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More on G-topologies, part 1 (of 2)

Leftover from last time: separating discs

Here’s a more precise answer to Andre’s question about separating discs (which you need in
order to do the reduction of the theorem identifying AF to the connected case). I’ll leave it
to you to work out the (easy) reduction of the general case to this specific case.

Proposition 1. Given r1 < r2 and c > 0, there exists a rational function f ∈ K(x) such
that

sup{|f(x)− 1| : |x| ≤ r1} ≤ c, sup{|f(x)| : |x| ≥ r2} ≤ c.

Proof. For simplicity, I’m going to consider the special case where there exists r ∈ |K∗| with
r1 < r < r2, and leave the general case as an exercise. Choose a ∈ K∗ with |a| = r, and put
g(x) = a/(a− x). Then for |x| ≤ r1,

|g(x)− 1| = |x/(a− x)| = |x|/r1 < 1

while for |x| ≥ r2,
|g(x)| = |a/(a− x)| = r/|x| < 1.

Now take N large enough that (r/r2)
N ≤ c. Then gN has the desired bound on the outer

disc; in fact, so does any polynomial in gN with integer coefficients. On the other hand, we
also have that |gN − 1| ≤ r1/r < 1 on the inner disc; so we can take

f = (1− gN)M − 1

for M so large that (r1/r)
M ≤ c.

G-topologies and Grothendieck topologies

The notion of a G-topology is a special case of the concept of a Grothendieck topology.
Given a category C admitting finite products, a Grothendieck topology on C consists of, for
each X ∈ Obj(C), a family Cov(X) of “coverings” of X, where a covering is a set of arrows
{Ui → X}i∈I in C. (Note that I am wantonly ignoring foundational set-theoretic issues; for
instance, Cov(X) is typically a proper class, not a set.) The coverings must then satisfy the
following properties.

(a) For each X ∈ Obj(C), {X → X} ∈ Cov(X) (trivial coverings always exist).

(b) If Y → X is an arrow in C and {Ui → X}i∈I ∈ Cov(X), then {Ui ×X Y → Y }i∈I ∈
Cov(Y ) (coverings pull back).

(c) If {Ui → X}i∈I ∈ Cov(X), and for each i ∈ I, {Vij → Ui}j∈Ji
∈ Cov(Ui), then

{Vij → Ui → X}i∈I,j∈Ji
∈ Cov(X) (coverings can be composed).
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A G-topology is then just a Grothendieck topology on a category of subsets of a set in
which morphisms are inclusions, the empty set and the whole set both appear, and in which
finite products (i.e., finite intersections) exist.

Consequence: whatever you know about Grothendieck topologies will be true here, and
is not really any easier to prove here than in general. For instance, the category of sheaves
of abelian groups has enough injectives.

Sheaf cohomology and Čech cohomology

Say I have a presheaf F on a space X equipped with a G-topology, and an admissible covering
{Ui}i∈I of X. Then one can make a Čech complex in the usual fashion, as follows. Let Cn

be the product of F(Ui0 ∩ · · ·Uin) for all (n + 1)-tuples (i0, . . . , in) ∈ In+1. Then one can
make a map dn : Cn → Cn+1 such that given an element ξ = (ξ(i0, . . . , in)), d(ξ) has its
(i0, . . . , in+1) component equal to

n+1∑
j=0

(−1)jξ(i0, . . . , îj, . . . , in+1),

where the hat means you omit that term.
As usual, the maps dn satisfy dn+1 ◦ dn = 0, so you get a complex 0 → C0 → C1 → · · · .

We write Ȟn(F , {Ui}) for the cohomology of this complex, and call it the Čech cohomology
for the sheaf F and the covering {Ui}. Note that the only 1-element covering is {X}, so
C0 = F(X), and you have a natural map F(X) → Ȟ0(F , {Ui}); the presheaf F is a sheaf if
and only if this map is a bijection for any covering {Ui}.

Again as usual, if {Vj} is a refinement of {Ui} (in the sense that each Vj is contained in
some Ui), you get natural maps Ȟn(F , {Ui}) → Ȟn(F , {Vj}). The direct limit of these is
called Ȟn(F), or Ȟn(X,F) if you want to remind yourself which space you are working on.
Leray’s theorem applies in this context: if F is acyclic (for the direct limit Čech cohomology)
on each Ui, then the direct limit map Ȟn(F , {Ui}) → Ȟn(X,F) is an isomorphism.

