18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) Divisors, linear systems, and projective embeddings (updated 1 Apr 09)

We conclude the first half of the course by translating into the language of schemes some classical notions related to the concept of a divisor. This will serve to explain (in part) why we will be interested in the cohomology of quasicoherent sheaves.

In order to facilitate giving examples, I will mostly restrict to locally noetherian schemes. See Hartshorne II. 6 for divisors, and IV. 1 for Riemann-Roch.

1 Weil divisors

Introduce Hartshorne's hypothesis $\left(^{*}\right)$: let X be a scheme which is noetherian, integral, separated, and regular in codimension 1. The latter means that for each point $x \in X$ whose local ring $\mathcal{O}_{X, x}$ has Krull dimension 1, that local ring must be regular.

Lemma. Let A be a noetherian local ring of dimension 1. Then the following are equivalent.
(a) A is regular.
(b) A is normal.
(c) A is a discrete valuation ring.
(This is why normalizing a one-dimensional noetherian ring produces a regular ring.)
Warning: for a noetherian integral domain, normal implies regular in codimension 1 but not conversely. You have to add Serre's condition S2: for $a \in A$, every associated prime of the principal ideal (a) has codimension 1 when a is not a zerodivisor, and has codimension 0 when $a=0$.

A prime (Weil) divisor on X is a closed integral (irreducible and reduced) subscheme of codimension 1. A formal \mathbb{Z}-linear combination of prime divisors is called a Weil divisor. If only nonnegative coefficients are used, we say the divisor is effective.

For example, let $K(X)$ be the function field of X, i.e., the local ring of X at its generic point. (This equals $\operatorname{Frac}(\mathcal{O}(U))$ for any nonempty open affine subscheme U of X.) For $f \in K(X)$ nonzero, we can define a principal divisor associated to f as follows. For each prime divisor Z on X, let η_{Z} be the generic point of Z. Then $\mathcal{O}_{X, \eta_{Z}}$ is a discrete valuation ring; let v_{Z} be the valuation. Now define the divisor

$$
(f)=\sum_{Z} v_{Z}(f) Z
$$

this makes sense because only finitely many $v_{Z}(f)$ are nonzero. (That's because f restricts to an invertible regular function on some nonempty open subscheme U of X, and $v_{Z}(f)=0$ whenever $Z \nsubseteq X-U$.)

Let $\operatorname{Div} X$ be the group of Weil divisors of X. The principal divisors form a subgroup (since $(f)+(g)=(f g))$; the quotient by this subgroup is called the divisor class group of
X, denoted $\mathrm{Cl} X$. For example, if $X=\operatorname{Spec}(A)$ with A a Dedekind domain, then $\operatorname{Div} X$ is the group of fractional ideals, and $\mathrm{Cl} X$ is the ideal class group. We say two divisors which differ by a principal divisor are linearly equivalent.

There are a number of examples in Hartshorne. One of my favorites is that of an elliptic curve; here is a summary. Let k be an algebraically closed field (for starters). Let $P(x, y, z) \in$ $k[x, y, z]$ be a homogeneous polynomial of degree 3 defining a nonsingular subvariety C of \mathbb{P}_{k}^{2}. Pick a point $O \in C(k)$. There is a surjective map Div $X \rightarrow \mathbb{Z}$ mapping each prime divisor P to 1, called the degree. This map factors through $\mathrm{Cl} X$ because each principal divisor has degree 0 . The kernel of the degree map $\mathrm{Cl} X \rightarrow \mathbb{Z}$ is generated by $(P)-(O)$ for $P \in C(k)$. In fact it is equal to the set of such elements: given $P, Q \in C$, we first draw the line through P, Q in \mathbb{P}_{k}^{2} and find its third intersection point R with C. We then draw the line through R and O in \mathbb{P}_{k}^{2} and find its third intersection point S with C. Then

$$
(P)+(Q)+(R) \sim(R)+(S)+(O),
$$

so

$$
(P)-(O)+(Q)-(O) \sim(S)-(O) .
$$

2 Cartier divisors

When the scheme X is not regular, there is a more restrictive notion of divisors that turns out to be more useful in many cases.

Let \mathcal{K} be the locally constant sheaf associated to the function field $K(X)$. A Cartier divisor on X is a section of the sheaf $K(X) / \mathcal{O}^{\times}$. Using the construction of principal divisors, we obtain a map from Cartier divisors to Weil divisors: if the Cartier divisor is represented on some open subset U of X by the rational function $f \in K(X)$, then the Weil divisor we get should agree with (f) when restricted to U (i.e., only keep the components of those prime divisors meeting U). This map is injective if X is normal, because an integrally closed noetherian domain is the intersections of its localizations at minimal prime ideals.

