
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Differentials

See Hartshorne II.8.

1 The module of Kähler differentials

Let A → B be a homomorphism of rings. The module of Kähler differentials of B over
A is a B-module ΩB/A equipped with an A-linear derivation d : B → ΩB/A (an A-linear
homomorphism satisfying the Leibniz rule d(xy) = x dy + y dx for x, y ∈ B; note that
this forces d(a) = 0 for a ∈ A), with the following universal property: for any B-module
M and any A-linear derivation ∂ : B → M , ∂ factors uniquely through d via a B-linear
homomorphsism ΩB/A → M .

There are two standard ways to construct ΩB/A. One is to form the B-module generated
by symbols db for b ∈ B, modulo the necessary relations:

(a) d(b1b2) − b1 db2 − b2 db1 for b1, b2 ∈ B;

(b) d(b1 + b2) = d(b1) + d(b2) for b1, b2 ∈ B;

(c) d(a) = 0 for a ∈ A.

This obviously has the desired universal property. The other is to let I be the kernel of
the multiplication map B ⊗A B → B, and put ΩB/A = I/I2 equipped with the map d(b) =
b ⊗ 1 − 1 ⊗ b. This evidently gives an A-linear derivation. Given a derivation ∂ : B → M ,
view B ⊕ M as a B-algebra in by setting m1m2 = 0 for all m1, m2 ∈ M . Then the formula

b1 ⊗ b2 → (b1b2, b1∂(b2))

induces a ring homomorphism B ⊗A B → B ⊕ M under which I maps to M , so I2 maps
to 0 and we get a B-linear map I/I2 → M . Composing with d easily gives back ∂. The
uniqueness of the factorization follows by observing that

x ⊗ y = xy ⊗ 1 − x(y ⊗ 1 − 1 ⊗ y)

so the image of d generates I (and hence I/I2) as a B-module.
For instance, if B = A[x1, . . . , xn], then ΩB/A is freely generated by dx1, . . . , dxn. Also,

if k is an algebraically closed field and A is a reduced quotient of k[x1, . . . , xn], then the
Jacobian criterion can be interpreted as saying that A corresponds to a nonsingular variety
over k if and only if ΩA/k is locally free as an A-module.

For another example, if A is a field and B is a finite field extension, then ΩB/A = 0 if
and only if B is separable over A.
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2 The sheaf of Kähler differentials

Let f : Y → X be a morphism. For each open affine subset U = Spec(A) of X and each
open affine subset V = Spec(B) of f−1(U), form the module ΩB/A. We would like these
to form the sections of a sheaf ΩY/X , but checking the glueing property directly from this
definition is a bit awkward.

Fortunately, our second construction of the module of Kähler differentials suggests a
global definition of the sheaf ΩY/X . We’ll explain this first in case f is separated. In that
case, ∆ : Y → Y ×X Y is a closed immersion; let I be the corresponding ideal sheaf on
Y ×X Y . We then put

ΩY/X = ∆∗(I/I2).

But what if f is not separated? In that case, we still claim that ∆ is an immersion; this
follows from the proof of Hartshorne Corollary II.4.2. Then ∆ gives rise to an ideal sheaf not
on Y ×X Y , but on some open subscheme containing the image of ∆; we may then proceed
as in the separated case.

Useful properties of Ω:

• The formation of ΩY/X commutes with base change as follows. If g : Z → X is another
morphism, then ΩY ×XZ/Z can be identified canonically with the pullback of ΩY/X along
the projection Y ×X Z → Y (Hartshorne, Proposition II.8.10).

• If f : Z → Y and g : Y → X are morphisms, then there is a natural exact sequence

f ∗ΩY/X → ΩZ/X → ΩZ/Y → 0

(Hartshorne, Proposition II.8.11).

• If f : Y → X is a morphism, and j : Z → Y is the closed immersion defined by the
ideal sheaf I on Y , then there is a natural exact sequence of sheaves on Z:

j∗(I/I2) → j∗(ΩY/X) → ΩZ/X → 0

(Hartshorne, Proposition II.8.12).

• Let A be a ring, and let f : Y = Pn
A → X = Spec A be the natural morphism. We

then have a short exact sequence

0 → ΩY/X → OX(−1)⊕(n+1)
→ OY → 0

(Hartshorne, Theorem II.8.13).

As in the affine case, a variety X over a field k is nonsingular if and only if ΩX/k is locally
free. Since ΩX/k is necessarily finitely generated (deduce this from the case of affine space),
there is always an open dense subset U of X which is nonsingular over k.

Suppose X is nonsingular of dimension n (on each component). Then we call the sheaf
ωX/k = ∧nΩX/k the canonical sheaf on X; it is locally free of rank 1. As the name suggests,
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the canonical sheaf is an omnipresent object in the study of the geometry of varieties; we
will see it in the Riemann-Roch theorem, and more generally in Serre duality, but it is also
a central player in modern birational geometry, as in the following very hard theorem.

Theorem (Bircar-Cascini-Hacon-McKernan, Siu). Let X be a smooth projective irreducible
variety over C. Then the ring

∞⊕

n=0

Γ(X, ω⊗n
X/k)

is finitely generated as a C-algebra.

3 Smooth, unramified, and étale morphisms

Let f : Y → X be a morphism of schemes. For each morphism g : X ′ → X with X ′ affine,
and each closed subscheme Z of X ′ defined by a nilpotent ideal of O(X ′), we have a canonical
map

HomX(X ′, Y ) → HomX(Z, Y ).

If this map is always injective/surjective/bijective, we say that f is formally unramified/smooth/étale.
We drop the “formally” if f is also locally of finite presentation. These properties have all the
expected behaviors (local on the base, stable under base change, descendable down faithfully
flat quasicompact morphisms).

The definition above is given in terms of an infinitesimal lifting property. There are more
practical characterizations in terms of differentials; some of these will be exercises. (See
EGA IV, part 4, section 17.)

Proposition. The morphism f is formally unramified if and only if ΩY/X = 0.

Proposition. If f is locally of finite presentation, then f is étale if and only if f is flat and
unramified.

Proposition. If f is locally of finite presentation, then f is smooth if and only if f is flat
and for each x ∈ X, the fibre f−1(x) is geometrically regular over κ(x). (That is, for k an
algebraic closure of κ(x), f−1(x) ×Spec κ(x) k is regular.)

For example, the projective space Pn
X is smooth over X.

The difference between regular and geometrically regular shows up only when the field
κ(x) is imperfect. For instance, put κ = Fp(x), X = Spec κ and Y = Spec Fp(x

1/p) =
Spec κ[y]/(yp − x). Then Y is a regular scheme, but its base change to an algebraic closure
k of κ is

Spec k[y]/(yp
− x) = Spec k[y]/((y − x1/p)p),

which is not regular. For a slightly less trivial example, see Hartshorne exercise III.10.1.
The notion of an étale morphism is an algebro-geometric analogue of the concept of a

covering space in topology. As such, it forms the basis for one of the most successful notions
of cohomology in algebraic geometry, that of étale cohomology. I probably won’t have time
to say more than a few words about that at the end of the course.
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