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GAGA (updated 30 Apr 2009)

We now discuss a classic theorem of algebraic geometry, Serre’s GAGA, which exposes
a tight relationship between algebraic geometry over the complex numbers and complex
analytic geometry. By far the best reference for this is Serre’s original paper Géométrie
algébrique et géométrie analytique. (Thanks to Bjorn Poonen for reporting some errors,
which have now been corrected.)

1 Coherent sheaves

In order to discuss GAGA, I need to talk about coherent sheaves not just on schemes, but
on analytic spaces. In fact, the notion is well-defined on any locally ringed space.

Let (X,OX) be a locally ringed space. We say a sheaf F is coherent if F is finitely
generated, and for any open subset U of X, any nonnegative integer n, and any homomor-
phism h : O⊕n

X |U → F|U , the kernel of h is itself finitely generated. Warning! I originally
only required this for h surjective, but I don’t think that is enough. (Important note: we
don’t require the kernel to be generated by finitely many sections over all of U .) This is
stronger than saying that F is finitely presented, in which case we only require that one
such surjection h must have this property. In particular, OX itself need not be coherent.

However, if X is locally noetherian, then all finitely generated quasicoherent sheaves are
in fact coherent. This follows from the following result.

Theorem. Let A be a noetherian ring, put X = Spec A, let V be an open subset of X, and
let F be an OX |V -module. Then the following are equivalent.

(a) F is coherent.

(b) F is finitely generated and quasicoherent.

(c) We have F = M̃ for some finitely generated A-module M .

I’m only going to show this for V = X, as this is the only case I need. For the general
case, see EGA 1, Théorème 1.5.1.

Proof. Even without a noetherian hypothesis, it is obvious that (a) implies (b), and we
checked (b) implies (c) in a previous lecture.

To check that (c) implies (a) under the noetherian hypothesis, note that the claim is
local, so it suffices to check that the kernel of a homomorphism O⊕n

X |D(f) → F|D(f) is
finitely generated. It is represented by a homomorphism An

f → Mf of Af -modules, but Af is
noetherian since A is. Hence the kernel of the homomorphism, being a submodule of a finitely
generated Af -module, is itself a finitely generated Af -module (because A is noetherian).
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Lemma. Let
0 → F1 → F → F2 → 0

be a short exact sequence of quasicoherent sheaves on a locally ringed space X. Then if any
two of F ,F1,F2 are coherent, so is the third.

Proof. Exercise.

Beware that it is not obvious that the inverse image of a coherent sheaf is coherent, since
the defining condition involves looking at all open subsets.

2 Analytification of coherent sheaves

In order to state the GAGA theorems, we use the fact that there is a morphism of locally
ringed spaces

h : P̃
r
C → P

r
C,

where the left side is the projective r-space over C viewed as a complex manifold (or a
complex analytic variety, on which more later). Where does this morphism come from?
We’ll give a functorial answer later, but for now I’ll do something more direct.

For each i = 0, . . . , r, put Xi = D+(xi) ⊆ P
r
C
. This space is an affine n-space over C

with coordinates xj/xi for j 6= i; let X̃i be the complex analytic affine r-space with the same
coordinates. There is an obvious map

Γ(Xi,OXi
) = C[x0/xi, . . . , xr/xi] → Γ(X̃i,OX̃i

);

by adjunction, this gives us a morphism

X̃i → Xi

of locally ringed spaces. These glue to give the morphism I described. Note that P̃
r
C

includes
only some of the points of Pr

C
(namely the closed points), but gives them a finer topology

(the analytic topology rather than the Zariski topology). This is consistent with the fact
that the map P̃r

C
→ Pr

C
is continuous.

What is nice about viewing the analytification process this way is that we can apply
operations defined on locally ringed spaces uniformly to both P̃r

C
to Pr

C
. For instance, for

any quasicoherent sheaf F on Pr
C
, the pullback h∗F is a quasicoherent sheaf on P̃r

C
.

Lemma (Cartan). For any coherent sheaf F on Pr
C
, h∗F is coherent.

Proof. Recall that there exists a surjection O(n)⊕m → F for some integers m, n. It thus
suffices to show that h∗O(n) is coherent. Since coherence is a local property, it is enough to
show that the structure sheaf on complex analytic affine n-space is coherent (as a module
over itself). This follows from the fact that each local ring of this space is noetherian.

