
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Divisors, linear systems, and projective embeddings (updated 1 Apr 09)

We conclude the first half of the course by translating into the language of schemes some
classical notions related to the concept of a divisor. This will serve to explain (in part) why
we will be interested in the cohomology of quasicoherent sheaves.

In order to facilitate giving examples, I will mostly restrict to locally noetherian schemes.
See Hartshorne II.6 for divisors, and IV.1 for Riemann-Roch.

1 Weil divisors

Introduce Hartshorne’s hypothesis (*): let X be a scheme which is noetherian, integral,
separated, and regular in codimension 1. The latter means that for each point x ∈ X whose
local ring OX,x has Krull dimension 1, that local ring must be regular.

Lemma. Let A be a noetherian local ring of dimension 1. Then the following are equivalent.

(a) A is regular.

(b) A is normal.

(c) A is a discrete valuation ring.

(This is why normalizing a one-dimensional noetherian ring produces a regular ring.)
Warning: for a noetherian integral domain, normal implies regular in codimension 1 but

not conversely. You have to add Serre’s condition S2: for a ∈ A, every associated prime of
the principal ideal (a) has codimension 1 when a is not a zerodivisor, and has codimension
0 when a = 0.

A prime (Weil) divisor on X is a closed integral (irreducible and reduced) subscheme of
codimension 1. A formal Z-linear combination of prime divisors is called a Weil divisor. If
only nonnegative coefficients are used, we say the divisor is effective.

For example, let K(X) be the function field of X, i.e., the local ring of X at its generic
point. (This equals Frac(O(U)) for any nonempty open affine subscheme U of X.) For
f ∈ K(X) nonzero, we can define a principal divisor associated to f as follows. For each
prime divisor Z on X, let ηZ be the generic point of Z. Then OX,ηZ

is a discrete valuation
ring; let vZ be the valuation. Now define the divisor

(f) =
∑

Z

vZ(f)Z;

this makes sense because only finitely many vZ(f) are nonzero. (That’s because f restricts
to an invertible regular function on some nonempty open subscheme U of X, and vZ(f) = 0
whenever Z 6⊆ X − U .)

Let Div X be the group of Weil divisors of X. The principal divisors form a subgroup
(since (f) + (g) = (fg)); the quotient by this subgroup is called the divisor class group of
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X, denoted Cl X. For example, if X = Spec(A) with A a Dedekind domain, then Div X is
the group of fractional ideals, and Cl X is the ideal class group. We say two divisors which
differ by a principal divisor are linearly equivalent.

There are a number of examples in Hartshorne. One of my favorites is that of an elliptic
curve; here is a summary. Let k be an algebraically closed field (for starters). Let P (x, y, z) ∈
k[x, y, z] be a homogeneous polynomial of degree 3 defining a nonsingular subvariety C of P

2

k.
Pick a point O ∈ C(k). There is a surjective map Div X → Z mapping each prime divisor
P to 1, called the degree. This map factors through Cl X because each principal divisor has
degree 0. The kernel of the degree map Cl X → Z is generated by (P ) − (O) for P ∈ C(k).
In fact it is equal to the set of such elements: given P, Q ∈ C, we first draw the line through
P, Q in P

2

k and find its third intersection point R with C. We then draw the line through R
and O in P

2

k and find its third intersection point S with C. Then

(P ) + (Q) + (R) ∼ (R) + (S) + (O),

so
(P ) − (O) + (Q) − (O) ∼ (S) − (O).

2 Cartier divisors

When the scheme X is not regular, there is a more restrictive notion of divisors that turns
out to be more useful in many cases.

Let K be the locally constant sheaf associated to the function field K(X). A Cartier
divisor on X is a section of the sheaf K(X)/O×. Using the construction of principal divisors,
we obtain a map from Cartier divisors to Weil divisors: if the Cartier divisor is represented
on some open subset U of X by the rational function f ∈ K(X), then the Weil divisor
we get should agree with (f) when restricted to U (i.e., only keep the components of those
prime divisors meeting U). This map is injective if X is normal, because an integrally closed
noetherian domain is the intersections of its localizations at minimal prime ideals.

