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Kiehl’s finiteness theorems

References: [FvdP, Chapter 4]. Again, Kiehl’s original papers (in German) are: Der
Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedische Funktionentheorie,
Inv. Math. 2 (1967), 191–214; and Theorem A und B in der nichtarchimedische Funktio-
nentheorie, Inv. Math. 2 (1967), 256–273.

Addendum: Generic fibres more generally

Jay pointed out a reference for a more general construction of generic fibres: de Jong, Crys-
talline Dieudonné theory via formal and rigid geometry (see Chapter 7, where he attributes
the construction to Berthelot). Let P = Spf(R), where R is a quotient of a ring of the
form R〈x1, . . . , xm〉Jy1, . . . , ynK. (Note that the order of the two sets of brackets is important
here!) You can then take the generic fibre of P to be the appropriate subspace of the product
of the closed m-dimensional unit ball with the open m-dimensional unit ball (and its points
will be the formal subschemes of P which are integral and finite flat over oK). Another way
to say the same thing is that you take, for each 0 < ε < 1 in the divisible closure of |K∗|, the
subring of R〈x1, . . . , xm〉Jy1, . . . , ynK consisting of series convergent for |x1|, . . . , |xm| ≤ 1 and
|y1|, . . . , |yn| ≤ ε, form the quotient, and nest these affinoid spaces to get your rigid space.

Addendum: Analytification of an algebraic variety

Here’s the question Andre asked last time, with my commentary on it. Suppose X is a quasi-
projective algebraic variety over K. Embed X into some projective variety X; we can then
equip the closed points of X with a rigid analytic structure by picking a model of X over K
and taking the rigid analytic generic fibre of the completion along the special fibre. (This is
independent of the choice of the model because the rigid analytic generic fibre doesn’t see
blowups in the special fibre.) The closed points of X form a subspace of X; the question is,
is this subspace independent of the choice of X?

It suffices to check that if X1 → X2 is a proper morphism between two compactifications,
then it induces an isomorphism on X as a rigid analytic space. (To compare two general
compactifications, you can then compare each to the fibre product.) I think this is okay, but
I didn’t check it.

Separated and proper spaces

The category of rigid spaces has fibre products: these are generated by completed tensor
products of affinoid algebras. We may thus say that a rigid space X is separated if the
diagonal ∆ : X → X ×K X is a closed immersion (i.e., is defined by a coherent sheaf of
ideals). As for schemes, one has the following criterion for separatedness.
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Proposition 1. A rigid space X is separated if and only if it admits an admissible affinoid
covering {Ui} such that for i 6= j with Ui ∩ Uj 6= ∅, the intersection Ui ∩ Uj is affinoid and
the canonical map O(Ui)⊗̂KO(Uj) → O(Ui ∩ Uj) is surjective.

In particular, any affinoid space is separated.
If U is an affinoid subset of an affinoid space X, then U is said to be an interior subspace

of X if it is contained in a subspace of the form |f1(x)|, . . . , |fn(x)| ≤ ε for some f1, . . . , fn ∈
O(X) such that K〈f1, . . . , fn〉 surjects onto O(X) and some ε < 1. (Note that “the interior
of X” is not a useful notion here.)

A rigid space X is proper if it is separated and there exist two finite admissible affinoid
coverings {Ui}i=1,...,n and {U ′

i}i=1,...,n such that Ui is an interior subspace of U ′
i for i = 1, . . . , n.

For instance, Pn
K (with homogeneous coordinates t0, . . . , tn) is proper because you can cover

it by the subspaces

Ui,ε = {x ∈ Pn
K : |tj(x)| ≤ ε|ti(x)|} (i = 0, . . . , n)

for any ε, and Ui,ε is an interior subspace of Ui,ε′ if ε < ε′. Likewise, any closed analytic
subspace of a proper space is proper, so the analytic space associated to a projective variety
is also projective.