I won’t give a complete proof of this here, but the basic idea is as follows. Let C{x1, . . . , xr}
be the ring of formal power series which converge in some neighborhood of the origin; this is
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the ring we are trying to prove is noetherian. We proceed by induction on r, the case r = 0
being trivial. The key to the induction step is the Weierstrass preparation theorem, which im-
plies that any element of C{x1, . . . , xr} equals a unit times an element of C{x1, . . . , xr−1}[xr].
Since that ring is noetherian by the induction hypothesis plus the Hilbert basis theorem, we
deduce that C{x1, . . . , xr} is too. For a proof of the Weierstrass preparation theorem, see for
example the first few pages of Griffiths and Harris, Principles of Algebraic Geometry.

We also need the following relationship between analytic and algebraic stalks.

Lemma. For any z ∈ P̃r
C
, the morphism f : OPr

C
,z → O

P̃r

C
,z is flat. That is, the morphism

h : P̃r
C
→ Pr

C
is flat.

Proof. Let t1, . . . , tn be local (algebraic) coordinates at z. Then we have a completion mor-
phism g : O

P̃r

C
,z → CJt1, . . . , tnK. Both g and g ◦ f are faithfully flat because they are maps

from noetherian local rings into their completions for their maximal ideals. This easily yields
flatness of f .

Corollary. The functor h∗ from quasicoherent sheaves on Pr
C

to quasicoherent sheaves on
P̃r

C
is exact.

3 The first GAGA theorem

Note that for any quasicoherent sheaf F on Pr
C
, there is always a natural morphism

H i(Pr
C
,F) → H i(P̃r

C
, h∗F)

by pulling back along h. More concretely, you may view an algebraic Čech cocycle as an
analytic one.

Theorem (GAGA, part 1). For any coherent sheaf F on Pr
C
, the natural morphism

H i(Pr
C
,F) → H i(P̃r

C
, h∗F)

is an isomorphism for each i ≥ 0.

In order to prove this, we need a mechanism for computing sheaf cohomology on analytic
spaces. Here it is, presented as a black box.

Theorem (Cartan). For any nonempty subset J of {0, . . . , r} and any coherent sheaf F on
U = ∩j∈JX̃j, H i(U,F) = 0 for i > 0.

The key point is that U is a Stein manifold. This also holds if U is the analytification
of any affine scheme of finite type over C (which I’ll leave to you to define). By Leray’s
theorem, this gives the following corollary.
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Corollary. For any coherent sheaf F on P̃
r
C
, we may compute sheaf cohomology using the

Čech complex associated to the cover U = {X0, . . . , Xr}. In particular, the i-th cohomology
vanishes for i > r.

With this, the proof is parallel to that of Serre’s finiteness theorem.

Proof of GAGA (part 1). We first prove the claim for F = O by an explicit Čech cohomology
calculation (exercise); note that the computation H0(P̃r

C
,O) = C comes down to the fact

that any bounded entire function on Cn is constant, which reduces to Liouville’s theorem.
(By the way, this makes it clear that the theorem is completely false if we replace Pr

C
with,

say, the affine space Ar
C
. More on this later.)

We next deal with the cases F = O(n) for n ∈ Z, using the exact sequence

0 → O(n − 1)
×xr→ O(n) → OH(n) → 0

for H ∼= P
r−1
C

the hyperplane xr = 0. By induction on r, and comparing long exact sequences
in cohomology, we can infer all of the cases from the case n = 0.

Finally, we treat the general case by descending induction on i (as in the proof that Čech
cohomology for a good cover computes sheaf cohomology). Build an exact sequence

0 → G → E → F → 0

in which E is a direct sum of twisting sheaves. Note that applying h∗ is exact, so we get
an exact sequence on the analytic side. Then twist and compare long exact sequences in
cohomology after twisting:

· · · // H i(Pr
C
, E(n))

��

// H i(Pr
C
,F(n))

��

// H i+1(Pr
C
,G(n))

��

// H i+1(Pr
C
, E(n))

��

// · · ·

· · · // H i(P̃r
C
, h∗E(n)) // H i(P̃r

C
, h∗F(n)) // H i+1(P̃r

C
, h∗G(n)) // H i+1(P̃r

C
, h∗E(n)) // · · ·

Using the five lemma, we get the desired result.

4 The second GAGA theorem

We now know that algebraic coherent sheaves preserve their cohomology under pullback to
the analytic side. We next show that they also preserve their morphisms.

Theorem (GAGA, part 2). Let F ,G be coherent sheaves on Pr
C
. Then the natural map

HomOPr

C

(F ,G) → HomO
P̃r

C

(h∗F , h∗G)

is an isomorphism.
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Proof. In general, for sheaves of OX-modules F and G, let H om(F ,G) be the presheaf

H om(F ,G)(U) = HomOU
(F|U ,GU).

