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The G-topologies of an affinoid space

The goal of this lecture is to introduce some G-topologies on an affinoid space. Next time
we’ll prove Tate’s theorem, which will establish the existence of the structure sheaf and of
coherent sheaves of modules over the structure sheaf.

References: [FvdP, Section 4.1] and [BGR, 9.1.4]. Note that the canonical topology
on MaxA in [BGR] is not one of the G-topologies we’re aiming for: it’s just the topology
induced by the supremum norm.

Affinoid subspaces

As usual, let K be a complete ultrametric field. Let A be an affinoid algebra over K and
write X = MaxA. An affinoid subspace (or affinoid subset) of X is a subset Y ⊆ X for
which there exists a morphism φ : A → B of affinoid algebras with φ(MaxB) ⊆ Y , with
the following universal property: given any morphism ψ : A → C of affinoid algebras with
φ(MaxC) ⊆ Y , there exists a unique morphism τ : B → C with ψ = τ ◦ φ. (I’ll let you
rewrite that in terms of the representability of an appropriate functor.) We will see shortly
that φ is uniquely determined by Y ; we call B the coordinate ring of Y .

The affinoid subspaces of X are analogues of the open affine subsets of an affine scheme
(which obey an analogous universal property, though maybe you never noticed this before).

From [FvdP, Remarks 4.1.5], we collect the following observations.

Proposition 1. Let Y be an affinoid subspace of X.

(a) The map φ : A→ B is unique up to unique isomorphism.

(b) The induced map φ : MaxB → Y is a bijection.

(c) For y ∈ Y , let my and m′
y are the maximal ideals of A and B, respectively, corresponding

to y. Then the map A/mn
y → B/(m′

y)
n is an isomorphism for each positive integer n.

(d) If Y is an affinoid subspace of X and Z is an affinoid subspace of Y , then Z is an
affinoid subspace of X.

(e) If ψ : A → C is a morphism of affinoid algebras and Y is an affinoid subspace of
MaxA with coordinate ring B, ψ(Y ) is an affinoid subspace of MaxB with coordinate
ring B⊗̂AC. (The hat is missing in [FvdP, Remarks 4.1.5(4)].)

Proof. (a) is clear because the definition is via a universal mapping property. For (b) and
(c), choose a point y ∈ Y ⊆ X and an integer n ≥ 1, and form the affinoid algebra A/mn

y .
Then the projection A→ A/mn

y factors uniquely through B, from which (b) and (c) follow.
(d), (e), (f) are straightforward.
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Corollary 2. If Y1, . . . , Yn are affinoid subspaces of MaxA with coordinate rings B1, . . . , Bn,
then Y1 ∩ · · · ∩ Yn is an affinoid subspace with coordinate ring B1⊗̂A · · · ⊗̂ABn.

We may now define our first G-topology on MaxA. The somewhat weak G-topology on
MaxA is the G-topology in which admissible opens are affinoid subdomains, and admissible
covers are covers containing a finite subcover. This (or rather, the one in which admissible
covers are actually finite, but this is slightly finer than that) is the “weak G-topology” of
[BGR], but it’s a bit of a nuisance to prove anything about it. So following [FvdP], we are
going to “sandwich” this topology between two others that yield the same topos.

Rational subspaces

Motivation: when proving the basic properties of schemes, one doesn’t work with all affine
opens. One restricts to the distinguished opens obtained by inverting elements, because
those form a basis of the same topology. That’s quite analogous to the way we are going to
proceed here.

Let A be an affinoid algebra with X = MaxA. We say a subset Y of X is rational if
there exist f0, . . . , fn ∈ A generating the unit ideal, such that

Y = {x ∈ X : |fi(x)| ≤ |f0(x)| i = 1, . . . , n}.

We now have the following result analogous to the structure theorem we proved on rational
(affinoid) subsets of P.

Proposition 3. With notation as above, Y is an affinoid subspace of X with coordinate ring

B = A〈y1, . . . , yn〉/(f1 − f0y1, . . . , fn − f0yn).

Proof. Note that f0 is a unit in B because f0, . . . , fn generate the unit ideal. Also, note that
the obvious map φ : A→ B carries MaxB into Y .

Let’s now check the universal property for φ. Given ψ : A→ C carrying MaxC into Y ,
we must have ψ(f0) ∈ C∗, and the spectral norms of the ψ(fi)/ψ(f0) must be bounded by 1.
We thus obtain a well-defined and unique morphism τ ∗ : A〈y1, . . . , yn〉 → C sending A to C
via ψ and sending zi to ψ(fi)/ψ(f0) (see [FvdP, Proposition 3.4.7]). This map kills fi − f0yi

for each i, so factors uniquely through a map τ : B → C. Thus the universal property checks
out.

The restriction that the fi generate the unit ideal rules out such things as the subset of
MaxK〈x, y〉 on which |x| ≤ |y|, for good reason: if you construct

K〈x, y, z〉/(zx− y),

you get not the subset you want, but a blowup of it at the point x = y = 0.
Note that Y = ∅ if and only if |f0(x)| < maxi{|fi(x)|}.
It may also be useful to note that Y = ∅ if and only if for some (or any sufficiently large)

integer `. For another equivalent form of this criterion, see the exercises.
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I’ll write O(Y ) for the coordinate ring of Y . Define the very weak G-topology on X to
be the one in which the admissible opens are rational subspaces, and the admissible covers
are covers that include a finite subcover. Define the weak G-topology on X to be the one in
which the admissible opens are finite unions of rational subspaces, and the admissible covers
are again covers that include a finite subcover. Clearly the weak G-topology is slightly finer
than the very weak G-topology.

We will show next time that every every affinoid subspace is a finite union of rational
subspaces. ([FvdP] references the paper “Die Azyklizität der affinoiden Überdeckungen” by
Gerritzen and Grauert; but it’s also in [BGR, 8.2.2], which is where I’ll take it from.) That
means that on one hand, the somewhat weak G-topology is slightly finer than the very weak
G-topology, but on the other hand the weak G-topology is slightly finer than the somewhat
weak G-topology. So from the point of view of the sheaf theory, I can prove everything (like
Tate’s acyclicity theorem) using the very weak G-topology, where it’s much easier.

Incidentally, it is possible to write down affinoid subspaces which are not rational; see
[FvdP, Exercise 4.1.6] for one example.

Exercises

1. Let A be an affinoid algebra. Prove that the rational subspace of A defined by f0, . . . , fn

is empty if and only if for any sufficiently large positive integer `, there exists an
expression

f `
0 =

∑
α

cαf
α1
1 · · · fαn

n

of f `
0 as a homogeneous polynomial of degree ` in f1, . . . , fn with coefficients in mK .

(Hint: see [FvdP, Proposition 4.1.2(4).])
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