
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Spectral sequences and Čech cohomology

We explain the construction (or rather, one particular construction) of spectral sequences,
enough to explain how they are used as part of the computation of the sheaf cohomology of
quasicoherent sheaves on affine schemes using Čech cohomology.

I continue to recommend Bott and Tu, Differential Forms in Algebraic Topology as a
good reference for spectral sequences.

1 Exact couples

It is handy to start with the following bit of homological algebra. An exact couple is a
circular exact sequence

A
i // A

j
��~~

~~
~~

~

B
k

__@@@@@@@

For instance, given an exact sequence 0 → A
i
→ A

j
→ B → 0, we get an exact couple by

taking k = 0. A more typical example: given an exact sequence of complexes

0 → A· → A· → B· → 0,

we get an exact couple involving the total cohomologies ⊕ih
i(A·) and ⊕ih

i(B·) using the
long exact sequence in cohomology.

From an exact couple we obtain a derived exact couple

A′ i′ // A′

j′~~}}
}}

}}
}}

B′

k′

``AAAAAAAA

as follows.

• Define d : B → B as d = j ◦ k. Then d ◦ d = j ◦ k ◦ j ◦ k = 0 because k ◦ j = 0, so I
can define the cohomology B′ = h(B) = ker(d)/ im(d).

• Put A′ = im(i).

• We now have an obvious map i′ : A′ → A′ induced by i.

• We now claim that there is a well-defined map j′ : A′ → B′ sending i(a) to the class
of j(a) for any a ∈ A. To make sense of this, we first note that j(a) ∈ ker(d) because
j ◦k ◦ j = 0. We next note that if i(a) = 0, then a = k(b) for some b ∈ B by exactness,
so j(a) = k(j(b)) = d(b).
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• We now claim there is a well-defined map k′ : B′ → A′ induced by k. That is,
if b ∈ ker(d), k′ should carry the class of k′ to k(b); this belongs to im(a) because
(j ◦ k)(b) = 0, so k(b) = i(a) for some a ∈ A by exactness. This is well-defined:

It is a routine exercise in diagram chasing to verify that this is again exact.

2 Filtered complexes and double complexes

Let C · be a cohomologically graded complex in nonnegative degrees. A filtration on C · is a
decreasing sequence of subcomplexes

C · = Fil0 C · ⊇ Fil1 C · ⊇ · · · .

The associated graded complex is

Gri C · = Fili C ·/ Fili+1 C ·.

For instance, suppose Dp,q is a double complex, with differerentials d·
p in the p-direction

and d·
q in the q-direction. We form a single complex

Ck =
⊕

p+q=k

Dp,q

with derivation dp + (−1)pdq. (The alternating sign is needed to ensure that this is actually
a complex.) We then obtain a filtration on C · by setting

Fili Ck =
⊕

p+q=k,p≥i

Dp,q.

3 The spectral sequence of a filtered complex

Given a filtered complex C ·, there are two interesting invariants one can consider. Perhaps
the most natural one is the cohomology h·(C ·), equipped with the decreasing filtration

Fili h·(C ·) = im(h·(Fili C ·)).

However, in practice this will usually be something complicated. A less complicated in-
variant will be the cohomology of the graded complex h·(Grp C ·). This is a rather crude
approximation to the cohomology of the total complex; it turns out that there is a sequence
of refinements that give closer and closer approximations. These constitute the spectral
sequence associated to the filtered complex.

To start with, take the exact sequence of complexes

0 →
⊕

p∈Z

Filp+1 C · →
⊕

p∈Z

Filp C · →
⊕

p∈Z

Grp C · → 0.
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Identifying the first two members by shifting indices, then taking the long exact sequence in
cohomology, we get an exact couple

A1

i1 // A1

j1~~||
||

||
||

E1

k1

``BBBBBBBB

in which E1 =
⊕

p∈Z
h·(Grp C ·). By repeatedly extracting derived exact couples, we get a

sequence of exact couples

Ah

ih // Ah

jh~~||
||

||
||

Eh

kh

aaBBBBBBBB

for h = 1, 2, . . . . The spectral sequence here is specifically the sequence of groups Eh equipped
with the square-zero endomorphisms dh = jh ◦ kh. Note that Eh+1 is just the cohomology
of Eh for dh; the mysterious part is where the next map dh+1 comes from. (The terms
in this sequence are often called the sheets, or pages, of the spectral sequence. The visual
significance of these metaphors may become more clear in the next section.)

Without any additional hypotheses, the spectral sequence does not say much. But under
certain circumstances, the Eh “converge” to something useful. Namely, suppose that the
complex C · comes not only with a filtration but with a grading C · = ⊕qC

·
q.

Theorem. Suppose that for each q, the induced filtration on C ·
q has only finitely many

distinct steps. Then the spectral sequence converges, in the sense that for each q, the q-
th graded piece of Eh stabilizes for h large. If we let E∞ denote the sum of the stable
graded pieces, then E∞ is canonically isomorphic to the associated graded group of the filtered
cohomology Fili h·(C ·).

Note that we still don’t quite manage to compute the filtered cohomology, but but only
its graded pieces. Still, that information itself is often very very useful. (It is sometimes said
that the spectral sequence abuts to the filtered cohomology.)

Proof. See Bott and Tu, Theorem 14.6.

4 The spectral sequence of a double complex

Let us see how this works in the specific example of a double complex. (I’m just going to
state the result; see Bott and Tu for the derivation.) Let Dp,q be a double complex, and
let C · be the associated filtered single complex. It is customary to draw pictures in this
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orientation:
...

...
...

