
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Serre duality for projective space

1 Ext groups

For R a ring and M, N ∈ ModR, I defined Exti(M, N) as the image of N under the i-th
right derived functor of HomR(M, ·). This makes sense because HomR(M, ·) is a left exact
covariant functor from ModR to Ab (it actually goes to ModR but never mind that). I also
remarked that it can be viewed as the image of M under the i-th right derived functor of
HomR(·, N), provided we view this as a functor on Modop

R .
For the category ModX of sheaves of OX-modules on a ringed space X, we can imitate

the first construction pretty directly, except that we have to choose between the normal
Hom and the sheaf Hom. Let Exti(F , ·) be the right derived functors of Hom(F , ·), and let
Ext i(F , ·) be the right derived functors of Hom(F , ·).

For example, there is a natural isomorphism

Exti(OX ,F) ∼= H i(X,F)

because these are derived functors of the naturally isomorphic functors Hom(OX ,F) ∼=
H0(X,F). On the other hand, Hom(OX ,F) is the identity functor, so

Ext0(OX ,F) ∼= F , Ext i(OX ,F) = 0 (i > 0).

Lemma. Let I be an injective OX-module. Then for any open subset U of X, I|U is an
injective OU -module.

Proof. Let j : U → X be the inclusion. We must show that given a monomorphism F → G,
any map F → I|U extends to G. Let j∗ denote extension by zero, so that j∗F has the
same stalks as F over U and zero stalks elsewhere. (Sections are the same as F over
opens contained in U and zero elsewhere.) By looking at stalks, j∗F → j∗G is still a
monomorphism. Moreover, we have a map j∗I|U → I by adjunction, and the resulting
composition j∗F → j∗I|U → I extends to j∗G → I. Restricting back to U gives the desired
map G → I|U .

Corollary. For any open subset U of X, there are natural isomorphisms

Ext i(F ,G)|U ∼= Ext i(F|U ,G|U).

In particular, the right side is a sheaf; e.g., Ext i(F ,G) = 0 for i > 0 whenever F is locally
free of finite rank.

Proof. Both sides are cohomological functors in G whose higher terms vanish on injectives (by
the previous lemma in the case of the right side), hence are effaceable and thus universal.
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Corollary. For I an injective OX-module, the functors

Hom(·, I), Hom(·, I)

are exact.

Proof. This is true for Hom by the definition of injectivity. For Hom, use the lemma.

Proposition. For F an OX-module, Exti(·,F) and Ext i(·,F) are cohomological functors on
Modop

X .

Proof. Let I · be an injective resolution of F . Given a short exact sequence

0 → E → G → H → 0

in ModX , we obtain the long exact sequence by taking Hom or Hom into I ·, yielding a short
exact sequence of complexes (by the previous corollary), and then taking the long exact
sequence of cohomology groups. One does need to check independence from the choice of
the resolution, but this is similar to other arguments we’ve done before, so I won’t bore you
with it. (The summary: by a pushout construction, it suffices to compare I · and J · when
there is a quasi-isomorphism I · → J ·. You then get a morphisms of short exact sequences
which is a quasi-isomorphism on each term, etc.)

Unfortunately, we can’t check that Exti(·,F) and Ext i(·,F) are effaceable, or construct
them as derived functors, because ModX need not have enough projectives (exercise). How-
ever, we can still use certain “acyclic resolutions” to compute.

Proposition. Suppose that
· · · → L1 → L0 → F → 0

is an exact sequence in ModX, where each Li is locally free of finite rank. (We say the L·

form a locally free resolution of F .) Then there is a isomorphism

Ext i(F ,G) ∼= hi(Hom(L·,G))

which is functorial both in G and in the resolution of F .

Proof. Since Li is locally free of finite rank, Ext1(I, ·) always vanishes, so Hom(Li, ·) is an
exact functor (even though Hom(Li|U , ·) is not exact on any open U). From this we see that
the right side is a cohomological functor: given a short exact sequence 0 → G1 → G → G2 →
0, the sequence

0 → Hom(L·,G1) → Hom(L·,G) → Hom(L·,G2) → 0

is again exact, so admits a long exact sequence in cohomology.
We now have that both sides of the desired isomorphism are cohomological functors in G

whose higher terms vanish on injectives, so are effaceable. Hence they are both universal.
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Note that locally free resolutions are much easier to write down in practice than injective
resolutions. For instance, if X = P

n
k for k a field, and F is coherent, then Serre’s theorem

gives a surjection E → F where E is a direct sum of twisting sheaves. Repeated application
gives not just a locally free resolution but a free resolution!

Proposition. For any coherent sheaves F ,G on P
n
k for k a field, Ext i(F ,G) is again coherent.

Proof. We just argued that a free resolution L· of F exists. By the previous proposition, we
need only check that the hi(Hom(L·,G)) are coherent. This is true because the L· and G
are coherent, so the Hom(L·,G) are too.

Lemma. For F ,G,L ∈ ModX with L locally free of finite rank, there are canonical isomor-
phisms

Exti(F ⊗ L,G) ∼= Exti(F ,L∨ ⊗ G)

and
Ext i(F ⊗ L,G) ∼= Ext i(F ,L∨ ⊗ G) ∼= Ext i(F ,G) ⊗ L∨.

