
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Cohomology of quasicoherent sheaves (updated 25 Apr 09)

There is one more fundamental theorem about affine schemes! Here it is.

1 The theorem, and a bogus proof

Let’s start with the statement of the fourth fundamental theorem of affine schemes.

Theorem. Let X be an affine scheme and let F be a quasicoherent sheaf on X. Then
H i(X,F) = 0 for i > 0, that is, F is acyclic for sheaf cohomology.

Here is how not to prove this theorem.

Bogus proof of the theorem. Put X = Spec A. From the earlier fundamental theorems of
affine schemes, we know we can write F = M̃ for some A-module M . Since ModA has
enough injectives, we can find a monomorphism M → I with I an injective A-module. Put
N = I/M . Again by the earlier fundamental theorems of affine schemes, we know that the
exact sequence

0 → M → I → I/M → 0

of A-modules is precisely what you get by taking global sections of the exact sequence

0 → M̃ → Ĩ → ˜I/M → 0.

So in the long exact sequence in cohomology, the connecting homomorphism into H1(X, M̃)
is zero. On the other hand, H i(X, Ĩ) = 0 for all i > 0 since Ĩ is injective, so H1(X, M̃) is

forced to be zero. Moreover, for i > 1, H i(X, M̃) ∼= H i−1(X, Ĩ/M), so we may prove the
higher vanishing by dimension shifting.

What’s wrong with this proof? The problem is that while the injectivity of I in ModA

implies the injectivity of I in the category of quasicoherent OX-modules, it does not imply
injectivity in the category of arbitrary OX-modules, or of sheaves of abelian groups on X.
In particular, it is unclear whether injectivity of I implies that I is flasque. One can at least
show that I is “basically flasque”, in that the restriction from Γ(X, I) = I to Γ(D(f), I) = If

is surjective, but this isn’t really enough to do anything useful.
There are two ways to fix this. One way (used in Hartshorne, and also in the book by

Ueno that I recommended earlier) is to restrict attention to noetherian rings, and then prove
that an injective module does indeed give rise to a flasque sheaf. The other way (used in
EGA) is to compute with Čech cohomology instead of sheaf cohomology, so that you can
deal only with finite covers by distinguished opens. That’s what I’ll do here.

First, however, I should mention that there is an easy argument to show that H1 vanishes.
The following is close to the third fundamental theorem of affine schemes; see Hartshorne
Proposition II.5.6 for the proof. (Since I won’t use this to prove the theorem, you may
instead view it as a corollary of the theorem.)
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Lemma. Let X = Spec A be an affine scheme. Let

0 → F1 → F → F2 → 0

be an exact sequence of OX-modules such that F1 is quasicoherent (but don’t assume anything
about the other two). Then the sequence

0 → Γ(X,F1) → Γ(X,F) → Γ(X,F2) → 0

is exact.

This implies that the connecting homomorphism H0(X,F2) → H1(X,F1) is zero, so
H1(X,F1) injects into H1(X,F). If we then choose F to be injective, we deduce H1(X,F1) =
0.

2 Applications

Before proving the theorem, let me mention some corollaries. First, from the Čech cohomol-
ogy discussion, we deduce the following.

Corollary. Let X be a scheme and let U = {Ui}i∈I be an open cover of X. Suppose that for
each finite subset J ⊆ I, the intersection UJ = ∩j∈JUj is affine. Then for any quasicoherent
sheaf F on X, the sheaf cohomology of F is computed by the Čech cohomology for the cover
U; that is,

H i(X,F) = Ȟ i(U,F).

Recall that inside a separated scheme, the intersection of any two open affines is again
affine. We thus have the following; I’ll illustrate next time by using this to compute the
cohomology of the sheaves O(n) on projective space.

Corollary. Let X be a separated scheme and let U = {Ui}i∈I be an open affine cover of X.
Then for any quasicoherent sheaf F on X,

H i(X,F) = Ȟ i(U,F).

Here is an even more specialized corollary, which in itself is not so useful. I mention it
because I will prove this directly and use it as a lemma to prove the whole theorem.

Corollary. Let A be a ring and choose f1, . . . , fn ∈ A which generate the unit ideal. Let
U be the open cover of X = Spec A by D(fi) for i = 1, . . . , n. Then for any A-module M ,
Ȟ0(U, M̃) = M and Ȟ i(U, M̃) = 0 for i > 0.

2



3 A correct proof of the theorem

Following Grothendieck (and I think Serre before him, in the context of varieties), we will
prove the last corollary first, and then use that to prove the theorem. So our first order of
business is to show that the complex

0 → M → Č0(U, M̃) → Č1(U, M̃) → · · ·

is exact. Remember that this complex came from the complex of sheaves

0 → M̃ → Č0(U, M̃) → Č1(U, M̃) → · · ·

by taking global sections. We proved in the Čech cohomology lecture that this sequence
of sheaves is exact (by computing at stalks). Moreover, each of the constituent sheaves is
quasicoherent, for the following reason. Each sheaf in the sequence equals a direct sum of
sheaves each of the form jU∗(M̃ |U) for U an intersection of some of the Uj . In particular,
each such intersection has the form D(g) for some g ∈ A. But this sheaf is simply the
quasicoherent sheaf associated to the A-module Mg.

Since we have an exact sequence of quasicoherent sheaves, taking global sections gives us
an exact sequence of A-modules. This proves the corollary. So now we know that for any
finite cover U of Spec A by distinguished opens,

Ȟ0(U, M̃) = M, Ȟ i(U, M̃) = 0 (i > 0).