The relative version of this construction is as follows. A morphism X → Y is proper if
after restricting Y to each element of some admissible affinoid cover, I can find two finite
admissible affinoid coverings {Ui} and {U ′

i} of X, such that Ui is a relative interior subspace
of U ′

i . The latter means that Ui belongs to a subspace of U ′
i of the form |f1(x)|, . . . , |fn(x)| ≤ ε

for some f1, . . . , fn ∈ O(X) such that O(Y )〈f1, . . . , fn〉 surjects onto O(U ′
i) and some ε < 1.

(This is admittedly a lousy definition; Kiehl rigged it up precisely to make the next theorem
work. Is there a “universally closed” version of this definition, or a valuative criterion?)

A morphism f : X → Y is finite if for some admissible affinoid covering {Ui} of Y ,
each f−1(Ui) is affinoid and O(Ui) → O(f−1(Ui)) is a finite morphism of affinoid algebras.
One can recover f from the pushforward sheaf f∗OX , which is coherent; in particular, one
can show that “some” may be replaced by “any” (see [FvdP, Definition 4.5.7]). Any finite
morphism is proper, because f−1(Ui) is a relative interior subspace of itself!

Theorem 2 (Kiehl). (a) Let X be a proper rigid space over K. Then the (Čech) coho-
mology spaces of any coherent sheaf on X are finite dimensional over K.

(b) Let f : X → Y be a proper morphism of rigid spaces, with Y separated, and let F be a
coherent sheaf on X. Then the direct image f∗F and the higher direct images Rif∗F
are coherent sheaves on Y . In particular, the image f(X) is a closed analytic subspace
of Y .

Warning: the “higher direct images” here are constructed using Čech cohomology; I think
you should be able to make a Čech/sheaf comparison in this relative case, but I didn’t check
it.
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Sketch of proof. This sketch is basically the sketch from [FvdP, Theorem 4.10.3]. The idea
is to take the two coverings you have and show that, on one hand, you get the same Čech
cohomology groups (by acyclicity) from both coverings, and on the other hand, the map
F(U) → F(U ′) is a compact operator (a uniform limit of operators of finite rank) whenever
U is an interior subspace of U ′. Thus on each cohomology space, the identity map is compact,
which can only happen on a finite dimensional vector space. (The relative argument proceeds
basically the same way.)

I don’t know a reference for “rigid GAGA”, but I seem to think it was written down
somewhere by Kiehl. Anyway, [FvdP] says you can just imitate Serre’s proof; rather than
presume you know how this goes, I’ll give a brief version here. (Serre’s paper is as good a
reference as any, maybe even better, because it’s from the dark ages when Serre’s “Faisceaux
algébriques coherents”, which introduced sheaves into abstract algebraic geometry, was hot
off the presses. It is: Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier
(Grenoble) 6 (1955–56), 1–42. His Théorèmes 1,2,3 are our (a),(b),(c).)

Theorem 3 (Rigid GAGA). Let X be a projective algebraic variety over K.

(a) For any algebraic coherent sheaf F on X, the natural homomorphisms from algebraic
(sheaf) to analytic (Čech) cohomologies are bijections.

(b) The analytification functor from coherent sheaves on X to coherent sheaves on the
analytification of X is fully faithful.

(c) Every analytic coherent sheaf comes from an algebraic coherent sheaf (so the functor
in (b) is an equivalence of categories).

Sketch of proof. Note that it’s enough to prove everything for X = Pn, since we can extend
coherent sheaves by zero in both the algebraic and analytic categories to get from sheaves
on X to sheaves on Pn.

For (a), you first prove it for O, then for the sheaves O(m) by induction on the dimension
n of the projective space: if H is a hyperplane, you have an exact sequence

0 → O(−1) → O → OH → 0

where the first map is multiplication by a linear form vanishing on H. Then clever use of
the five lemma gives you what you need. Since every coherent sheaf on Pn is the kernel of a
map from some O(m) to some O(n) (another theorem of Serre!), you end up getting (a) for
all coherent sheaves.

For (b), you apply (a) to the sheaf Hom between any two given algebraic sheaves: homo-
morphisms between the sheaves correspond to elements of H0 of the sheaf hom.