This is in fact a sheaf, called the sheaf Hom from F to G. Its global sections are just
HomOX

(F ,G). (I should really write H omOX
(F ,G) with the subscript OX , but never mind

for now.)
Note that there is a natural map

h∗
H om(F ,G) → H om(h∗F , h∗G)

of sheaves on P̃
r
C
, given by viewing an algebraic morphism over a Zariski open subset of

Pr
C

as an analytic morphism over the corresponding subset of P̃r
C
. We claim this map is an

isomorphism; this will imply the theorem by taking global sections of this isomorphism, then
applying the first GAGA theorem.

We check the isomorphism on stalks. Using coherence, we have for each z ∈ P̃r
C

a natural
identification

H om(F ,G)z = Hom(Fz,Gz)

and similarly on the analytic side. Put

R = OPr

C
,z, R̃ = O

P̃r

C
,z;

a lemma from earlier states that R̃ is flat over R. By that flatness plus the lemma below
(and the fact that R is noetherian), we have a natural identification

Hom(Fz,Gz) ⊗R R̃ = Hom(Fz ⊗R R̃,Gz ⊗R R̃).

This yields the claim.

Lemma. Let R be a noetherian ring. Let S be a flat R-algebra. Then for any R-modules
M, N , the natural map

HomR(M, N) ⊗R S → HomS(M ⊗R S, N ⊗R S)

is a bijection.

Proof. Since R is noetherian, I can find an exact sequence

F1 → F0 → M → 0

where F0, F1 are finite free R-modules. Then we get a diagram

0 // HomR(F1, N) ⊗R S //

��

HomR(F0, N) ⊗R S //

��

HomR(M, N) ⊗R S

��

0 // HomS(F1 ⊗R S, N ⊗R S) // HomS(F0 ⊗R S, N ⊗R S) // HomS(M ⊗R S, N ⊗R S)

with exact rows (the exactness in the first row requiring the flatness of S over R). Since the
second and third vertical arrows are isomorphisms, so is the first by the five lemma.
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5 The third GAGA theorem

We next try to classify the coherent sheaves on the analytic projective space. We need one
more black box.

Theorem (Cartan, Serre). For F a coherent sheaf on P̃r
C
, the spaces H i(P̃r

C
,F) are finite

dimensional over C for all i ≥ 0.

Sketch of proof. Equip the Čech cocycles for the usual open cover with the topology of
uniform convergence on compact subsets. Then restrict to a cover in which each X̃i is
replaced by an open subset with closure inside X̃i. Using this, one sees that for the induced
topology on H i(P̃r

C
,F), the identity map is compact, which is only possible if this vector

space is finite dimensional over C.

Theorem (GAGA, part 3). Every coherent sheaf on P̃r
C

is the pullback under h of a unique
coherent sheaf on P

r
C
.

The uniqueness follows from the second GAGA theorem. To prove existence, we induct
on r, the case r = 0 being trivial. For F a coherent sheaf on P̃r

C
, we extend the twisting

notation from the algebraic case by writing

F(n) = F ⊗ h∗O(n).

Lemma. Assume the third GAGA theorem in dimensions up to r − 1. For any coherent
sheaf F on P̃r

C
and any z ∈ P̃r

C
, there exists an integer n0 (depending on F and z) such that

for n ≥ n0, F(n)z is generated by global sections of F(n).

Proof. Choose xr ∈ H0(Pr
C
,O(1)) vanishing at z, and let E be the hyperplane xr = 0. We

then have the usual exact sequence

0 → O(−1)
×xr→ O → OE → 0

of algebraic coherent sheaves. Tensoring with F , we have an exact sequence

F(−1) → F → FE → 0

where FE denotes the pushforward of the restriction to E. Let G be the kernel on the left
side. Twisting, we get

0 → G(n) → F(n − 1) → F(n) → FE(n) → 0.

Split this into short exact sequences:

0 → G(n) → F(n − 1) → H → 0

0 → H → F(n) → FE(n) → 0
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and then take long exact sequences in cohomology:

H1(P̃r
C,F(n − 1)) → H1(P̃r

C,H) → H2(P̃r
C,G(n))

H1(P̃r
C,H) → H1(P̃r

C,F(n)) → H1(P̃r
C,FE(n)).

