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Berkovich spaces for dummies

References: For the little I’m going to say today, [FvdP, Section 7.1] is a sufficient
reference. (Note I’m using their “filters” instead of Berkovich’s “nets”.) For more details, you
have to read Berkovich, which can be a daunting task. Definitely start with his ICM 1998 talk
(“p-adic analytic spaces”), then try his IHES paper “Étale cohomology for non-Archimedean
analytic spaces”. Beware that his earlier monograph “Spectral theory and analytic geometry
over non-Archimedean fields” makes some definitions which are not consistent with the later
papers (or so Johan tells me, I only looked at the later papers).

Addenda: analytification and properness

A couple of comments from Brian Conrad, clarifying some points from earlier.
Re analytification: SGA1, Exposé XII is worth a look for the complex analytic setup;

basically all the formalism there goes through without incident. (For more comments specifi-
cally on the rigid case, see section 5 of Brian’s paper “Irreducible components of rigid spaces”,
Ann. Inst. Fourier (Grenoble) 49 (1999), 473–541; but be forewarned that basically that
will tell you what I just said.) Abstractly, the analytification of a K-scheme X locally of
finite type can be characterized by the fact that it represents the functor associating to an
analytic space Y the set of ringed space maps Y → X. That means it’s unique if it exists;
existence is a series of reductions to affine space.

Unfortunately, dealing with properness seems to really be as hard as we were finding it
to be in class. Brian’s paper deals with why properness for an algebraic variety is equivalent
to properness for its analytification; it uses comparatively recent work of Temkin (student
of Berkovich); in particular, proving that the composition of proper maps is proper is a big
hassle.

Re GAGA: the GAGA theorems are also true in the proper case (I forget who pointed
that out), and you can see the reduction to the projective case (using Chow’s lemma) in
SGA1, Exposé XII, section 4.

Filters (again)

I snuck filters onto a previous handout, but since I didn’t go over them in class, I’d better
repeat myself.

Given a space X equipped with a G-topology, a G-filter (or simply “filter”) on X is a
collection F of admissible subsets with the following properties.

(a) X ∈ F , ∅ /∈ F .

(b) If U1, U2 ∈ F , then U1 ∩ U2 ∈ F .

(c) If U1 ⊆ U2 and U1 ∈ F , then U2 ∈ F .
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A prime filter is a filter F also satisfying

(d) if U ∈ F and {Ui}i∈I is an admissible covering of U , then Ui ∈ F for some i ∈ I.

A maximal filter (or ultrafilter) is a filter F which is maximal under inclusion; such a filter
is clearly also prime. For each x ∈ X, the set of admissibles containing x is a maximal filter.

Let P(X) and M(X) denote the sets of prime and maximal filters, respectively, on X,
and likewise for any admissible open U of X (that is, P(U) consists of prime filters of X in
which U appears). Equip P(X) with the ordinary topology generated by the P(U); then
there is a natural morphism of sites σ : X → P(X), and it turns out that the functors σ∗
and σ∗ are equivalences between the categories of abelian sheaves on X and on P(X) [FvdP,
Theorem 7.1.2].

Moreover, P(X) has “enough points” in the topos-theoretic sense: you can check whether
a sheaf is zero by checking that its stalks at points of P(X) are all zero. That’s cold comfort
if you can’t get a handle on those stalks, but for rigid spaces you can!

Filters and valuations

The spaces P(X) and M(X) are pretty unwieldy in general, but for rigid analytic spaces,
we can make them more explicit.

First of all, let X be a rigid space. Then X carries a structure sheaf O. That sheaf has a
subsheaf of rings o, consisting of functions of spectral seminorm bounded by 1 everywhere.
(That is, if U is an affinoid subspace and A = Γ(O, U), then Γ(o, U) = oA,spec.)

Now let p ∈ P(X) be a prime filter. Let Op and op be the stalks of O and o, respectively,
at p; that is, Op = lim→ Γ(O, U) for U running over affinoid subsets U of X containing p,
and similarly for op. (You may of course run the limit over any cofinal set of neighborhoods,
e.g., rational subsets of a particular affinoid neighborhood.) Define the seminorm ‖ · ‖p on
Op by

‖f‖P = inf{‖f‖U : U ∈ p, f ∈ Γ(O, U)}.

