
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Hilbert polynomials and flatness (revised 17 Apr 09)

See Hartshorne III.9 again.

1 Hilbert polynomials

Let k be a field (not necessarily algebraically closed). Let j : X → Pr
k be a closed immersion

for some r ≥ 1. Write OX(1) for the inverse image by j of the twisting sheaf O(1). Let F
be a finitely generated quasicoherent sheaf on X.

The Euler characteristic of F is defined as

χ(X,F) =
∞

∑

i=0

(−1)i dimk H i(X,F);

we know from Serre’s finiteness theorem that each summand is finite, and we also know that
there are no terms in dimension greater than r. So this is indeed a well-defined integer.

Lemma. The Euler characteristic is additive in short exact sequences; that is, if

0 → F → G → H → 0

is exact, then
χ(X,G) = χ(X,F) + χ(X,H).

Proof. Exercise in the long exact sequence in cohomology.

Corollary. If
0 → F1 → · · · → Fn → 0

is an exact sequence of finitely generated quasicoherent sheaves, then

n
∑

i=1

(−1)iχ(X,Fi) = 0.

Theorem. There exists a polynomial P (z) ∈ Q[z] such that

χ(X,F(n)) = P (n) (n ∈ Z).

Moreover, the degree of P is at most the dimension of X.

Proof. By replacing F by j∗F , we may reduce to the case X = Pr
k. Also, changing the base

field doesn’t change any of the dimensions (e.g., by looking at Čech cohomology; this is a
special case of the flat base change theorem), so we may assume k is algebraically closed.

We proceed by induction on the dimension of the support of F . If that support is empty
(i.e., F is the zero sheaf), then obviously P (z) = 0 works.

1



Otherwise, form an exact sequence

0 → G → F(−1)
×xr→ F → H → 0

and note that G and H have support of lower dimension than F provided that we ensure
that the hyperplane xr = 0 does not contain any component of the support of F . (We can
arrange this given that k is algebraically closed; see exercises. In fact, k infinite would be
sufficient.) By the induction hypothesis, we know that χ(Pr

k,F(n)) − χ(Pr
k,F(n − 1)) is a

polynomial in n of degree at most dim(SuppF)− 1. It is an elementary exercise in algebra
to then see that χ(Pr

k,F(n)) is a polynomial in n of degree at most dim(SuppF).

The polynomial P (n) is called the Hilbert polynomial of the sheaf F ; in case F = OX , we
call it the Hilbert polynomial of the scheme X itself. Note that by Serre’s vanishing theorem,
for some n0, we have

P (n) = dimk H0(X,F) (n ≥ n0);

this was the original definition of the Hilbert polynomial.
For example, the Hilbert polynomial of Pr

k itself is P (n) =
(

n+r

n

)

. For another example,
the Hilbert polynomial of the subscheme Spec k[x]/(x2) of P1

k is P (n) = 2, which is the
same as the Hilbert polynomial of a scheme consisting of two distinct reduced points. This
is suggestive, because this scheme can indeed be written as a flat limit of pairs of distinct
points.

2 Flatness and Hilbert polynomials

The Hilbert polynomial can be used to give the following numerical criterion for flatness.
(The locally noetherian hypothesis is important; I think one can replace “integral” by “con-
nected and reduced”.)

Theorem. Let T be an integral (locally) noetherian scheme. Let X ⊆ Pr
T be a closed sub-

scheme. Let F be a coherent sheaf on X. For each t ∈ T , let Pt ∈ Q[z] be the Hilbert
polynomial of the pullback of F to the fibre Xt viewed as a subscheme of Pr

κ(t) (where

κ(t) = OT,t/mT,t is the residue field of the point t). Then F is flat relative to X → T
if and only if Pt is constant as a function of t.

In particular, X itself is flat over T if and only if the Hilbert polynomial of Xt is constant
as t varies. This gives us a way to check whether a morphism is flat which we were sorely
lacking before.

Proof. (Compare Hartshorne Theorem III.9.9, or EGA III §7.9.) We first note that we can
reduce to the case X = Pr

T by replacing F with its direct image. We next note that it suffices
to consider the case where T = Spec A for A a local integral noetherian ring.