Note that G and FE are supported on E, so by the induction hypothesis, they both come
from algebraic coherent sheaves. It follows that for n large enough, the terms H2(P̃r

C
,G(n))

and H1(P̃r
C
,FE(n)) both vanish. We thus obtain inequalities

dimC H1(P̃r
C,F(n − 1)) ≥ dimC H1(P̃r

C,H) ≥ dimC H1(P̃r
C,F(n))

for n large. By the previous Cartan theorem, the terms of the sequence dimC H1(P̃r
C
,F(n))

are all finite; we just showed that they are nonincreasing for n large enough. They thus
eventually reach a constant value for n large enough!

In particular, for n large, the previous inequalities all become equalities. Backing up the
second of the two long exact sequences, we see that

H0(P̃r
C
,F(n)) → H0(P̃r

C
,FE(n))

must be surjective for n large.
Again since FE is known to be algebraic, for n large, H0(P̃r

C
,FE(n)) generates (FE)z. By

a quick Nakayama’s lemma argument, for such n, H0(P̃r
C
,F(n)) also generates F(n)z.

Corollary. Assume the third GAGA theorem in dimensions up to r − 1. For any coherent
sheaf F on P̃r

C
, there exists an integer n0 (depending only on F) such that for any n ≥ n0

and any z ∈ P̃r
C
, F(n)z is generated by global sections of F(n).

Proof. For a single n, if the claim holds for a single z, it holds in a neighborhood of that z;
moreover, by multiplying these sections by monomials in x0, . . . , xr, we infer the claim for
all larger n in the same neighborhood. Since P̃r

C
is compact, we may find a single n0 such

that F(n)z is generated by global sections of F(n) for each z ∈ P̃
r
C

and each n ≥ n0.

Proof of the theorem. Let F be a coherent sheaf on P̃r
C
. By the previous corollary, for some

n, each stalk of F(n) is generated by the space of sections H0(P̃r
C
,F(n)), which by Cartan’s

theorem is finite dimensional over C. We thus obtain a surjection h∗O(−n)⊕m → F for some
m, n. Applying the same argument to the kernel of this map (which is again coherent), we
get an exact sequence

F1 → F2 → F → 0

in which each Fi is a direct sum of pullbacks of twisting sheaves. In particular, the Fi

are algebraic; by the second GAGA theorem, the morphism between them is also algebraic.
We may then form the algebraic cokernel, whose analytification is isomorphic to F , as
desired.
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6 More analytification

One can state the GAGA theorems more generally, but first we need to discuss analytification
of spaces other than projective space. We first specify the target category: a locally ringed
space (X,OX) is a complex analytic space if each point x admits a neighborhood U and an
immersion φ : U → Cn for some n. This is not the same as a complex manifold because we
allow singularities, and for that matter nonreducedness (so these shouldn’t be called complex
analytic varieties either). Let AnSp denote the category of complex analytic spaces.

We would like a process for turning schemes locally of finite type over C into complex
analytic spaces in a natural way. It is easy to say what we want to have happen in local
coordinates: if X = Spec C[z1, . . . , zn]/(f1, . . . , fm), we want to take the subspace Z of Cn

on which f1 = · · · = fm = 0, equipped with the quotient of OCn by the coherent ideal sheaf
generated by f1, . . . , fm (or rather, its inverse image on Z).

However, if one works this way, one has to check independence from coordinates. This is
doable but annoying (it’s like Hartshorne’s Proposition II.2.14 comparing certain schemes to
varieties). There is a more functorial description of analytification introduced by Grothendieck;
see SGA I, exposé XII, Théorème-Définition 1.1.

Theorem. Let X be a scheme locally of finite type over C. The functor

Y 7→ HomLocRingSp(Y, X)

from AnSp to Set is represented by an analytic space Xan; that is, there are natural isomor-
phisms

HomLocRingSp(Y, X) → HomAnSp(Y, Xan).

Moreover, Xan has underlying set X(C), and the morphism Xan → X induces isomorphisms
of completed local rings, and so is flat.

You could interpret this as saying that the inclusion functor from analytic spaces to
locally ringed spaces has a “partial right adjoint”.

Sketch of proof. One first shows that the class of schemes for which the theorem holds is
closed under forming open subschemes, closed subschemes, and products, by mirroring these
constructions on the analytic side. It then suffices to check the theorem for X = A

1
C
; this

amounts to observing that giving a map Y → X is the same (by the adjunction property of
affine schemes) as specifying a map C[t] → Γ(Y,OY ), which in turn is the same as specifying
the image of t. That is, Hom(Y, X) is naturally isomorphic to Γ(Y,OY ). On the other
hand, if we view C as an analytic space in the obvious fashion, then we may again identify
Hom(Y, C) naturally with holomorphic functions on Y , i.e., with Γ(Y,OY ). This proves the
claim for affine space.