We will mostly talk about Čech cohomology here, because that’s what we can write down.
But there is an issue here about whether Čech cohomology coincides with sheaf cohomology
(defined in terms of injective resolutions). [BGR] simply ignores this issue entirely and
pretends that sheaf cohomology does not exist. (How barbaric.) [FvdP] comments that “for
the G-topologies considered in this book, one can show that for all abelian sheaves the Hn

coincide with the Ȟn”, referring to van der Put’s paper “Cohomology of affinoid spaces”. I
don’t plan to spend any time on this point now, but I may touch on it when we talk about
the cohomology of coherent sheaves later.

One thing you have to beware of when working with G-topologies is that you can’t lean
on the crutch of defining things in terms of stalks. This is more clear for Grothendieck
topologies, when there may not be any “points” to speak of at all; but even for G-topologies,
and in particular for the ones in rigid geometry, there are not enough points readily available
to distinguish sheaves. That is, you can write down a nonzero abelian sheaf whose stalks
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are all zero. For instance, this shows up when you try to define exactness. A short exact
sequence of abelian sheaves is a sequence

0 → F1 → F2 → F3 → 0

such that

(a) For any admissible U , the sequence

0 → F1(U) → F2(U) → F3(U)

is exact.

(b) For any admissible U and any s ∈ F3(U), there is an admissible covering {Ui} of U
such that the restriction of s to each Ui is the image of some element of F2(Ui).

Another way to say it is that F1 is the kernel of F2 → F3, and F3 is the cokernel of F1 → F2.
The asymmetry arises for the usual reason: given a map between sheaves, its kernel in the
category of presheaves is again a sheaf, but its cokernel in the category of presheaves need
not be a sheaf and so must be sheafified to get the cokernel in the category of sheaves.

More about this when we come back to considering sheaf cohomology more systematically.

A G-topology on P
The weak G-topology on P is the G-topology in which the admissible sets are ∅, P, and the
affinoid subsets, and a covering (of an admissible sets by admissible sets) is admissible if it
contains a finite subcovering.

The principal virtue of this topology is that the presheaf O defined by

O(F ) = AF

turns out to be a sheaf.

Lemma 2. Let F be a presheaf on P such that

(a) If the affinoid U is a disjoint union of connected affinoids U1, . . . , Un, then F(U) →
⊕iF(Ui) is a bijection.

(b) If U1, U2 are connected affinoids and U1 ∩ U2 is nonempty, then

0 → F(U1 ∪ U2) → F(U1)⊕F(U2)
d0

→ F(U1 ∩ U2)

is exact.

Then F is a sheaf. Moreover, if d0 is always surjective in (b), then Ȟm(F , {Ui}) = 0 for
any m > 0 and any admissible covering {Ui}.
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Proof. This is completely formal, so I’ll leave it to the reader. Or see [FvdP, Proposition
2.4.6] (although they don’t do all the details either).

Proposition 3. The presheaf O on P is a sheaf, and its higher Čech cohomologies vanish.

Proof. Condition (a) from Lemma 2 follows from the structure theorem we proved for AF .
(Or rather, it follows from the reduction to the connected case, for which we need the
calculation at the top of the handout.) To check condition (b) and the surjectivity of d0,
we may assume that ∞ ∈ U1 ∩ U2 (by applying a fractional linear transformation); then
we can replace each sheaf with the subsheaf of functions vanishing at ∞ without affecting
the exactness. Then the exactness of the new sequence follows from the Mittag-Leffler
decomposition (i.e., from the partial fractions decomposition of a rational function); see
exercises from previous handout.

This is a special case of a much more general theorem of Tate, which we will return to
soon.

Exercises

1. Extend Proposition 1 to the case where there is no element of |K∗| between r1 and r2.
(Hint: replace x− a with a separable irreducible polynomial whose roots fall between
the two discs, and find a good starting g using Lagrange interpolation.)

2. Write down a sheaf on P, equipped with the weak G-topology, whose stalks are all
zero.

3. Show that the presheaf O∗ on P given by O∗(F ) = A∗
F is a sheaf (see [FvdP, Definition

2.5.9], but they don’t check any details either).
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