We then show that F is flat over T if and only if H0(X,F(m)) is finite free over A for
m sufficiently large. On one hand, if F is flat over T , then so are all the terms in the sheafy
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Čech resolution of F(m) for the usual open cover U (since open immersions are flat). Taking
global sections, we see that the terms of the exact sequence

0 → H0(X,F(m)) → Č0(U,F(m)) → · · · → Čr(U,F(m)) → 0

are all flat except possibly for the first term. This then implies flatness of H0(X,F(m))
(exercise). Since it’s also finitely generated over A by Serre’s finiteness theorem, it is free.

On the other hand, if we pick m0 such that H0(X,F(m)) is finite free over A for m ≥ m0,
then we can recover F as M̃ for

M =
⊕

m≥m0

H0(X,F(m)).

Since M is flat, so is F .
We now need to show that H0(X,F(m)) is finite free for m large if and only if Pt is

constant. I claim that this follows by checking

H0(Xt,Ft(m)) = H0(X,F(m)) ⊗A κ(t)

for m large (even if I don’t prove this uniformly in t). Namely, if H0(X,F(m)) is finite free
over A for m ≥ m0, then for each t, for m large, I find that Pt equals Pη for η the generic
point of T . On the other hand, if Pt is the same for the generic point and the closed point,
then I can make m large enough to work for both, and obtain finite freeness of H0(X,F(m)).

To check
H0(Xt,Ft(m)) = H0(X,F(m)) ⊗A κ(t),

we may reduce to the case where t is the closed point by replacing A with OT,t. Since A is
noetherian, we can find a short exact sequence

A⊕n → A → κ(t) → 0

of A-modules. We can then tensor with F to get an exact sequence; it follows (exercise) that

H0(X,F(m)⊕n) → H0(X,F(m)) → H0(X,Ft(m)) → 0

is exact for m large. I can pull out the direct sum, and then we read off what we want.

3 Hilbert schemes

It turns out that there is a universal family of closed subschemes of projective space with a
fixed Hilbert polynomial.

Theorem (Grothendieck). Fix a field k and an integer r. Let P (z) ∈ Q[z] be a polynomial.
There exists a noetherian scheme H over Spec k and a closed subscheme X of Pr

H which is
flat with Hilbert polynomial P (z), such that for any noetherian scheme T and any closed
subscheme Y of Pr

T which is flat with Hilbert polynomial P (z), there is a unique morphism
T → H such that Y = X ×H T as closed subschemes of Pr

T
∼= Pr

H ×H T .

For instance, one can show that a closed subscheme of Pr
k is a d-dimensional plane if and

only if it has Hilbert polynomial P (n) =
(

n+d−1
n

)

. The parameter scheme in this case is the
Grassmannian of d-dimensional planes in Pr

k.
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4 Hilbert polynomials, degree, and dimension

Some of the basic information contained in the Hilbert polynomial of a scheme is the follow-
ing.

Lemma. Let P (z) be the Hilbert polynomial of a closed subscheme X of Pn
k .

(a) We have deg(P ) = dim(X).

(b) Put d = dim(X). For any d-dimensional plane P ⊆ Pn
k such that dim(X ∩ P ) = 0,

the length of X ∩ P is d! times the leading coefficient of P . (This length is called the
degree of X.)

Proof. We may assume k is algebraically closed. We first need to know that for a generic d-
dimensional plane P (i.e., one chosen outside some closed subscheme of the Grassmannian),
we have dim(X ∩ P ) = 0. This follows from the fact that as long as X 6= ∅, for a generic
hyperplane H , we have dim(X ∩ H) < dim(X) (exercise).

Put F = j∗OX for j : X → Pn
k the given closed immersion. For H a hyperplane with

dim(X ∩ H) < dim(X), we have an exact sequence

0 → F(−1) → F → G → 0

where G is the direct image of the structure sheaf of X∩H . If P (z) is the Hilbert polynomial
of X, it follows that the Hilbert polynomial of X ∩ H is P (z) − P (z − 1). From this, both
claims follows.
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