This paradigm extends to other categories derived from schemes. For instance, for k an
algebraically closed field, separated reduced schemes of finite type over k admit “varietifica-
tions”, thus reproducing the class of abstract algebraic varieties and giving a stronger version
of Hartshorne Proposition II.2.14.

8



7 Extension to projective and proper schemes

In terms of the analytification functor, we can now extend the GAGA theorems as follows.

Theorem (GAGA for projective schemes). Let X be a closed subscheme of Pr
C

for some
r ≥ 1. Let h : Xan → X be the analytification morphism.

(a) For any coherent sheaf F on X, the natural morphism

H i(X,F) → H i(Xan, h∗F)

is an isomorphism.

(b) For any coherent sheaves F ,G on X, the natural morphism

HomOX
(F ,G) → HomOXan (h∗F , h∗G)

is an isomorphism.

(c) Every coherent sheaf on Xan is isomorphic to h∗F for a unique coherent sheaf F on
X.

We saw earlier that already (a) is totally false for X = Ar
C
, so some sort of completeness

is necessary. Grothendieck noticed that it suffices to assume X is proper over C; this reduces
to the projective case using Chow’s lemma (exercise).

8 Applications

The GAGA theorem has applications too numerous to count, so I’ll just mention a few (see
SGA 1, exposé XII for more). The following was proved before GAGA by Chow, but is an
immediate corollary.

Corollary (Chow). Any closed analytic subvariety of P̃
r
C

is the analytification of a closed
algebraic subvariety.

Another application is the following.

Theorem. Let X be a smooth proper scheme over C. Then

Hp(X, Ωq
X/C

) = Hp(Xan, Ωq
Xan) (p, q ≥ 0).

This can be used to show that the hypercohomology of the algebraic de Rham complex
Ω.

X/C
coincides with the hypercohomology of the analytic de Rham complex. (If F : C1 → C2

is a left exact additive functor of abelian categories with C1 having enough injectives, the
hypercohomology of a complex C · is defined by forming a quasi-isomorphism C · → I · with
the I · all injective, and taking hi(F (I ·)). More on this construction a bit later.) This in turn
can be combined with some more results on the analytic/topological side (the Dolbeault and
de Rham theorems, respectively) to show that algebraic de Rham cohomology computes the
usual topological Betti numbers of a smooth variety over C.

Here is another application by Grothendieck. See SGA 1, exposé XII again.
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Theorem (Grothendieck). Let X be a smooth proper scheme over C. Then any finite
covering space map Y → Xan (of topological spaces) corresponds to a finite étale cover of X
in the category of schemes.

One can define the étale fundamental group of a scheme X as, roughly speaking, the
automorphism group of a maximal inverse system of connected finite étale covers of X. For
instance, if X = Spec F with F a field, this gives the absolute Galois group of F . (To make
this more precise, one must fix a choice of a basepoint just as in the topological case.) The
previous theorem implies that for a smooth proper scheme over C, the étale fundamental
group is the profinite completion of the usual topological fundamental group, i.e., the inverse
limit of its finite quotients. For instance, for an elliptic curve, the topological fundamental
group is Z × Z, while the profinite completion is

Ẑ × Ẑ ∼=
∏

p

(Zp × Zp),

where Zp denotes the p-adic integers.

Corollary. Let K be a number field and let X be a smooth proper scheme over K. Then the
profinite completion of the fundamental group of (X ×K C)an does not depend on the choice
of the embedding K →֒ C.

This might not be so surprising until I tell you that Serre exhibited examples in which
the topological fundamental group does depend on the choice of the embedding! (Serre’s
example is a rather artificial construction using elliptic curves with complex multiplications.
There are some more natural examples due to one of our postdocs, Junecue Suh.)

The following is an example of a rather large class of results from SGA 1. See the exercises
for an example involving properness.

Theorem. Let f : X → Y be a morphism of schemes locally of finite type over C. Then f
is separated if and only if f an : Xan → Y an is separated. In particular, X is separated if and
only if Xan is Hausdorff.

9 Analogues

I know of at least two analogues of GAGA, though there may be more.

• One is formal GAGA, in which one passes from a scheme to its formal completion
along a closed subscheme.

• The other is rigid GAGA, which is like ordinary GAGA except that one works over a
complete nonarchimedean field, and uses Tate’s notion of rigid analytic geometry (or
Berkovich’s notion of nonarchimedean analytic geometry instead of complex analytic
geometry.
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• I suppose there is also an instance of GAGA for passing from reduced separate schemes
of finite type over an algebraically closed field to abstract algebraic varieties. But that
one is neither surprising nor useful.
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