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About the course (last updated 3 May 04)

The topic for this course is rigid analytic geometry, which is an analogue of complex
analytic geometry with the complex numbers replaced by a complete nonarchimedean field,
such as the field of p-adic numbers Qp, or the field of Laurent series k((t)) over a field k.

Why?

Why would one ever want to construct such a theory? Here are a few examples where such
ideas come up.

1. Rigid analytic geometry was first developed by Tate in order to construct the “Tate
curve”, a universal elliptic curve with bad reduction. This construction has become
ubiquitous in the arithmetic theory of elliptic curves.

2. Raynaud used rigid geometry to resolve Abhyankar’s conjecture, describing the possible
Galois groups of unramified covers of the affine line over an algebraically closed field
of positive characteristic. (No, it’s not simply connected!) He also found a close
relationship with the geometry of formal schemes.

3. Cherednik and Drinfeld constructed p-adic uniformizations of some symmetric spaces.
This construction crept into number theory as part of Ribet’s “level-lowering”, the
argument that explains why Wiles’s work on the modularity of elliptic curves implies
the Fermat conjecture. (p-adically uniformized varieties also provide instances where
Deligne’s weight-monodromy conjecture in étale cohomology can be verified, by work
of de Shalit and Ito.)

4. The moduli space of Lubin-Tate formal group laws is a rigid analytic space occurring
in the work of Gross and Hopkins, which ties together this sort of geometry with stable
homotopy theory.

5. The work of Harris and Taylor on the local Langlands correspondence depends crucially
on constructing good representations within the étale cohomology of rigid analytic
spaces, building on a theory developed by Berkovich.

6. Berthelot’s theory of rigid cohomology uses rigid geometry to construct a p-adic Weil
cohomology which goes a long way towards filling the “gap at p” left by étale (`-adic)
cohomology.

7. How do you integrate a p-adic differential form (as opposed to a complex-valued func-
tion on a p-adic space)? The theory of p-adic integration, initiated by Coleman and
pursued by Colmez, Berkovich, Besser and others, uses rigid-analytic techniques.
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8. The classical theory of local fields associates a good ramification filtration to the Galois
group of a complete discretely valued field with perfect residue field. Abbes and Saito
have shown that you can do something similar for a general residue field (which is
important when you consider families of varieties in positive characteristic), in terms
of the action of the Galois group on certain rigid spaces.

9. The Lefschetz trace formula in étale cohomology for a self-correspondence on an al-
gebraic geometry involves mysterious local contributions at the fixed point locus. Fu-
jiwara has shown how to use rigid geometry to analyze these local contributions; for
example, he verified a conjecture of Deligne that says these contributions become sim-
ple if you compose with a high enough power of Frobenius. (This is a key part of
Lafforgue’s work on the function field Langlands correspondence.)

10. The geometry of curves (and higher dimensional varieties) over the field R((t)) is close
to what is nowadays called tropical algebraic geometry, the study of the “algebraic
geometry” of the semiring with operations max and +. This study yields interesting
results about the topology of algebraic varieties over R.

How?

How does one do analytic geometry over a field with a horribly disconnected topology?
Tate’s original method was motivated by the construction of schemes, in which one

builds geometric objects out of basic objects attached to rings. Tate realized that one could
in principle construct complex analytic varieties by pasting together analytic subvarieties
of polydiscs, and decided to use this as the method for building nonarchimedean analytic
varieties.

To be precise, one replaces affine schemes by affinoid varieties, which amount to closed
subvarieties of “closed polydiscs”. One proves a lot of basic facts about these things that
look like basic facts about subvarieties of affine spaces (i.e., about finitely generated algebras
over a field).

Then one has to paste these affinoids together, but one must be a bit careful. One uses
the formalism of Grothendieck topologies (i.e., knowing what “open covers” of a space are
without an honest topology) to work with special types of covers (the so-called “admissible
covers”). But in doing so, one recovers the ability to glue together coherent sheaves on
affinoids and compute their cohomology on an admissible cover (theorems of Tate and Kiehl).

There is a second method for visualizing rigid analytic geometry due to Berkovich; we
will introduce this after we get the Tate point of view up and running. It is based on
the Gelfand-Mazur theorem that says that the points of a complex analytic space can be
recovered as the norms on the algebra of functions on that space. Using an analogue of this
construction on affinoid alegbras, then pasting together the results, gives somewhat peculiar
topological spaces, but they are nice in certain ways: they are path-connected, unlike your
typical p-adic topological space.
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Where?

Where does one read about this?
There is basically one textbook on rigid analytic geometry: the book Non-archimedean

geometry by Bosch, Güntzer, and Remmert. Unfortunately, it’s not very useful as a text; it
spends quite a lot of time on somewhat tangential issues of p-adic functional analysis, which
are important for working with very general p-adic valued fields but can be treated much
more simply in the case of a discretely valued field, where geometry tends to happen. As
a result, the book doesn’t manage to do any real geometry beyond constructing the Tate
curve. Very unsatisfying.

As a result, I will be distributing detailed lecture notes for this course. My hope is to
eventually assemble these notes into a book that does not suffer from the shortcomings I
described in the previous paragraph.

Who?

Who is the target audience for this course?
This course is intended for students familiar with schemes and coherent sheaf cohomology,

at the level of Chapters II and III of Hartshorne’s book. (In particular, MIT’s 18.726 or
Harvard’s Math 260 should be sufficient.) Since my interests are in arithmetic geometry, I
will tend to incline towards arithmetic applications, but I’m open to suggestions of topics to
discuss.

What?

What are the specific topics to be covered, and the requirements for students requiring a
grade?

I’ll be writing up separately a syllabus with particular topics; watch the web page for it.
For those students who need a grade for the coures, I will be giving occasional homework

problems. I will probably also ask for a final paper (ideal length about 10 pages) on any
topic you choose, as long as you can persuade me that it has something to do with the course
material.

Your other principal responsibility is to find errors and inaccuracies in the notes and
bring them to my attention. I tend to lose/forget information given to me in person, so I
prefer such communications to happen via email. Even better still, you are free to grab the
TeX files from my web site, make corrections yourself, and send the files back to me.

When?

When (and where) does the course meet?
See the course web site. I may have to cancel the occasional lecture due to an out-of-town

trip, which I will try to make up at a mutually agreeable time.
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