Proof. Again, check that everything is an effaceable cohomological functor of G and that
things match at i = 0. (See Hartshorne Proposition III.6.7.)

Final note: you may be wondering what the relationship is between Ext and Ext . It
comes from the following general fact: if F and G are left exact functors such that F ◦ G
makes sense, then there is a spectral sequence relating the derived functors of F , the derived
functors of G, and the derived functors of F ◦G. (See Godement’s book for details.) In our
case, given a sheaf F , take

F = H0(X, ·), G = HomX(F , ·), F ◦ G = HomX(F , ·).

2 Duality on projective space

For the rest of this lecture, we work over a field k, but it need not be algebraically closed.

Theorem (Duality on projective space). Put X = P
n
k . Let F be a coherent sheaf on X.

Recall that Hn(X,OX(−n − 1)) is one-dimensional over k.

(a) The map

HomX(F ,OX(−n − 1)) × Hn(X,F) → Hn(X,OX(−n − 1))

is a perfect pairing of finite dimensional k-vector spaces (i.e., it identifies each space
with the Hom of the other into the target).

(b) For V a k-vector space, put

V ′ = Homk(V, Hn(X,OX(−n − 1)).
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For each i ≥ 0, there is a natural isomorphism

Exti(F ,OX(−n − 1)) → Hn−i(X,F)′

which for i = 0 reproduces (a), and which is compatible with short exact sequences.

Proof. For (a), we have a natural morphism

Hom(F ,OX(−n − 1)) → Hn(X,F)′

of left exact covariant functors on Modop

X , which we claim is an isomorphism. In case F =
OX(m), we want a natural isomorphism

H0(X,OX(−m − n − 1)) ∼= Hom(Hn(X,OX(m)), Hn(X,OX(−n − 1)))

and this is exactly what we got from Serre’s calculation. Likewise, we already have the
isomorphism when F is a direct sum of twisting sheaves.

In general, we can write an exact sequence

E1 → E0 → F → 0

in ModX with E0, E1 both direct sums of twisting sheaves. Since the things we are computing
are left exact on Modop

X , this exact sequence turns into a diagram with exact rows:

0 //

��

0 //

��

Hom(F ,OX(−n − 1)) //

��

Hom(E0,OX(−n − 1)) //

∼

��

Hom(E1,OX(−n − 1))

∼

��

0 // 0 // Hn(X,F)′ // Hn(X, E0)
′ // Hn(X, E1)

′

The five lemma gives the desired isomorphism.
For (b), we have two cohomological functors on the category of coherent OX-modules

which agree at index 0. We need only check that they are both effaceable. For this, given
F coherent, we can write it as a quotient of E = OX(−q)⊕m for any sufficiently large q. So
all we need to do is check that for any given i > 0, both Exti(OX(−q),OX(−n − 1)) and
Hn−i(X,OX(−q)) vanish for q large. The second statement is true by Serre’s calculation; so
is the first because Exti(OX(−q),OX(−n − 1)) ∼= H i(X,OX(q − n − 1)).

3 Differentials and duality

This is not really the right way to view the duality theorem, because it does not generalize
well. To fix this, we reintroduce the sheaf ΩX/k of Kähler differentials on X = P

n
k , and its

top exterior power ωX , the canonical sheaf.

Lemma. For X = P
n
k , the sheaf ωX is isomorphic to OX(−n − 1).
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Proof. This can be seen using the exact sequence

0 → ΩX/k → OX(−1)⊕n+1 → OX → 0

of sheaves on X, where the middle term corresponds to the sheaf ⊕n
i=0S(−1)ei, the right term

corresponds to S = k[x0, . . . , xn], and the map S(−1)n+1 → S takes ei to xi (Hartshorne,
Theorem 8.13). This gives exact sequences

0 → Ωi
X/k → ∧i

kOX(−1)⊕n+1 → Ωi−1

X/k → 0

for all i. For i = n+1, this becomes an isomorphism OX(−n−1) → Ωn
X/k because Ωn+1

X/k = 0.

One can also see this more directly by writing down a global generator of ωX(n+1). For
instance, define α ∈ H0(D+(x0 · · ·xn), ωX) by the formula

α =
xn+1

0

x0 · · ·xn
d(x1/x0) ∧ · · · ∧ d(xn/x0)

=
1

x0 · · ·xn

n∑

i=0

(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

The first line shows that x0 · · ·xnα generates ωX(n + 1) over D+(x0); it also shows that
performing an automorphism of X which swaps two of x1, . . . , xn only changes α by a sign.
The second line shows that the same is true of the automorphism of X which swaps x0 and
xn. Hence x0 · · ·xnα generates ωX(n + 1) over D+(xi) for i = 1, . . . , n.

Warning: Hartshorne Remark 7.1.1 claims that α, viewed as a Čech n-cocycle, is invariant
under coordinate changes. However, we just contradicted this by showing that α itself
changes sign when you swap two coordinates. What is really happening is that if T : P

n
k → P

n
k

is the linear automorphism defined by the matrix A, in the sense that

T ∗(xj) =
∑

i

Aijxi (i, j = 0, . . . , n),

then
T ∗(x0 · · ·xnα) = det(A)x0 · · ·xnα.

In any case, we can use ωX in place of OX(−n−1) in the statement of the duality theorem
on projective space. Next time, I’ll talk about how this can be generalized to other schemes
over k.
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