For (c) (the hard part), you again induct on dimension. The crux of the argument is to
show that given F and a point x ∈ Pn, you can find an integer m such that the analytic H0

of the twist F(m) generates the stalk of F(m); by a compactness argument, you can choose
m uniformly for all x. That is, all stalks of F(m) are generated by the global sections;
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proceeding as in the proof of Kiehl’s theorem on coherent sheaves on affinoid spaces, we
deduce that F can be written as a cokernel of a map between algebraic coherent sheaves
(both of the form O(−m)d), and by (b) is algebraic.

The crux lemma is a bit intricate; it’s Lemme 8 in Serre’s paper. You again pick a
hyperplane H and write down the exact sequence

0 → O(H) ∼= O(−1) → O → OH → 0,

which on the right you can tensor with F :

F(−1) → F → FH → 0;

let K be the kernel on the left. Both K and FH are supported on H, so are algebraic by the
induction hypothesis; in particular, by Serre’s theorem, they lose their higher cohomology
upon twisting by O(m) for m sufficiently large. If you split the four-term exact sequence

0 → K(m) → F(m− 1) → F(m) → FH(m) → 0

by adding G in the middle, you end up with surjections

H1(Pn,an,F(m− 1)) → H1(Pn,an,G), H1(Pn,an,G) → H1(Pn,an,F(m));

the point is that dim H1(Pn,an,F(m)) is nonincreasing as m grows. It must thus stabilize
after some m, at which point one finds that the global sections of F(m) surject onto those
of OH(m). The latter generate the stalk of FH(m) at x for m large enough (because this is
true for the algebraic stalk, and the map between the algebraic and analytic local rings is
faithfully flat—they have the same completion), so you win.

Quasi-Stein spaces

I would be remiss in not mentioning Kiehl’s other big cohomological theorem, his analogue
of Cartan’s “Theorem A” and “Theorem B” in complex analysis.

A rigid space X is quasi-Stein if it admits an admissible affinoid covering U1 ⊆ U2 ⊆
· · · in which the image of O(Ui+1) is dense in O(Ui) for each i. Besides affinoid spaces
themselves, examples include open balls, one-dimensional annuli, and products of other
quasi-Stein spaces.

Here’s Kiehl’s main theorem about quasi-Stein spaces. Kiehl’s argument is a bit frag-
mentary (see below), so I’m looking for a better reference (preferably not in German); sug-
gestions?

Theorem 4 (Kiehl). Let F be a coherent sheaf on a quasi-Stein space X, with a covering
{Ui} as above.

(a) The image of F(X) in F(Ui) is dense for all i.
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(b) The cohomology groups H i(X,F) vanish for all i (“Theorem B”). Note that van der
Put’s theorem applies, so sheaf = Čech here.

(c) For each x ∈ X, Fx is generated as an Ox-module by global sections of F (“Theorem
A”).

Proof. Note that F(Ui+1) is dense in F(Ui), from which apparently (a) is “immediate”
(“unmittelbar”), but I don’t see why offhand. (Do you?) To prove (b), it’s enough to prove
H1 always vanishes (by a dimension shifting argument); this is done by an explicit calculation
(see p. 271 of Kiehl’s “Theorem A und B” paper). To prove (c), let G be the ideal sheaf of
x; since H1(X,F ⊗ G) vanishes, the sequence

G(X) = H0(X,F) → H0(X,F/(F ⊗ G)) = Fx/mxFx → 0

is exact, and (c) follows by Nakayama’s lemma.

This almost means you can pretend quasi-Stein spaces are just like affinoid spaces from
the point of view of the cohomology of coherent sheaves. However, note that (c) does not
imply that F is generated by finitely many global sections, because there is no compactness
argument available. And indeed, it may not be: e.g., let P1, P2, . . . be points in the open
unit disc such that |Pi| → 1 as i → ∞, and take the direct sum of the ideal sheaves of the
Pi.

On the other hand, it sometimes happens that all locally free coherent sheaves are gener-
ated by finitely many global sections even though the underlying space is not affinoid, e.g.,
on an open annulus (see exercise from an earlier handout).
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