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Affinoid algebras and their spectra

Last time we discussed Tate algebras and defined affinoid algebras to be the quotients
of Tate algebras. This time, we’ll begin the process of turning those algebras into “spaces”
by studying their maximal spectra. Of course, this is not the right way to go in the long
run; this is analogous to constructing varieties, whereas one should be doing something more
“schematic”. We’ll return to this point when we discuss Berkovich spaces.

Warning: I dashed these notes off in a bit of a hurry, so there are probably lots of
mistakes, which we’ll doubtless find in class. As usual, if you send me corrections by email,
I’ll change the file on the web accordingly. Sorry about that.

References: [FvdP, Sections 3.3 and 3.4], [BGR, Section 3.8] (and various other sections
of BGR which you’ll find via the index, sigh).

Review: Newton polygons

Probably you’ve all seen this before, but just in case, let me review the theory of the Newton
polygon of a polynomial over an ultrametric field. (I really should have done this back in
the ultrametric field section.)

Lemma 1. Let L be a complete ultrametric field, and let P (z) = zn + an−1z
n−1 + · · ·+ a0 be

a polynomial over L with roots α1, . . . , αn ∈ Lalg (repeated with appropriate multiplicities).
Sort the roots so that |α1| ≥ |α2| ≥ · · · |αn|. Then for i = 1, . . . , n,

|an−i| ≤ |α1 · · ·αi|,

with equality whenever |αi| > |αi+1|, or when i = n.

Proof. Write P (z) =
∏n

i=1(z − αi). Then an−i is, up to sign, the sum of the i-fold products
of the α’s, so the desired inequality is clear. As for the equality, note that if |αi| > |αi+1|,
then α1 · · ·αi is the unique i-fold product of maximum norm.

Corollary 2. The maximum of |α| over the roots of P is equal to maxj{|an−j|1/j}.

If you want all of the absolute values of the roots, you get them from the lemma as follows.
Consider the set of points (n − i,− log ai) for i = 0, . . . , n (where an = 1 by convention).
Form the lower convex hull of this set of points: the lower boundary of this hull is called the
Newton polygon of P . If r occurs as a slope in this polygon of a segment of width j, then
there are exactly j roots of P of norm exp(r).

The maximal spectrum and the spectral seminorm

Let A be an affinoid algebra, and let Max A denote the set of maximal ideals of A, a/k/a the
maximal spectrum of A. We refer to Max A as the affinoid space associated to A, although
for the time being it’s just a set; we’ll give it a “topology” and a ringed space structure later.
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By the Nullstellensatz for Tate algebras (proved last time), for each m ∈ A, A/m is finite
dimensional over K; in particular, it admits a unique extension of the norm on K. We will
use function-theoretic notation to speak about Max A; that is, if x is a “point” of Max A
corresponding to the maximal ideal mx and f ∈ A, we will write f(x) to mean the image of
f in A/mx.

Define the spectral seminorm of A (or Max A) as

‖f‖spec = sup
x∈Max A

|f(x)|.

(The term supremum seminorm is used interchangeably, as in [BGR].) It is straightforward
to check that ‖·‖spec is actually a seminorm, and that ‖fg‖spec ≤ ‖f‖spec‖g‖spec. The spectral
seminorm is a norm if and only if the intersection of the maximal ideals of A is the zero
ideal; in that case, we also call it the spectral norm. It will turn out that this happens if and
only if A is reduced; see below.

Note that from what we showed last time, the spectral norm on Tn is precisely the Gauss
norm, and the supremum defining the spectral norm is achieved at some point. (More
precisely, last time we showed that if K has infinite residue field, the supremum is actually
achieved at some K-rational point. But the same argument shows that for any K, the
supremum is achieved at some point defined over a finite extension of K.) That this holds
in general is the content of the “maximum modulus principle” for affinoid spaces; see below.

Proposition 3 (Maximum modulus principle). For A an affinoid algebra and f ∈ A,
there exists x ∈ Max A such that ‖f‖spec = |f(x)|. Moreover, if ‖f‖spec = 0, then f is
nilpotent.

Proof. There is no harm in quotienting A by its nilradical, since computing |f(x)| is insensi-
tive to nilpotents. That is, we may assume A is reduced. We may also assume A is integral,
since otherwise we can check the claim on each connected component of A.

