
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Cohen-Macaulay schemes and Serre duality

In this lecture, we extend Serre duality to Cohen-Macaulay schemes over a field. As in the
previous lecture, let k be a field (not necessarily algebraically closed), let j : X → P = P

N
k

be a closed immersion with X of dimension n, and let OX(1) be the corresponding twisting
sheaf.

1 Cohen-Macaulay schemes and duality

Let ω◦

X denote a dualizing sheaf on X; remember that this choice includes a trace map
Hn(X, ω◦

X) → k. We then obtain natural functorial maps

θi : Exti
X(F , ω◦

X) → Hn−i(X,F)∨

because both sides are cohomological functors on the opposite category of coherent sheaves
on X, and the one on the left is effaceable because it vanishes on direct sums of twisting
sheaves. By the definition of a dualizing sheaf, θ0 is always an isomorphism.

Theorem. The following conditions are equivalent.

(a) The scheme X is equidimensional (each irreducible component has dimension n) and
Cohen-Macaulay.

(b) The maps θi are isomorphisms for all i ≥ 0 and all coherent sheaves F on X.

This is of course meaningless if I don’t tell you what a Cohen-Macaulay scheme is. For
the moment, suffice to say that a scheme is Cohen-Macaulay if and only if each of its local
rings is a Cohen-Macaulay ring. That already has content, because then the theorem says
that (b) is equivalent to a local condition on X, which is far from obvious.

I’ll also point out that a regular local ring is always Cohen-Macaulay. This implies the
following.

Corollary. If X is smooth over k, then θi is an isomorphism for all i ≥ 0 and all coherent
sheaves F on X.

2 Proof of the duality theorem, part 1

Even without knowing what a Cohen-Macaulay scheme is, we can at least start working to
prove that condition (b) is equivalent to a local condition on X. Let us start by relating (b)
to two global vanishing assertions.

Lemma. The following conditions are equivalent to (b).
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(c) For any locally free coherent sheaf F on X, for q sufficiently large, we have H i(X,F(−q)) =
0 for all i < n.

(c′) For q sufficiently large, we have H i(X,OX(−q)) = 0 for all i < n.

Note that condition (c) is a sort of opposite to Serre’s vanishing theorem, which gives
the vanishing of H i(X,F(q)) for i > 0 and q sufficiently large.

Proof. Given (b), for any locally free coherent sheaf F on X, we have

H i(X,F(−q)) = Extn−i
X (F(−q), ω◦

X)∨

= Extn−i
X (OX ,F∨ ⊗ ω◦

X(q))∨

= Hn−i(X,F∨
⊗ ω◦

X(q))∨

and this vanishes for n − i > 0 and q large by Serre’s vanishing theorem. Thus (b) implies
(c).

It is clear that (c) implies (c′). Given (c′), it follows that Hn−i(X, ·)∨ is effaceable for all
i > 0 since we can cover F with a direct sum of twisting sheaves. Hence θi is the natural map
between two universal cohomological functors, hence is an isomorphism. Thus (c′) implies
(b).

We next reformulate this in local terms, using Serre duality on P .

Lemma. The following condition is equivalent to (b).

(d) For all i < n, ExtN−i
P (j∗OX , ωP ) = 0.

Remember that no matter what X is, we have ExtN−i
P (j∗OX , ωP ) = 0 for i > n: we

proved this in the course of constructing the dualizing sheaf ω◦

X .

Proof. By Serre duality on P (and choosing an isomorphism Hn(P, ωP ) ∼= k), we may identify

H i(X,OX(−q)) ∼= H i(P, j∗OX(−q)) ∼= ExtN−i
P (j∗OX , ωP (q))∨.

So (c) is equivalent to the condition that for q sufficiently large, ExtN−i
P (j∗OX , ωP (q)) = 0

for all i < n. Recall from earlier that for q large,

ExtN−i
P (j∗OX , ωP (q)) = Γ(P, ExtN−i

P (j∗OX , ωP (q))) = Γ(P, ExtN−i
P (j∗OX , ωP )(q)).

Since ExtN−i
P (j∗OX , ωP ) is coherent, Γ(P, ExtN−i

P (j∗OX , ωP )(q)) vanishes for q sufficiently
large if and only if ExtN−i

P (j∗OX , ωP ) = 0.

Condition (d) can be rewritten as follows.

Lemma. The following condition is equivalent to (b).

(e) For each point x ∈ X, if A = OP,x and I is the ideal of A defining X at x, then for all
i < n, ExtN−i

A (A/I, A) = 0.

Proof. This translates directly from (d) once we remember that ωP is locally free of rank 1
on P .

This is almost the local condition we are seeking, except that it still refers to the position
of X within P .
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3 The Cohen-Macaulay condition

To get rid of the dependence of our duality condition on the relative geometry of X within
P , we need some more sophisticated commutative algebra.

Proposition. Let A be a regular local ring and let M be a finitely generated A-module. Then
for any nonnegative integer n, the following are equivalent.

(a) We have Exti(M, A) = 0 for all i > n.

(b) For any A-module N , we have Exti(M, N) = 0 for all i > n.

(c) There exists a projective resolution 0 → Ln → · · · → L1 → L0 → M → 0 of M at
length at most n.

Proof. See Hartshorne Proposition III.6.10A (and associated Matsumura reference) and ex-
ercise III.6.6.

The smallest integer for which this holds is called the projective dimension of M (if it
exists), denoted pdA(M). For instance, M is projective if and only if pdA(M) = 0.

For M a module over a ring A, a regular sequence is a sequence x1, . . . , xn of elements
of A such that for i = 1, . . . , n, xi is not a zerodivisor on M/(x1, . . . , xi−1)M . For A a local
ring, the depth of M is the maximal length of a regular sequence with all xi in the maximal
ideal of A.

Proposition. For A a regular local ring and M an A-module,

pdA(M) + depthA(M) = dim(A).

Proof. See Hartshorne Proposition III.6.12A (and associated Matsumura reference).

We can finally give a local equivalent to condition (b) from the duality theorem. Recall
that our last equivalent (e) said that for each x ∈ X, for A = OP,x and I the ideal of A
defining X at x, ExtN−i

A (A/I, A) = 0 for all i < n. This is equivalent to pdA(A/I) ≤ N − n,
and hence to depthA(A/I) ≥ n. The trick is that if M is an A/I-module, then depthA(M) =
depthA/I(M). Thus we have the following.

Lemma. The following condition is equivalent to (b).

(f) For each point x ∈ X, if B = OX,x, then depthB(B) ≥ n.

On the other hand, we always have depthB(B) ≤ dim(B) ≤ n, so it is equivalent to
require depthB(B) = dim(B) = n.

This condition depthB(B) = dim(B) is in fact the definition of a Cohen-Macaulay lo-
cal ring B. Any regular local ring is Cohen-Macaulay, since we can use generators of the
cotangent space as a regular sequence. But the Cohen-Macaulay condition is much more
permissive; for instance, any local complete intersection is Cohen-Macaulay.
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