Let mp be the ideal of Op consisting of elements of seminorm 0; of course mp ⊆ op also.
To speak intelligently about this stalk, we need a bit of valuation theory. Let G be a

divisible totally ordered group; then I can view G as a vector space over Q. The completion Ĝ
of G is then a vector space over R; its dimension is the real rank of G. If G is a totally ordered
group but not divisible, define its real rank to be the real rank of its divisible closure. If R is a
valuation ring, define the real rank of R to be the real rank of its valuation group (Frac R)∗/R∗

(viewed additively, contrary to our usual convention). Note that R has real rank 1 if and
only if its valuation corresponds to a nonarchimedean valuation | · | : (Frac R)∗ → R>0.

We now state [FvdP, Proposition 7.1.8]. It’s enough to consider affinoid spaces, since the
stalk only depends on an affinoid neighborhood.

Proposition 1. Let X = Max(A) be an affinoid space and let p be a prime filter of X.

(a) The ring Op is a henselian local ring with maximal ideal mp. (We will hereafter denote
its residue field by kp.)
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(b) The ring okp = op/mp is a valuation ring with fraction field kp, and its real rank is at
most dim(X) + 1. Also, if π ∈ K satisfies 0 < |π| < 1, then ∩∞n=1π

nokp = 0.

(c) Let p be the kernel of A → kp, and let B be the inverse image of okp in Frac A/p. Then
the image of oA,spec in A/p is contained in B; moreover, ∩∞n=1π

nB = 0.

Proof. See [FvdP, Proposition 7.1.8].

We thus have a meaningful valuation associated to any prime filter; the converse is also
true. More precisely, a valuation on X consists of a pair (p, B), in which p is a prime ideal
of A and B is a valuation ring of Frac A/p with the following properties.

(a) The image of oA,spec in Frac A/p lies in B.

(b) For some (any) π ∈ K with 0 < |π| < 1, ∩∞n=1π
nB = 0.

Proposition 2. (a) The construction of Proposition 1 yields a bijection between the prime
filters on X and the valuations on X.

(b) Under the bijection in (a), the maximal filters on X correspond precisely to the valua-
tions of real rank 1.

Proof. See [FvdP, Theorem 7.1.10].

Time out: Gelfand-Naimark

It is worth being reminded of a fundamental fact from classical functional analysis, that will
put what we just did in a better context and suggest how to move forward.

Let X be a compact (Hausdorff) topological space, and let C(X) denote the space of C-
valued continuous functions on X. Then X is a commutative C∗-algebra under the supremum
norm (i.e., it’s complete, it carries a complex conjugation ∗, and you can compute the norm
of f as the square root of the norm of ff ∗). The points of X carry algebraic meaning in
C(X): they give rise to maximal ideals on C(X) (which are all distinct by Hausdorffness).

The Gelfand-Naimark theorem (which algebraic geometers might think of as the analogue
of the Nullstellensatz in this context) asserts that on one hand these are all the maximal
ideals of X, and on the other hand any commutative C∗-algebra A can be realized as C(X)
by putting a suitable topology on X = Max A. Namely, for x ∈ A, A/mx is isomorphic to
its subring C by the Gelfand-Mazur theorem (every complex commutative unital division
Banach algebra is C; and no, it’s a different Mazur); the desired topology is the coarsest
topology under which for each f ∈ A, the function X → C sending x to f(x) ∈ A/mx

∼= C
is continuous.
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The space of valuations

Identify the set of maximal filters M(X) of an affinoid space X = Max A with maps | · |a :
A → R≥0 satisfying:

(i) |fg|a = |f |a|g|a;

(ii) |f + g|a ≤ max{|f |a, |g|a};

(iii) |c|a = |c| for c ∈ K;

(iv) |f |a ≤ ‖f‖X for f ∈ A.

We now topologize M(X) with the coarsest topology such that for each F ∈ A, the map
M(X) → R≥0 sending a ∈M(X) to |f |a is continuous; in other words, this is the topology
induced by the product topology on RA

≥0. In particular, this space is Hausdorff and compact.
Aside: the Berkovich topology coincides not with the subspace topology on P(X), but

for the quotient topology under a certain natural retraction r : P(X) →M(X) (see [FvdP,
Definition 7.1.4]).