Proposition (Hartshorne, Proposition II.6.11). Suppose X is locally factorial (i.e., each local ring $\mathcal{O}_{X, x}$ is a unique factorization domain). Then the previous map is an isomorphism. (In particular, this holds if X is regular, because a regular local ring is factorial by a not-soeasy theorem of commutative algebra.)

Example: if $X=\operatorname{Spec} k[x, y, z] /\left(x y-z^{2}\right)$, the ideal (x, z) defines a Weil divisor which is not a Cartier divisor.

Again, there is an obvious notion of a principal Cartier divisor, namely one defined by a single element of $K(X)$. The group of Cartier divisors modulo principal divisors is called the Cartier class group of X, denoted $\mathrm{CaCl} X$.

3 The Picard group

The Cartier class group is "usually" the same as the Picard group, namely the group of invertible sheaves on X under the tensor product. Namely, if D is a Cartier divisor on X, let $\mathcal{L}(D)$ be the subsheaf of \mathcal{K} such that

$$
\mathcal{L}(D)(U)=\left\{f \in K(X):\left.((f)+(D))\right|_{U} \geq 0\right\} .
$$

Assuming that X is normal, this is locally free of rank 1, hence an invertible sheaf. This gives a homomorphism from Cartier divisors to the Picard group, which we see kills the principal divisors. The resulting homomorphism is always injective, even without any hypotheses on X (Hartshorne, Corollary II.6.14) but may not be surjective; however, it is surjective if X is integral (Hartshorne, Proposition II.6.15).

Note that if D is effective, then the function 1 defines a global section of $\mathcal{L}(D)$. Since \mathcal{L} is locally principal, we can locally identify \mathcal{L} with \mathcal{O}_{X}; when we do so, the subsheaf of $\mathcal{L}(D)$ generated by 1 goes into correspondence with an ideal sheaf of \mathcal{O}_{X}, which doesn't depend on any choices. This ideal sheaf defines D as a closed subscheme. In other words, D is the zero locus of a certain section of $\mathcal{L}(D)$. More generally, even if D is effective, we can view D as the zero locus of a meromorphic section of $\mathcal{L}(D)$ (meaning a zero locus of $\mathcal{L}(D) \otimes_{\mathcal{O}_{X}} \mathcal{K}_{X}$), and indeed the zero locus of any meromorphic section of $\mathcal{L}(D)$ is linearly equivalent to D.

4 Linear systems

Suppose X is an integral separated scheme of finite type over a field k (which need not be algebraically closed). Let \mathcal{L} be an invertible sheaf on X. A linear system defined by \mathcal{L} is the set of zero loci of some k-linear subspace H of $H^{0}(X, \mathcal{L})$. If we take the entire space, that is called the complete linear system defined by \mathcal{L}.

We can attempt to use the elements of H to define a map $X \rightarrow \mathbb{P}_{k}^{n}$, where $n=\operatorname{dim}_{k}(H)-1$. This might fail to give a morphism because H may have a base point, i.e., a point in the intersection of all of the divisors in the linear system. In fact, we get a morphism $X \rightarrow \mathbb{P}_{k}^{n}$ if and only if H has no base points.

Suppose now that k is algebraically closed, and that X is one-dimensional, projective, irreducible, and nonsingular (i.e., a "curve"). Consider the complete linear system associated to $\mathcal{L}(D)$ for some divisor D.
(a) We get a map $X \rightarrow \mathbb{P}_{k}^{n}$ if and only if for each closed point $x \in X$, we have $\operatorname{dim}_{k} H^{0}(X, \mathcal{L}(D-$ $x)=\operatorname{dim}_{k} H^{0}(X, \mathcal{L}(D))-1$. (In other words, there must be a section of $\mathcal{L}(D)$ not vanishing at x.)
(b) The map in (a) is injective as a map of sets if and only if for each pair of distinct closed points $x, y \in X$, we have $\operatorname{dim}_{k} H^{0}(X, \mathcal{L}(D-x-y))=\operatorname{dim}_{k} H^{0}(X, \mathcal{L}(D))-2$. (In other words, there must be a section of $\mathcal{L}(D)$ vanishing at x but not at y, and vice versa.)
(c) The map in (b) is a closed immersion if and only if for each closed point $x \in X$, we have $\operatorname{dim} H^{0}(X, \mathcal{L}(D-2 x))=\operatorname{dim}_{k} H^{0}(X, \mathcal{L}(D))-2$. (In other words, there must be a section of $\mathcal{L}(D)$ not vanishing at x, and a section vanishing to exact order 1 at x.)
(Condition (c) is needed to ensure that the tangent space at x embeds into the tangent space at the image of x. See Remark 7.8.2.)

Since we would like to know under what circumstances X embeds into a projective space, we would like to be able to compute at least the dimension of $H^{0}(X, \mathcal{L}(D))$ for each divisor D. This quest is greatly abetted by the Riemann-Roch theorem, more on which next time.

