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The Lubin-Tate moduli space

Note: there is no rigid geometry in this set of notes! That will come next time, when we
talk about the period mapping.

References: For starters, the original paper of Lubin-Tate (which involves no rigid
geometry, only formal geometry) is: J. Lubin and J. Tate, Formal moduli for one-parameter
formal Lie groups, Bulletin de la Soc. Math. de France, 94 (1966), 49–59. (This is not
their paper on local class field theory, though of course the two are closely related.) As
for “Gross-Hopkins”, there are two such papers. One (here [GH1]) is: M.J. Hopkins and
B.H. Gross, The rigid analytic period mapping, Lubin-Tate space, and stable homotopy
theory, Bulletin of the AMS 30 (1994), 76–86. This paper makes the link between Lubin-
Tate spaces and stable homotopy theory; I won’t do that here. It is quite cursory on the
geometry side (I’m not capable of judging on the homotopy side), to the point of being
barely legible. The second paper (here [GH2]) is: M.J. Hopkins and B.H. Gross, Equivariant
vector bundles on the Lubin-Tate moduli space, in Topology and Representation Theory,
Contemporary Mathematics 158, AMS, 1994, 23–88. As the page count suggests, this is
much more detailed and focuses entirely on the rigid geometry.

Formal groups

Before we do any geometry, here’s a quick review of formal groups. The standard reference
is Hazewinkel, Formal Groups, though I think his formulas have some errors in them; use
with caution.

A (commutative) formal group of dimension n over a ring R is a (commutative) cogroup
structure on RJx1, . . . , xnK with identity 0, i.e., a (commutative) comultiplication satisfying
the usual (co)group axioms. It’s of course enough to specify how x1, . . . , xn behave under
the comultiplication; their images form an n-tuple of power series

F (X, Y ) = (F1(X, Y ), . . . , Fn(X, Y ))

(where X is short for x1, . . . , xn and Y for y1, . . . , yn), such that

F (X, 0) = X, F (0, Y ) = Y

F (X,F (Y, Z)) = F (F (X, Y ), Z)

F (X, Y ) = F (Y, X).

(Exercise: the existence of inverses is automatic given the other axioms.) A morphism f :
F → F ′ of formal groups is an n-tuple of n-variate power series such that F ′(f(X), f(Y )) =
F (X, Y ). Let Lie(F ) denote the (relative) tangent space of RJx1, . . . , xnK, i.e., the trivial
Lie algebra over R generated by x1, . . . , xn. Every endomorphism of F induces a R-linear
endomorphism on Lie(F ), which is just look at the linear terms in the power series.
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Examples: take any algebraic group of dimension n and restrict the group law to the
tangent space at the origin, and you get a formal group of dimension n. For Ga, you get

F (x, y) = x + y.

For Gm, you get
F (x, y) = x + y + xy,

or x + y − xy for another choice of coordinates, or crazier things for more bizarre choices of
coordinates. (Those two are isomorphic if Q ⊆ R, even though the original groups are not,
but not in general. I’ll make a stronger statement below.) Any elliptic curve gives a formal
group of dimension 1, as constructed in Silverman’s book. Also, abelian varieties and linear
groups give you other examples in higher dimension; however, I’m mostly interested here in
dimension 1.

If I knew what it was, I would mention here the connection between formal groups of
dimension 1 and stable homotopy theory (which as far as I can tell is due more or less entirely
to Hopkins). However, I don’t; maybe Mark can enlighten us a bit at some point.

Formal o-modules

I’m also going to work a bit (following [GH2]) with Drinfeld’s more general notion of formal
o-modules, where o is a complete DVR with finite residue field k = Fq. Fix a choice of a
uniformizer π of o, and put K = Frac o as usual. Let R be a (commutative) o-algebra; I’ll call
the structure map i : o → R if I need to refer to it. A formal o-module of dimension n over
R is a (commutative) formal group F of dimension n equipped with a ring homomorphism
θ = θF : o → EndR(F ), such that

θ(a)(X) ≡ i(a)X (mod (x1, . . . , xn)2).

(That is, the action of θ(a) on Lie(F ) is by multiplication by i(a).) A formal group is
automatically a formal Zp-module as long as Zp ⊆ R.

Convention: I’ll write aF instead of θF (a), as in [GH2].
Example: the first Lubin-Tate paper (Formal complex multiplication in local fields, Ann.