Proposition (Hartshorne, Proposition II.6.11). Suppose X is locally factorial (i.e., each
local ring OX,x is a unique factorization domain). Then the previous map is an isomorphism.
(In particular, this holds if X is regular, because a regular local ring is factorial by a not-so-
easy theorem of commutative algebra.)

Example: if X = Spec k[x, y, z]/(xy − z2), the ideal (x, z) defines a Weil divisor which is
not a Cartier divisor.

Again, there is an obvious notion of a principal Cartier divisor, namely one defined by
a single element of K(X). The group of Cartier divisors modulo principal divisors is called
the Cartier class group of X, denoted CaCl X.
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3 The Picard group

The Cartier class group is “usually” the same as the Picard group, namely the group of
invertible sheaves on X under the tensor product. Namely, if D is a Cartier divisor on X,
let L(D) be the subsheaf of K such that

L(D)(U) = {f ∈ K(X) : ((f) + (D))|U ≥ 0}.

Assuming that X is normal, this is locally free of rank 1, hence an invertible sheaf. This gives
a homomorphism from Cartier divisors to the Picard group, which we see kills the principal
divisors. The resulting homomorphism is always injective, even without any hypotheses on
X (Hartshorne, Corollary II.6.14) but may not be surjective; however, it is surjective if X
is integral (Hartshorne, Proposition II.6.15).

Note that if D is effective, then the function 1 defines a global section of L(D). Since L
is locally principal, we can locally identify L with OX ; when we do so, the subsheaf of L(D)
generated by 1 goes into correspondence with an ideal sheaf of OX , which doesn’t depend
on any choices. This ideal sheaf defines D as a closed subscheme. In other words, D is the
zero locus of a certain section of L(D). More generally, even if D is effective, we can view D
as the zero locus of a meromorphic section of L(D) (meaning a zero locus of L(D)⊗OX

KX),
and indeed the zero locus of any meromorphic section of L(D) is linearly equivalent to D.

4 Linear systems

Suppose X is an integral separated scheme of finite type over a field k (which need not be
algebraically closed). Let L be an invertible sheaf on X. A linear system defined by L is the
set of zero loci of some k-linear subspace H of H0(X,L). If we take the entire space, that is
called the complete linear system defined by L.

We can attempt to use the elements of H to define a map X → P
n
k , where n = dimk(H)−1.

This might fail to give a morphism because H may have a base point, i.e., a point in the
intersection of all of the divisors in the linear system. In fact, we get a morphism X → P

n
k

if and only if H has no base points.
Suppose now that k is algebraically closed, and that X is one-dimensional, projective,

irreducible, and nonsingular (i.e., a “curve”). Consider the complete linear system associated
to L(D) for some divisor D.

(a) We get a map X → P
n
k if and only if for each closed point x ∈ X, we have dimk H0(X,L(D−

x) = dimk H0(X,L(D)) − 1. (In other words, there must be a section of L(D) not
vanishing at x.)

(b) The map in (a) is injective as a map of sets if and only if for each pair of distinct closed
points x, y ∈ X, we have dimk H0(X,L(D−x−y)) = dimk H0(X,L(D))−2. (In other
words, there must be a section of L(D) vanishing at x but not at y, and vice versa.)
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(c) The map in (b) is a closed immersion if and only if for each closed point x ∈ X, we
have dim H0(X,L(D − 2x)) = dimk H0(X,L(D)) − 2. (In other words, there must be
a section of L(D) not vanishing at x, and a section vanishing to exact order 1 at x.)

(Condition (c) is needed to ensure that the tangent space at x embeds into the tangent space
at the image of x. See Remark 7.8.2.)

Since we would like to know under what circumstances X embeds into a projective space,
we would like to be able to compute at least the dimension of H0(X,L(D)) for each divisor
D. This quest is greatly abetted by the Riemann-Roch theorem, more on which next time.
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