The same holds if we take the direct limit over finite covers by distinguished opens. However,
this gives the same result as taking the direct limit over all open covers because any cover
can be refined to a finite cover by distinguished opens. We conclude that

Ȟ0(X, M̃) = M, Ȟ i(X, M̃) = 0 (i > 0);

although the theorem that says that the direct limit Čech cohomology also computes sheaf
cohomology doesn’t apply (because X is not Hausdorff), one can still show that this implies

H0(X, M̃) = M, H i(X, M̃) = 0 (i > 0)

using the following theorem of Cartan, applied with B being the collection of distinguished
open affines.

Theorem (Cartan). Let X be a topological space. Let B be a basis of X closed under
pairwise intersections. Let F be a sheaf of abelian groups on X such that Ȟ i(U,F) = 0 for
all U ∈ B. Then Ȟ i(X,F) is naturally isomorphic to H i(X,F) for all i ≥ 0.

We will prove this in the next section. It can also be proved using spectral sequences;
see the optional handout.
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4 Comparison of Čech and sheaf cohomology

Before proving Cartan’s theorem, here is a lemma which generalizes a fact we already know
about flasque sheaves.

Lemma. Let X be a topological space. Let F be a sheaf of abelian groups on X such that
Ȟ1(X,F) = 0. Then for any short exact sequence

0 → F → G → H → 0

of sheaves,
0 → Γ(X,F) → Γ(X,G) → Γ(X,H) → 0

is exact.

Proof. (proof suggested by Fucheng Tan) We need only check surjectivity on the right. Let
s ∈ Γ(X,H) be any section; let U = {Ui}i∈I be an open cover of X such that for each i ∈ I,
s|Ui

lifts to a section ti ∈ Γ(Ui,G). For i, j ∈ I, put

uij = ti|Ui∩Uj
− tj |Ui∩Uj

∈ Γ(Ui ∩ Uj ,G).

Since uij has zero image in Γ(Ui ∩ Uj ,G), we may also view as an element of Γ(Ui ∩ Uj ,F).
With this convention, we see that the uij form a Čech 1-cocycle of F for the open cover U.

Before proceeding, note that there is a natural way to replace the above data for one
cover U with a refinement V = {Vj}j∈J . Namely, the refinement comes by definition with a
map λ : J → I such that Vj ⊆ Uλ(j) for each j. To pass from U to V:

• replace the collection of the ti for i ∈ I with the collection of the tλ(j)|Vj
for j ∈ I;

• replace the collection of the tij for i, j ∈ I with the collection of the uλ(k)λ(l)|Vk∩Vj
for

k, l ∈ I.

To avoid excess notation, we will speak of “replacing U by a refinement” which will also be
labeled U.

Since Ȟ1(X,F) = 0 by hypothesis, we can replace U by a refinement in such a way that
uij become a Čech 1-coboundary. This means that there are sections vi ∈ Γ(Ui,F) such that

vi|Ui∩Uj
− vj |Ui∩Uj

= uij (i, j ∈ I).

For i ∈ I, we now form
wi = ti − vi ∈ Γ(Ui,G).

These sections have the property that on one hand, the image of wi in Γ(Ui,H) equals s|Ui

(since vi, having come from F , maps to zero in H), and on the other hand,

wi|Ui∩Uj
− wj|Ui∩Uj

= (ti|Ui∩Uj
− vi|Ui∩Uj

) − (tj |Ui∩Uj
− vj |Ui∩Uj

)

= (ti|Ui∩Uj
− tj |Ui∩Uj

) − (vi|Ui∩Uj
− vj |Ui∩Uj

)

= uij − uij = 0.

Hence the wi glue to a section w ∈ Γ(X,G) lifting s, as desired.
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Proof of Cartan’s theorem. The claim is true for i = 0 because of the sheaf axiom. We use
this as a basis for induction on i, using dimension shifting. Assume that for some i > 0, the
claim is true for every value less than i. Choose a short exact sequence

0 → F → G → H → 0

with G flasque. By the previous lemma, for any U ∈ B,

0 → Γ(U,F) → Γ(U,G) → Γ(U,H) → 0

is exact. Let U = {Ui}i∈I be an open cover of X by basic open sets. Since B is closed under
pairwise intersections, it follows that

0 → Č .(U,F) → Č .(U,G) → Č .(U,H) → 0

is an exact sequence of complexes. Since every open cover can be refined to an open cover
by basic opens, taking direct limits over all covers is the same as taking direct limits over
basic open covers, which means that

0 → Č .(X,F) → Č .(X,G) → Č .(X,H) → 0

is again an exact sequence of complexes. The same holds if we replace X by any basic open
set U , by the same reasoning.

We now take the long exact sequence in cohomology associated to this short exact se-
quence of complexes, and compare it to the long exact sequence in sheaf cohomology. We
get the diagram

· · · // Ȟ i−1(X,G) //

��

Ȟ i−1(X,H) //

��

Ȟ i(X,F) //

��

Ȟ i(X,G) //

��

· · ·

· · · // H i−1(X,G) // H i−1(X,H) // H i(X,F) // H i(X,G) // · · ·

We first notice that Ȟ i(X,G) = H i(X,G) = 0 because G is flasque. If we replace X by
a basic open set U and then look at the top sequence, we see that for i > 1, Ȟ i−1(U,H)
is sandwiched between two zero groups, so it is also zero. That is, H also satisfies the
hypothesis of the theorem.

We may now argue by dimension shifting as follows. The first vertical arrow is an
isomorphism (for i = 1 this holds by the sheaf axiom, otherwise both groups vanish), the
second vertical arrows is an isomorphism by the induction hypothesis, and the fourth vertical
arrow is the zero map between zero groups. The five lemma thus implies that the third arrow
is an isomorphism.
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