Math. 81 (1965), 380–387) show that you can uniquely specify a formal o-module of di-
mension 1 by specifying the action of π: it must be given by a series f(x) with f(x) ≡ πx
(mod x2) and f(x) ≡ xq (mod π).

Example: in equal characteristic p, Drinfeld stumbled across these as the analogues of the
formal group associated to an algebraic group, for what we call “Drinfeld modules”. Briefly,
a Drinfeld module is an action of a finite extension of the ring Fq[t] on the additive group of
a ring in characteristic p, via “additive polynomials”:

x 7→ c0x + c1x
p + · · ·+ cnx

pn

.

These act like abelian varieties in many ways (e.g., producing Galois representations), but
have much simpler moduli and so are useful for things like proving the Langlands correspon-
dence for GL2 over function fields (Drinfeld’s original application).

2



You can speak of the “invariant differentials” of F , i.e., the elements ω of the module of
formal differentials (i.e., the free RJXK over x1, . . . , xn) such that ω(F (X, Y )) = ω(X)+ω(Y ),
and ω(aF (X)) = i(a)ω(X) for a ∈ o. These form a free R-module of rank n, called ω(F ); in
fact, the “quotient mod degree 2” map from invariant differentials to R dx1 ⊕ · · · ⊕R dxn is
a bijection, and all invariant differentials are closed [GH2, Proposition 2.2].

Policy: I’m now going to assume dimension 1 forever after, because Lubin-Tate theory
applies only in dimension 1. Also, I may skip the o-module generalizations of some statements
about formal groups, but those are all straightforward to extend (or see [GH2]).

Logarithms

If f : F → Ga is a homomorphism of formal o-modules, you can take its formal derivative

ω = df(x) =
df

dx
· dx.

That gives a homomorphism d : Hom(F, Ga) → ω(F ). By [GH2, Proposition 3.2], if R is
flat (i.e., torsion-free) over o, then d is injective; if R is a K-algebra, then d is bijective. In
particular, in the latter case, there is a unique isomorphism f : F → Ga with df equal to
any prescribed generator of ω(F ). We call f a logarithm for F .

Height

It’s an easy lemma [GH2, Lemma 4.1; beware that f is used to mean two different things in
the same sentence!] that if R is a field and F is a formal group with i(π) = 0, then either
πF = 0 or there is an integer h such that

πF (x) = f(xqh

)

for some series f with f ′(0) 6= 0. In the second case, we say F has height h. If R is a complete
local ring whose maximal ideal I contains i(π) (hereafter a local o-algebra), we say F has
height h if the reduction of F has height h over R/I. (Define height for a formal o-module
as the height of the underlying formal group. Oh, and this definition doesn’t depend on
dimension 1.)

Deformations

If we fix a formal o-module F0 of some height h over R/I, I will refer to a formal o-module
F over R equipped with an isomorphism of its reduction to F0 as a deformation of F0 over
R. Then the Lubin-Tate-Drinfeld theorem explicitly describes a universal deformation of
F0. This comes from the following fact: if R is flat over o, then any formal o-module (of
dimension 1, as always here) can be presented so that its formal logarithm takes the form

f(x) = x +
∞∑

k=1

bkx
qk
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for bk ∈ R ⊗ K, and this presentation is unique. A formal o-module presented this way is
said to be o-typical. (See [GH2, §5].)

Example: for Gm over Zp, bk = p−k and you get the formal logarithm of the Artin-Hasse
exponential.

As the previous example shows, it’s better to work with a certain change of variable here.
Keeping R flat, define v1, v2, . . . by

πbk = vk + b1v
q
k−1 + · · ·+ bk−1v

qk−1

1 ;

then the vk turn out to be integral. In fact, unwinding the construction yields a “universal
formal o-typical module” over the infinite polynomial ring o[v1, v2, . . . ].

It turns out that you can read off heights easily here: the o-typical module constructed
above has height h if and only if v1, . . . , vh−1 vanish in R/I and vh does not.

The Lubin-Tate-Drinfeld theorem (Lubin-Tate for formal groups, Drinfeld for formal
o-modules) now asserts that if you pull back the universal formal o-typical module to
oJu1, . . . , uh−1K via

vi 7→ ui (i = 1, . . . , h− 1)

vh 7→ 1

vi 7→ 0 (i ≥ h + 1),

and call the result F , then F is a universal deformation of its reduction modulo (π, u1, . . . , uh−1)
(which is thus defined over Fq, and which has height h). See [GH2, Proposition 12.10] for
the (easy) cohomological computation that verifies this.

4


