
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Dualizing sheaves and Riemann-Roch (updated 6 May 09)

In this lecture, we introduce dualizing sheaves for projective schemes over a field, then
use them to derive the Riemann-Roch theorem for curves. Throughout, let k be a field (not
necessarily algebraically closed), let j : X → P = P

N
k be a closed immersion with X of

dimension n, and let OX(1) be the corresponding twisting sheaf.

1 Dualizing sheaves

For V a k-vector space, let V ∨ denote the dual space Homk(V, k). A dualizing sheaf for X
is a coherent sheaf ω◦

X equipped with a trace morphism t : Hn(X, ω◦

X) → k, such that for all
coherent sheaves F on X, the composition

HomX(F , ω◦

X) × Hn(X,F) → Hn(X, ω◦

X)
t
→ k

of the natural pairing with the trace morphism induces an isomorphism

HomX(F , ω◦

X) ∼= Hn(X,F)∨.

By interpreting this in terms of representing a certain functor, we see that a dualizing sheaf
is unique up to unique isomorphism if it exists.

Theorem. There exists a dualizing sheaf for X.

This also holds when X is proper, but I won’t give the proof in this course (see the
references at the end of Hartshorne III.7).

The previous theorem is not so useful unless one can identify the dualizing sheaf explicitly.
This is tricky in general, but can be done well in the smooth case.

Theorem. Suppose that X is smooth and irreducible over k. Then the canonical sheaf ωX

is a dualizing sheaf.

2 Application to Riemann-Roch

Modulo the previous two theorems, we can already deduce Riemann-Roch for curves. Sup-
pose in this section that k is algebraically closed, and that X is smooth over k, irreducible,
and of dimension 1.

For any divisor D on X, the identification of the canonical sheaf ωX
∼= ΩX/k with the

dualizing sheaf ω◦

X gives us an isomorphism

H0(X, ωX ⊗ L(−D)) ∼= HomX(L(D), ωX)
∼= HomX(L(D), ω◦

X)
∼= H1(X,L(D))∨.
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This tells us several useful things. First, the genus g = g(X), which is typically defined as
dimk H0(X, ωX), is also equal to dimK H1(X,O). Second, the desired statement of Riemann-
Roch is now

deg(D) + 1 − g
?
= dimk H0(X,L(D)) − dimk H0(X, ωX ⊗ L(−D))

= dimk H0(X,L(D)) − dimk H1(X,L(D))

= χ(X,L(D)).

Third, Riemann-Roch does indeed hold for D = 0 (by the previous two assertions).
To finish the proof, it is enough to show that the Riemann-Roch equality for a given

divisor D is equivalent to its truth for the divisor D + (Q) for any closed point Q ∈ X(k).
(With that in hand, we can walk from 0 to any other divisor by adding or subtracting points.)
So let us see how much both sides of the Riemann-Roch equality change when we add the
point Q. On one hand, obviously

(deg(D + (Q)) + 1 − g) − (deg(D) + 1 − g) = 1.

On the other hand, we have a short exact sequence

0 → L(D) → L(D + (Q)) → OQ → 0

where OQ denotes the skyscraper sheaf k at the point Q. Since Euler characteristics add in
short exact sequences,

χ(X,L(D + (Q))) − χ(X,L(D)) = χ(X,OQ) = 1.

Hence Riemann-Roch for D is equivalent to Riemann-Roch for D + (Q).

3 Construction of the dualizing sheaf

We now go back and construct dualizing sheaves following the argument in Hartshorne (but
fleshing out some details which he leaves opaque). Recall that we already know the duality
theorem for X = P , with the dualizing sheaf being the canonical sheaf ωP . The plan is to
manufacture a dualizing sheaf on X out of ωP , using Serre duality for P . That tells us that
if we fix an isomorphism HN(P, ωP ) ∼= k of k-vector spaces, then for any coherent sheaf F
on X,

Hn(X,F) = Hn(P, j∗F) ∼= ExtN−n
P (j∗F , ωP )∨.

So we are reduced to finding a sheaf ω◦

X on X for which there is a functorial isomorphism

HomX(F , ω◦

X) ∼= ExtN−n
P (j∗F , ωP ).

(We then get the required trace map Hn(X, ω◦

X) → k by tracing the identity element of
HomX(ω◦

X , ω◦

X) through the identifications.)
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One might imagine that this isomorphism comes from an isomorphism of sheaves

HomX(F , ω◦

X)
?
∼= ExtN−n

P (j∗F , ωP )

by taking global sections. Taking F = OX in this hypothetical isomorphism suggests the
right definition:

ω◦

X = j∗ExtN−n
P (j∗OX , ωP ).

We would like to get back from this to the claimed isomorphism

HomX(F , ω◦

X) ∼= ExtN−n
P (j∗F , ωP ).

by first forming the canonical identification

HomX(F , j∗HomP (j∗OX , ·)) ∼= HomP (j∗F , ·)

(local version: for A a ring, I an ideal, M ∈ ModA/I , N ∈ ModA, we identify HomA(M, N) ∼=
HomA/I(M, HomA(A/I, N))), then evaluating the resulting derived functors at ωP , then
taking global sections. This is complicated by the fact that in the second step, HomX(F , ·)
is not exact, and in the third step, taking global sections is not exact.