So assume that A is an integral domain. By Noether normalization, A can be written
as a finite integral extension of some Td. That means there is an irreducible polynomial
P (z) = zn + an−1z

n−1 + · · · + a0 over Td such that P (f) = 0. (Note that the coefficients
of P lie in Td and not its fraction field, because Td is a unique factorization domain and so
“Gauss’s lemma” applies.) From the theory of the Newton polygon, for any x ∈ Max A lying
over y ∈ Max Td, we have |f(x)| = maxi{|an−i(y)|1/i}. Running this over all x and y, we get

‖f‖spec = max
i
{‖an−i‖1/i

spec},

and the maximum on the right is achieved because we already know the maximum modulus
principle for Td. This proves the first claim. As for the second claim, note that ‖f‖spec = 0
implies ‖an−i‖spec = 0 for all i. Since the spectral seminorm on Td is a norm, we have
an−i = 0 for all i, and so f is nilpotent.

Corollary 4. For A an affinoid algebra, the intersection of the maximal ideals of A equals
the nilradical of A. (That is, A is a “Jacobson ring”.) In particular, the spectral seminorm
is a norm if and only if A is reduced.
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Let ospec
A be the subring of A consisting of those f ∈ A for which |f |spec ≤ 1.

Lemma 5. For φ : A → B a finite injective homomorphism of affinoid algebras and f ∈ A,
one has ‖f‖spec = ‖φ(f)‖spec.

Proof. The finiteness of φ means that the map Max B → Max A is surjective, from which
the claim follows.

Lemma 6. Suppose φ : Td → A is a finite injective K-algebra homomorphism. Then ospec
A

is integral over φ(ospec
Td

).

Note that φ(ospec
Td

) ⊆ ospec
A by the previous lemma, so the statement makes sense.

Proof. If A is an integral domain, the proof of the maximum modulus principle yields that
any f ∈ ospec

A is the root of a polynomial over φ(ospec
Td

). For the reduction to this case, see
[FvdP, Proposition 3.4.5].

Lemma 7. For A an affinoid algebra under some norm ‖ · ‖ and f ∈ A, one has ‖f‖spec ≤ 1
if and only if the sequence {‖fn‖}∞n=1 is bounded.

Proof. If ‖fn‖ is bounded, then |fn(x)| is bounded for each x ∈ Max A, so |f(x)| ≤ 1, and
so ‖f‖spec ≤ 1. Conversely, suppose ‖f‖spec ≤ 1. Write A as a finite integral extension
of some Td. By the previous lemma, f is integral over ospec

Td
, i.e., it is the root of some

P (z) = zn + an−1z
n−1 + · · · + a0 with ai ∈ Td and ‖ai‖spec ≤ 1. Each power of f can be

written as a linear combination of 1, f, . . . , fn−1 whose coefficients are polynomials in the ai

with integer coefficients. The set of such polynomials is bounded under the Gauss norm in
Td, so by the continuity of the map Td → A, it is also bounded under the norm on A. Thus
the powers of f are bounded.

The following corollary of the previous proposition might have been what you were ex-
pecting when I first said “spectral seminorm”.

Corollary 8. Let A be an affinoid algebra with norm ‖ · ‖. Then for f ∈ A,

‖f‖spec = lim
n→∞

‖fn‖1/n.

More on spectral seminorms in the next handout.

Exercises

1. Suppose A is an affinoid algebra and f ∈ A. Prove that the following are equivalent:

(a) inf{|f(x)| : x ∈ Max A} > 0;

(b) f(x) 6= 0 for all x ∈ Max A;

(c) f ∈ A∗.
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(Note: this is exactly [FvdP, Exercise 3.3.4(1).])

2. Suppose ρ1, . . . , ρn ∈ (0,∞) are such that some power of each ρi belongs to |K∗|. Prove
that the “modified Tate algebra”

Tn,ρ = {
∑

I

cIx
I ∈ KJx1, . . . , xnK : |cI |ρi1

1 · · · ρin
n → 0}

is an affinoid algebra. (See [FvdP, Exercise 3.3.4(5)].)

3. Suppose ρ ∈ (0,∞) is such that no power of ρ belongs to |K∗|. Prove that T1,ρ is not
an affinoid algebra. (Hint: what is the spectral norm of t1?)
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