
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Projective morphisms, part 1 (updated 3 Mar 08)

We now describe projective morphisms, starting over an affine base.

1 Proj of a graded ring

The construction of Proj of a graded ring was assigned as an exercise; let me now recall the
result of that exercise.

Let S = ⊕∞
n=0Sn be a graded ring, i.e., a ring such that each Sn is closed under addition,

and SmSn ⊆ Sm+n. An element of Sn is said to be homogeneous of degree n; the elements of
S0 form a subring of S, and each Sn is an S0-module. (One could also define a graded ring
to allow negative degrees; on the few occasions where I’ll need that construction, I’ll call it
a graded ring with negative degrees.) Let S+ denote the ideal ⊕∞

n=1Sn.
Let Proj S be the set of all homogeneous prime ideals of S not containing S+. For each

positive integer n and each f ∈ Sn, we may view the localization Sf as a graded ring with
negative degrees, by placing g/fk in degree m− kn whenever g ∈ Sm. We may then identify
the set

D(f) = {p ∈ Proj S : f /∈ p}

with Spec Sf,0, where Sf,0 is the degree zero subring of Sf . These glue to equip Proj S with
the structure of a scheme (note that D(f) ∩ D(g) = D(fg)). In the case S = A[x0, . . . , xn]
where each of x0, . . . , xn is homogeneous of degree 1, this simply produces the projective
space P

n
A.

Any morphism S → T of graded rings induces a morphism Proj T → Proj S of schemes.
For example, we say an ideal I of S is homogeneous if as abelian groups we have

I = ⊕∞

n=0(I ∩ Sn).

In other words, if we split each element of I into homogeneous components, the components
themselves belong to I. Then S/I may also be viewed as a graded ring, the projection
S → S/I induces a morphism Proj S/I → Proj S, and this morphism is a closed immersion
(as we see immediately by checking on a D(f)).

Beware that the scheme Proj S does not by itself determine the graded ring S. For
instance, omitting S1 gives another graded ring with the same Proj. We’ll come back to this
point later.

More generally, if M = ⊕∞
n=−∞ is a graded S-module, i.e., SmMn ⊆ Mm+n for all m, n,

we can convert M into a quasicoherent sheaf M̃ on Proj S by doing so on each D(f) (using
the degree-zero subset of Mf) and then glueing. For a converse, see below.
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2 The sheaf O(1)

For S a graded ring, n a nonnegative integer, and M a graded S-module, let M(n) denote
the shifted module

M(n)i = Mn+i.

Let OX(n) be the quasicoherent sheaf on X = Proj S defined by the graded module S(n).
In particular, OX(0) = OX . More generally, for any quasicoherent sheaf F of OX-modules,
put F(n) = F ⊗OX

OX(n).

Lemma. Suppose that S is generated by S1 as an S0-algebra. Then the sheaves OX(n)
on Proj S are locally free of rank 1, and OX(m) ⊗OX

OX(n) is canonically isomorphic to
OX(m + n).

Proof. See Hartshorne, Proposition II.5.12.

Note: a quasicoherent sheaf F on a locally ringed space X which is locally free of rank
1 is also called an invertible sheaf. That is because there is a unique sheaf F∨ such that
F⊗OX

F∨ ∼= OX , the dual of X (exercise). In this case, the dual of OX(n) is in fact OX(−n).
This gives us an explanation for what x0, . . . , xn are on the projective space Proj A[x0, . . . , xn]:

they are global sections not of the sheaf OX , but rather of the sheaf OX(1).

Theorem 1. Suppose that S is finitely generated by S1 as an S0-algebra. Then each quasi-
coherent sheaf on Proj S can be written as M̃ for a canonical choice of M .

The finitely generated hypothesis is needed to ensure that Proj S is quasicompact; we
will impose it pretty consistently hereafter.

Proof. Let F be a quasicoherent sheaf on M . Then the module we want is

Γ∗(F) = ⊕n∈ZΓ(X,F(n)),

where
F(n) = F ⊗OX

OX(n).

For the rest of the proof, see Hartshorne, Proposition II.5.15.

Beware that this does not imply that S = ⊕∞
n=0Γ(X,OX(n)) in general. For a stupid

example, take S = A[x], in which case the sheaves OX(n) are all free and so Γ(X,OX(n)) 6= 0
even when n < 0. For less stupid examples, see Hartshorne exercise II.5.14. However, the
following is true.

