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Periods on the Lubin-Tate moduli space

To keep things moving, I'm going to be terse now (as in [GH1]); there are lots of details
filled in in [GH2].

References: Jay notes that [GH1] (the terse one) is available online; I'll put a link on
the notes page.

Corrections from last time

Thanks to Jay for these.

page 2: the first Lubin-Tate paper only deals with height 1 (that is all that is needed for
local class field theory), and they show uniqueness only over the completion of the maximal
unramified extension of K. (Indeed, the fact that they are not isomorphic is key to being
able to use them for explicit local reciprocity!)

page 3, top of page: “free R[X] over zi,...,x,” should be over dzi,...,dx,. By
w(F(X,Y)), I mean you write w(X) = fi(X)dzy + --- + fndz,, then you write FI(X,Y) =
(F1(X,Y),...,F,(X,Y)), you plug in

W(F(Xa Y)) = fl(F(X’ Y))dFl(Xa Y) + . +fn(F(X7 Y))an(Xa Y),

then expand each dF;(X,Y) by the chain rule.
page 3, Height: change “formal group” in the second line to “formal o-module” and
scratch the reference to formal o-modules in the parenthetical.

A group action

Last time, we built a universal deformation F' over A = ofvy, ..., v, 1] of a formal o-module
over F, of height h, which I'll denote by Fy. That means that the group G = Aut(Fp) acts
on the deformation space Spf A, and on the corresponding rigid analytic space X, which is
the open unit polydisc in vy, ..., v, 1.

It turns out that D = End(F}) is a division algebra of degree n, G is the group of units
in some maximal order therein, and D ® K = M, (K) is split. That means G has a natural
n-dimensional linear representation Vi over K, as does D*. In particular, G acts on the
hyperplanes of Vi, i.e., on P(V}!); the latter carries a rigid analytic space structure, and the
group action is by analytic morphisms.

The crystalline period mapping, to be defined, is a rigid analytic G-equivariant étale
morphism ® : X — P(V}Y) which classifies deformations “up to isogeny” as follows. For A
an affinoid algebra over K, let F, and Fj be deformations of Fyy over 04, corresponding to
points a,b € X(A). Then an isogeny of Fj, viewed as an element 7" € D*, deforms to an
isogeny F, — F} if and only if T®(a) = ®(b).



The universal additive extension

In order to specify ®, I have to give you a G-equivariant line bundle £ on X and a K[G]-
homomorphism Vi — H°(X, L) whose image is basepoint-free (i.e., the images don’t all
vanish at a point). For x € X, we then take ®(z) to be the hyperplane of Vi which maps
to sections of £ vanishing at z.

First, £ is the inverse of the analytification of the sheaf w of invariant differentials, a/k/a
the Lie algebra Lie(F). In order to make the map, I must consider the universal additive
extension E of F'; it sits in an exact sequence

0O—->N—-FEF—F—=0

with N = G, @ Ext(F,G,)", and it is universal: if 0 - N’ — E’ — F — 0 is an extension of
F by an additive o-module, then there are unique homomorphismsi: £ — E', j: N — N’
such that

0 N E F 0

G

0 N’ E F 0

commutes. (This is straightforward, modulo some cohomology arguments which have already
been exploited in constructing the universal deformation, namely, that Hom(F, G,) = 0 and
Ext(F,G,) is free of rank n — 1. See [GH2, Proposition 11.3].) On the level of Lie algebras,
we have

0 — Lie(N) — Lie(E) — Lie(F) — 0

and this sequence is G-equivariant.

The bundle Lie(E) turns out to be the covariant Dieudonné module of Fj, so it is an “F-
crystal”: it carries an integrable connection V : Lie(E) — Lie(EF) ® QL/U plus a “Frobenius
structure”. The latter can be viewed as an isomorphism o* Lie(£) — Lie(E) for any o :
A — A lifting the g-power map on the special fibre. Let M be the analytification of Lie(F),
as a rigid vector bundle over X; then by “Dwork’s trick”, M admits a basis of horizontal
sections over X. (The idea: by formal integration, you get a basis over a small polydisc.
But then you use the Frobenius pullback to “grow” this polydisc.) If you prefer, this can all
be described in formulas in this case: see [GH2, Section 22].

We now have our representation Vi = H°(X, M)V on the horizontal sections of M: the
surjection M — £ — 0 gives the map Vx — H°(X, £) whose image is basepoint-free. The
verification that @ is étale and detects isogenies can be found in [GH2, Section 23].

What is Dwork’s trick?

This is worth explaining a bit more, because it also comes up all over the place in p-adic
cohomology. Say you have a vector bundle M over the open unit polydisc X over K with
coordinates x1,...,z,. (Note: what was n — 1 before is n now for notational simplicity.) It
turns out that M is in fact generated freely by global sections. [Correction of 27 Oct 2012:



this was previously attributed to Gruson, which is incorrect. Instead see: W. Bartenwerfer, k-
holomorphe Vektorraumbiindel auf offenen Polyzylindern, J. reine angew Math. 326 (1981),
214-240.]

Say you also have an integrable connection V: M — M ® Q' i.e., commuting actions
of 0; = a%i for s = 1,...,n. You can then try to formally solve for the horizontal sections
around x; = --- = x,, = 0. The resulting sections will converge on some polydisc, but its
radius may be much smaller than 1. E.g., if n = 1, the rank is 1, and 9;v = c¢v, the horizontal
section is exp(— f ¢)v, which converges on some disc but possibly a small one.

What having a Frobenius structure does is give you an isomorphism between M and its
pullback along some map o lifting the g-power Frobenius on the reduction of I'(O, X), e.g.,
one taking K into itself and taking x; to 2. That pulls back your sections on a tiny polydisc
to sections on a larger polydisc (in my example, sections on the disc |z;| < p pull back to
|z;| < pl/q); but in fact the K-vector space of horizontal sections is unique, so these sections
actually extend the ones you started with. Repeat ad infinitum.