To straighten these things out, we need to know more about the relationship between the
sheaf Ext and the global Ext. For starters, here is one thing I can say using Serre vanishing.
(See Hartshorne Proposition III.6.9.)

Proposition. Let F and G be coherent sheaves on X. Then there exists an integer q0

depending on F and G, such that for every q ≥ q0, we have

Exti
X(F ,G(q)) ∼= Γ(X, Ext i

X(F ,G)(q)).

Proof. This holds for i = 0 without any restriction on q. For F locally free, the right side is
zero for i > 0, whereas the left side vanishes for n large enough by Serre’s vanishing theorem.
The general case then follows by a dimension shifting argument; see Hartshorne Proposition
III.6.9.

Next, I must recall a theorem which I skipped over earlier.

Theorem (Grothendieck). For any F ∈ ShAb(X), H i(X,F) = 0 for i > n.

Proof. This holds with X replaced by any noetherian topological space of dimension n. The
argument is a rather elaborate dimension-shifting argument; see Hartshorne Theorem III.2.7.
(See also Hartshorne exercise III.4.8(d), which is enough for this discussion.)

Corollary. For any coherent sheaf F on X, we have Ext i
P (j∗F , ωP ) = 0 for i < N − n.

Proof. Put Fi = Ext i
P (j∗F , ωP ). On one hand, for q large,

Γ(P,Fi(q)) = Exti
P (j∗F , ωP (q)) ∼= HN−i(P, j∗F(−q))∨

by Serre duality for P . For i < N − n, HN−i(P, j∗F(−q)) = 0 by the theorem. Hence
Γ(P,Fi(q)) = 0 for q large. On the other hand, since Fi is coherent, for q large, Fi(q) is
generated by global sections. This forces Fi(q) = 0 for q large, whence Fi = 0.
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At this point, we can finish with the following argument; compare Hartshorne Lemma
III.7.4. (Once again, there is a spectral sequence hiding behind this, but never mind.)
Take an injective resolution I · of ωP , so we can compute Ext ·(j∗F , ωP ) as the cohomology
of HomP (j∗F , I ·), and similarly for Ext and Hom. But using the canonical identification
from earlier, if we write J · = j∗HomP (j∗OX , I ·), we can also compute Ext ·(j∗F , ωP ) as the
cohomology of HomX(F ,J ·), and similarly for Ext and Hom. So now what we need to
know is that

HomX(F , ω◦

X)
?
∼= hN−n(HomX(F ,J ·))

and similarly with straight Homs.
However, the sheaves J · are injective OX -modules. (Local version: if A is a ring, I

an ideal, and I ∈ ModA is injective, then HomA(A/I, M) is an injective A/I-module; this
uses the previous local identification.) By the previous corollary, the complex J · (whose
cohomology computes Ext ·(j∗OX , ωP )) is acyclic in degrees up to N − n − 1. We can then
split it into two complexes of injectives J ·

1,J
·

2, where J ·

1 is exact and only has terms in
degrees up to N − n, and J ·

2
only has terms in degrees at least N − n (exercise).

Since J ·

1
is a bounded complex of injectives, it splits into a series of split short exact

sequences; thus it stays exact no matter what left exact functors you apply to it. So we can
replace J by J ·

2
for the purposes of computing derived functors, i.e., what we need to prove

is reduced to

HomX(F , ω◦

X)
?
∼= hN−n(HomX(F ,J ·

2
))

and similarly for straight Hom. But J ·

2
only starts in degree N −n, and Hom and Hom are

left exact, so we have

ExtN−n
P (j∗F , ωP ) ∼= hN−n(HomX(F ,J ·

2))

∼= HomX(F , hN−n(J ·

2
))

∼= HomX(F , hN−n(HomX(OX ,J ·

2
)))

∼= HomX(F , ExtN−n(j∗OX , ωP ))
∼= HomX(F , ω◦

X)

and similarly

ExtN−n
P (j∗F , ωP ) ∼= hN−n(HomX(F ,J ·

2
)) ∼= HomX(F , ω◦

X).

That completes the proof that

ω◦

X = ExtN−n
P (j∗OX , ωP )

is a dualizing sheaf for X.

4 Calculation of the dualizing sheaf for smooth schemes

To finish the proof of Riemann-Roch, we must still show that we can take ω◦

X = ωX when
X is smooth over k. Fortunately, this is a local problem.
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Theorem. Suppose that X is a local complete intersection in P . Let I be the ideal sheaf of

X. Then there is a canonical isomorphism

Extr
P (j∗OX , ωP ) ∼= ωP ⊗ j∗OX ⊗ ∧r(I/I2)∨.

The local complete intersection condition asserts that I is locally generated by N − n
elements; this is true for X smooth basically by the Jacobian criterion. See Hartshorne
Theorem II.8.17. The fact that the right side gives ωX comes from the exact sequence

0 → I/I2 → ΩP/k ⊗ j∗OY → j∗ΩY/k

by taking exterior powers; see Hartshorne Proposition II.8.20. The stated theorem itself is
proved by computing in local coordinates; see Hartshorne Theorem III.7.11
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