Lemma. Let n ≥ 1 be an integer. For S = A[x0, . . . , xn] with the usual grading (by total
degree), we have

S = ⊕∞

n=0Γ(X,OX(n)).

Proof. Exercise, or see Hartshorne Proposition II.5.13.
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3 Closed subschemes of projective spaces

Proposition. For n ≥ 1, any closed immersion into P
n
A is defined by some homogeneous

ideal of A[x0, . . . , xn].

Proof. In fact, there is a canonical way to pick out the ideal. Let I be the ideal sheaf defining
the closed immersion; then Γ∗(I) is an ideal of Γ∗(OX), but we already identified the latter
with S = A[x0, . . . , xn]. (This identification uses the fact that S is finitely generated by S1

as an S0-algebra, in order to invoke the previous theorem. In fact, it is part of the proof of
that theorem; see Hartshorne Proposition II.5.13.)

In general, there may be multiple homogeneous ideals defining the same closed subscheme
of P

n
A. If we start with an ideal I, pass to the closed subscheme, then use the previous

proposition to get back, we get the saturation of I, namely, the set of all elements f ∈
A[x0, . . . , xn] such that xj

0f, . . . , xj
nf ∈ I for some nonnegative integer j. We thus obtain a

one-to-one correspondence between closed subschemes of P
n
A and saturated (equal to their

saturation) homogeneous ideals.

Corollary. For n ≥ 1, let I be a homogeneous ideal of S = A[x0, . . . , xn]. The following
conditions are equivalent.

(a) The subscheme of P
n
A defined by I is empty.

(b) The saturation of I equals S+.

(c) For some n0, we have Sn ⊆ I for all n ≥ n0.

Proof. We just proved the equivalence of (a) and (b). It is clear that (c) implies (b). Let
us check that (b) implies (c). Given (b), each f ∈ {x0, . . . , xn} has the property that
xj

0f, . . . , xj
nf ∈ I for some j. In particular, we have xj

0, . . . , x
j
n ∈ I for some j. This in turn

implies S(n+1)(j−1)+1 ⊆ I since each monomial of degree (n + 1)(j − 1) + 1 is divisible by one

of xj
0, . . . , x

j
n (pigeonhole principle!).

4 Projective implies proper

We are now ready to complete the proof that f : P
n
Z
→ Spec Z is proper. Recall that

the missing step was to show that f is universally closed, i.e., for any scheme X, the map
P

n
X → X is closed. It is enough to do this in case X = Spec A is affine. Moreover, we may

assume n ≥ 1, as the case n = 0 is stupid (because f is an isomorphism).
Let Z be a closed subset of P

n
X , suppose z ∈ X is not in the image of Z, and put k = κ(z).

We must exhibit an open neighborhood U of x in X such that Z ∩ P
n
U = ∅. Let I = ⊕∞

n=0In

be the saturated homogeneous ideal in S = A[x0, . . . , xn] defining Z. Then I ⊗A k defines
the empty subscheme of Proj k[x0, . . . , xn], but may not be saturated. Nonetheless, for some
m, we have that In ⊗A k = Sn ⊗A k, and so (Sn/In) ⊗A k = 0.
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Since Sn/In is a finitely generated A-module, by Nakayama’s lemma, (Sn/In)⊗A Ap = 0
for p the prime ideal of A defining z. Again since Sn/In is finitely generated, we have
(Sn/In) ⊗A Ag = 0 for some g ∈ A \ p. Then z ∈ D(g) and D(g) is disjoint from the image
of Z, proving the claim.

5 What is a projective morphism?

Several authors (Hartshorne, Eisenbud-Harris) define a morphism f : Y → X to be projective
if it is the composition of a closed immersion Y → P

n
X with the projection P

n
X for some

nonnegative integer n. This definition is evidently stable under base change, but it is not
local on the base! Better to say that such a morphism is globally projective, and to say that f
is locally projective if each x ∈ X admits an open neighborhood U such that f : Y ×X U → U
is globally projective.

This is not such a serious distinction in practice, as globally projective equals locally
projective if X is “not too large”. For instance, this occurs if X is itself globally quasiprojective
over an affine scheme. (A morphism is globally quasiprojective if it factors as an open
immersion followed by a globally projective morphism. Again, this is stable under base
change but not local on the base; the version where we force locality on the base is a
quasiprojective morphism.)

The definition of projective given in EGA is in fact somewhere between locally and glob-
ally projective. More on that later. (Warning: Eisenbud-Harris claim that locally projective
and projective are the same. They aren’t, but counterexamples are rather pathological.)
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