Note that this definition glues, so we can talk about M(X) even when X is not affinoid,
although I’ll refrain from doing so for the moment.

The point here is that M(X) with Berkovich’s topology is “better connected” than X
with its metric topology. Here’s an easy case of this; more generally, Berkovich showed that
“Smooth p-adic analytic spaces are locally contractible” (Invent. Math. 137 (1999), 1–84,
though the proof is a lot harder.

Proposition 3. Let A be a reduced affinoid algebra whose reduction is an integral domain,
and put X = Max A. Then M(X) is contractible.

Proof. Let i : M(X) →M(X) be the identity map and let j : M(X) →M(X) be the map
carrying everything to the “generic point” |f |a = ‖f‖A,spec. (Note that I’m using here that
the spectral seminorm is multiplicative; that’s precisely what is guaranteed by the condition
on the reduction of A.) Then there is an explicit homotopy F (a, t) : M(X)× [0, 1] →M(X)
given by

F (a, t) = | · |ta‖ · ‖1−t
A,spec.

More interesting things happen when you consider nonaffinoid spaces; for instance,
Berkovich proved that if X is the analytification of an smooth irreducible projective curve
over K of genus g having semistable reduction, then M(X) can be contracted to a closed
subspace homeomorphic to the dual graph of the special fibre on a semistable model of X
[FvdP, Theorem 7.2.4 for a more detailed statement]. I have no idea what M(X) looks like
if X has non-semistable reduction, though I suppose you could probably figure it out by
going up to an extension of K over which semistable reduction is acquired.
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Example: the Berkovich closed unit disc

Let X = Max K〈x〉; let’s identify M(X) explicitly in case K is algebraically closed. (I’ll
let you work out the general case for yourself.) Given an analytic point a ∈ M(X) and
corresponding valuation | · |a, define the function Fa : oK → [0, 1] by Fa(y) = |x− y|a. Such
a function satisfies the triangle inequalities

|y − z| ≤ max{Fa(y), Fa(z)}, Fa(y) ≤ max{Fa(z), |y − z|}.
Let N be the set of functions Fa satisfying these inequalities, with the product topology
(viewing functions as elements of the product of a bunch of copies of [0, 1] indexed by oK).
Then the map M(X) → N is a homeomorphism [FvdP, Lemma 7.2.1].

The functions Fa can be classified as follows.

• If inf(Fa) = 0, then a is an ordinary point of X.

• If inf(Fa) > 0 and Fa achieves its infimum at some y ∈ oK , then a is a “generic
point” of the disc |x − y| ≤ inf(Fa) (which is affinoid if inf(Fa) ∈ |K∗|), and one has
Fa(z) = max{|z− y|, inf(Fa)} for all z ∈ oK (so Fa coincides with the supremum norm
on that small disc).

• If inf(Fa) > 0 but Fa does not achieve its infimum, then K must fail to be spherically
complete, and we can view Fa as the limit of the supremum norms on a decreasing
sequence of discs. (This jibes with Jay’s comment earlier that he had read somewhere
that the Berkovich construction is somehow analogous to spherical completion.)

So what?

So far it looks like Berkovich’s construction is a convenient gadget for visualization but
doesn’t suggest anything you couldn’t do already. Not so! This theory turns out to be (and
the Tate and Raynaud theories turn out not to be) just the thing for discussing the étale
cohomology of rigid analytic spaces. The main point is that to do that, you need to have
enough fibre functors for the étale topos (in more precise terms, you need a “conservative
family of fibre functors”), and the analytic points give you just that. (Note that we’ve
already run across this issue on the Zariski site.) That étale cohomology theory is vital for
dealing with the sort of p-adically uniformized spaces occurring in Drinfeld’s work on the
Langlands correspondence for function fields.

There is a more topos-theoretic alternative if you prefer, which is Huber’s theory of “adic
spaces”. However, in case you couldn’t tell, I don’t really go in for that sort of thing, and
so I’m not going to discuss it further.

Exercises

1. (from [FvdP, Exercise 7.2.5]) Suppose K has characteristic p > 0. Put X = Max K〈x〉.
Prove that the map X → X induced by x 7→ xp − x is finite and unramified at each
ordinary point of X, but ramifies at one analytic point of X
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