D0,2 D1,2 D2,2 · · ·

D0,1 D1,1 D2,1 · · ·

D0,0 D1,0 D2,0 · · ·

without any arrows (at least for now).
Let me redraw this picture writing Ep,q

0 for Dp,q, and drawing in the vertical arrows
standing for (−1)pdq:

...
...

...

E0,2
0

OO

E1,2
0

OO

E2,2
0

OO

· · ·

E0,1
0

OO

E1,1
0

OO

E2,1
0

OO

· · ·

E0,0
0

OO

E1,0
0

OO

E2,0
0

OO

· · ·

Taking cohomology here gives you exactly E1. A quick diagram chase shows that the next
differential is precisely the one induced by dp:

...
...

...

E0,2
1

// E1,2
1

// E2,2
1

// · · ·

E0,1
1

// E1,1
1

// E2,1
1

// · · ·

E0,0
1

// E1,0
1

// E2,0
1

// · · ·

Taking cohomology gives the next sheet E2. But what is the next differential? Again, I’ll
just state the answer. Each element of E2 is represented by an element of b for which for
some c,

dq(b) = 0, dp(b) = (−1)p+1dq(c).
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The next differential carries this class to dp(c), which turns out to be well-defined.

0

b

OO

// ?

c

OO

// !

That is, our next page should be drawn like this:

...
...

...

E0,2
2

((QQQQQQQQQQQQQQQQQ E1,2
2 E2,2

2
· · ·

E0,1
2

((QQQQQQQQQQQQQQQQQ E1,1
2 E2,1

2
· · ·

E0,0
2 E1,0

2 E2,0
2

· · ·

The pattern continues: we have

dr : Ep,q
r → Ep+r,q−r+1

r

and we can explicitly see the stabilization, since we get an increasingly large bottom left
corner with no arrows to or from anyplace other than 0. Let Ep,q

∞ denote the stable values;
then the associated graded complex of the filtered total cohomology has k-th step given by

⊕

p+q=k

Ep,q
∞ .

5 Spectral sequences and Čech cohomology

Here is how spectral sequences make quick work of the comparison theorem between Čech
and sheaf cohomology, in the form needed for algebraic geometry. Let X be a topological
space, and let F be a sheaf of abelian groups on X. Let I · be a flasque resolution of F .
Take the double complex

Dp,q = Čp(X, Iq) = lim
−→

U

Čp(U, Iq).
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The trick here is that there are two different ways to run the spectral sequence construction
from a double complex, depending on how you orient the diagram. As written, we first take
Čech cohomology, and then take cohomology of whatever that yields:

Ep,q
1a = Ȟp(X, Iq)

Ep,q
2a = hq(Ȟp(X, I ·)).

Note that Ep,q
1a = 0 for p > 0 because the Čech cohomology of a flasque sheaf is zero, whereas

Ep,0
1a = Γ(X,F). Thus Ep,q

2a = 0 for p > 0, and in fact Ep,q
2a = Ep,q

∞a for all p, q. Since we only
have one term along each antidiagonal, we actually get much more than usual: we really
have computed the cohomology of the total complex, and it is the E0,q

2a = Hq(X,F).
Now let’s run the spectral sequence with the roles of p and q reversed. This time, I take

cohomology in the q-direction first, so I start with

Eq,p

1b = hq(Čp(X, I ·)).

This is a rather strange object, but we can repackage it in a useful way by noting that the
functor I → Čp(X, I) preserves exact sequences of presheaves, i.e., sequences of presheaves
where the sections over any open give an exact sequence. That means that working with
presheaves, I can commute the cohomology computation across the Čp. I’ll take advantage
of this by defining the presheaf Hq by

Hq(U) = Hq(I ·(U)) = Hq(U,F),

so that

Eq,p

1b = Čp(X,Hq)

Eq,p

2b = Ȟp(X,Hq)

interpreted as the Čech complex associated to a presheaf (defined using the same formula as
for sheaves). This spectral sequence must converge to some term Eq,p

∞b giving graded pieces
of the total cohomology, which we already identified as the sheaf cohomology of F itself.

This isn’t useful as an abstract method for dealing with Čech cohomology. However,
it is just the thing I need to prove the theorem that I need to finish the argument that
quasicoherent sheaves on affine schemes are acyclic.

Theorem. Let X be a topological space equipped with a nice basis B (i.e., a basis closed
under pairwise intersections; we need not assume X ∈ B). Let F be a sheaf of abelian
groups on X such that Ȟ i(U,F) = 0 for all i > 0 and all U ∈ B. Then there are natural
isomorphisms Ȟ i(X,F) → H i(X,F) for all i ≥ 0.

Proof. The natural maps come from the fact that if I · is an injective resolution of F , then
the Čech resolution Č·(X,F) admits a map into I · which is a quasi-isomorphism, and is
well-determined up to a chain homotopy. (This is similar to the homework problem about
injective resolutions of complexes; see PS 8, problem 7.)
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To prove the theorem, it suffices to check for X equal to an open in B, as then the Leray
theorem asserts that we can compute sheaf cohomology using any cover by elements of B,
and any open cover refines to such. So assume hereafter X ∈ B.

We induct on i, the case i = 0 being an easy consequence of the sheaf axiom. Say we
know that

Hj(U,F) = 0 (0 < j < i, U ∈ B).

Then the spectral sequence E·b from above has Eq,p

2b = 0 for 0 < q < i. By staring at the
spectral sequence, we see that the terms with q + p = i must already be stable, so the total
i-th cohomology must just be

E0,i

2b = Ȟ i(X,H0) = Ȟ i(X,F).

Since we also know that the total cohomology is H i(X,F), we obtain the desired isomor-
phism.
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