherent \mathcal{O}_Y -algebra \mathcal{A} . [LT, \Longrightarrow separated]

quasiaffine f is quasicompact and admits a factorization $X \xrightarrow{j} X'$ with j an $f \xrightarrow{\searrow} V'_{f'}$

open immersion and f' affine. Equivalent: for every affine open $V \subseteq Y$, $f^{-1}(V)$ is isomorphic to a quasicompact open subscheme of an affine scheme.

locally of finite type/presentation For every affine open $V \subseteq Y$, $f^{-1}(V)$ can be covered by affine opens U such that $\Gamma(X, U)$ is a finitely generated/presented $\Gamma(Y, V)$ -algebra. [LS]

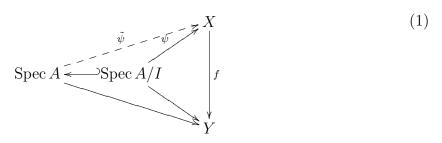
of finite type/presentation f is quasicompact and locally of finite type/presentation. [LT]

quasiprojective f is of finite type and there exists an invertible \mathcal{O}_X -module \mathcal{L} such that \mathcal{L} is f-ample. Consequence: for every affine open $V \subseteq Y$, a suitably high power of \mathcal{L} has sections over $f^{-1}(V)$ which define an immersion of $f^{-1}(V)$ into \mathbb{P}^N_V .

proper f is separated, of finite type and universally closed. [LT]

- projective X is isomorphic to $\operatorname{Proj}_Y S$, where S is a quasicoherent graded \mathcal{O}_Y module generated in degree 1 such that S_1 is a finitely generated \mathcal{O}_Y -module.
- quasifinite f is of finite type, and for all $y \in Y$, the scheme $X_y = f^{-1}(Y)$ is finite over Spec $\kappa(y)$.
 - finite f is affine and for every affine open $V \subseteq Y$, the map $\Gamma(Y, V) \rightarrow \Gamma(X, f^{-1}(V))$ is finite. Equivalent: f is proper and quasi-finite. [LT]

In the following diagram, I is an ideal of the ring A such that $I^2 = 0$.



Some trivial and nontrivial results:

- 1. A scheme X is (separated/affine) iff $X \to \operatorname{Spec} \mathbb{Z}$ is.
- 2. f is formally unramified iff $\Omega^1_{X/Y} = 0$.
- 3. f is étale iff f is flat and unramified.
- 4. f is smooth iff f is locally of finite presentation, flat and has smooth fibres.
- 5. If f is of finite type and formally unramified, then f is quasifinite.
- 6. For any scheme X, the diagonal $\Delta : X \to X \times_{\text{Spec }\mathbb{Z}} X$ is separated and locally of finite type. If X is quasiseparated, then Δ is of finite type and also quasiaffine.
- 7. If f is quasifinite and separated, then f is quasiaffine.
- 8. (Zariski's Main Theorem) If f is quasifinite and separated and Y is quasicompact and quasiseparated, then there exists a factorization $f = f' \circ u$ with $u : X \to X'$ an open immersion and $f' : X' \to Y$ finite.
- 9. (Nagata's Theorem) If f is of finite type and separated and Y is Noetherian, then there exists a factorization $f = f' \circ u$ with $u : X \to X'$ an open immersion and $f' : X' \to Y$ proper. (This presumably also holds with Y quasicompact and quasiseparated.)