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Kiran S. Kedlaya, fall 2004

A little p-adic functional analysis (part 1 of 2)

I’m going to start with a little bit of terminology and notation about nonarchimedean
Banach spaces (trusting that you can fill in a few details that are similar to the real/complex
case). There’s a lot more where this came from, but we won’t need the rest of it just yet.

Thanks to Abhinav Kumar for providing the corrections incorporated into this version
(of 16 Sep 04).

References: [FvdP], Chapter 1; the stuff is also in [BGR], but you’ll have to tease it out
of Chapter 2 with some effort, as it’s scattered among many sections. In case you come down
with a craving for more p-adic functional analysis, I recommend Nonarchimedean functional
analysis, by Schneider. This book is available online; see the notes page for a link. At
worst, you can always pick up a standard functional analysis book (e.g., Espaces vectoriels
topologiques by Bourbaki) and redo all the constructive proofs (i.e., skip anything involving
Hahn-Banach) yourself in the nonarchimedean context!

Ultrametric spaces

An ultrametric (or nonarchimedean metric) on a set X is function d : X ×X → R≥0 with
the following properties.

(a) For x1, x2 ∈ X, x1 = x2 if and only if |x| = 0.

(b) For x1, x2 ∈ X, d(x1, x2) = d(x2, x1).

(c) For x1, x2, x3 ∈ X, d(x1, x3) ≤ max{d(x1, x2), d(x2, x3)} (strong triangle inequality)

Note that if d(x1, x2) 6= d(x2, x3), then in fact d(x1, x3) = max{d(x1, x2), d(x2, x3)}, otherwise
you get a contradiction by applying (c) to x1, x2, x3 in another order.

A Cauchy sequence in X is a sequence {xn}∞n=1 such that for any ε > 0, there exists N ∈ N
such that for all m,n ≥ N , d(xm, xn) < ε. Note that by the strong triangle inequality, this
is equivalent to d(xn, xn+1) < ε for n ≥ N ; this is the first of many instances in which
nonarchimedean analysis turns out to be easier than traditional analysis!

We say X is complete if every Cauchy sequence converges to a limit (necessarily unique
because of (a)). We say X is spherically complete if every decreasing sequence of closed balls
has nonempty intersection: that is, given x1, x2, · · · ∈ X and r1, r2, · · · ∈ R≥0 such that the
sets

Dn = {x ∈ X : d(x, xn) ≤ rn}
satisfy D1 ⊇ D2 ⊇ · · · , then ∩∞n=1Dn 6= ∅. Note that if X is spherically complete, then X is
also complete: given a Cauchy sequence {x1, x2, . . . }, we can pass to a subsequence if needed
to ensure that d(xn, xn+1) ≥ d(xn+1, xn+2) for all n. Then the balls

Dn = {x ∈ X : d(x, xn) ≤ d(xn+1, xn)}
have nonempty intersection, which must be a limit of the sequence. (In other words, complete
means spherically complete when the balls have radii going to 0.)
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Ultrametric fields

An ultrametric field, or nonarchimedean valued field (in the terminology of [FvdP]), is a field
K equipped with a function | · | : K → R≥0 with the following properties.

(a) For x ∈ K, x = 0 if and only if |x| = 0.

(b) For x1, x2 ∈ K, |x1x2| = |x1||x2|.

(c) For x1, x2 ∈ K, |x1 + x2| ≤ max{|x1|, |x2|}.

The function d(x1, x2) = |x1 − x2| is then an ultrametric on K, so we know what it means
for K to be complete. In this course, we will usually be working over a complete ultrametric
field. Oh, and there is always a trivial absolute value given by

|x| =

{
0 x = 0

1 x 6= 0;

I’m always going to assume (unless otherwise specified) that my absolute value function is
not the trivial one.

If K is an ultrametric field, then the set of x ∈ K with |x| ≤ 1 is a subring of K. I’ll
denote it by oK , or sometimes by o in case K is to be understood. I might also call it the
“valuation subring”. The set of x ∈ K with |x| < 1 is a maximal ideal of oK , which I’ll
denote mK . The field oK/mK is called the residue field of K, and I’ll typically call it k.
(Note that k is really a field, and not a one-element ring, because the absolute value function
is nontrivial!)

We call |K∗| the value group of K. We say K is discretely valued if its value group is a
discrete subgroup of R>0; that means it must be isomorphic to Z. Our favorite examples of
complete ultrametric fields are discretely valued, namely:

(a) the field of formal power series (or really Laurent series, but I’ll call it the “field of
formal power series” from here on) k((t)) over a field k;

(b) the field Qp of p-adic numbers;

(c) any finite extension of either of these (see exercises).

Another example is the completion of the maximal unramified extension Qunr
p of Qp (or of a

finite extension of Qp).
For non-discretely valued examples, keep reading. Then again, if you want to pretend

for the rest of the course that all ultrametric fields are discretely valued, you will not lose
too much of the flavor of the course. (I’ll try to make explicit warnings at points where it
makes a difference.)
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Spherically complete fields

Terminology warning: the term maximally complete is used interchangeably with spherically
complete when talking about ultrametric fields. (For instance, [FvdP] uses “maximally
complete” consistently.) The reason: the ultrametric field K is spherically complete if and
only if it is maximal among ultrametric fields with the same value group and residue field.
(I think this is due to Kaplansky; see his papers “Maximal fields with valuations I, II”. See
also the exercises.)

Note that any discretely valued ultrametric field is spherically complete, since the radii
of balls in a decreasing sequence must stabilize. The canonical example of an ultrametric
field which is complete but not spherically complete is Cp, the completion of the algebraic
closure of Qp.

Every ultrametric field can be embedded in a spherically complete ultrametric field, or
even an algebraically closed spherically complete ultrametric field. I don’t know a reference
for this offhand, but see the exercises for some examples.

Nonarchimedean Banach spaces

Assume for the rest of this installment and the next (and pretty much for the rest of the
course!) that K is a complete ultrametric field, and let | · | denote the norm on K.

Let V be a vector space over K. A seminorm on V is a function ‖·‖ : V → R≥0 satisfying
the following conditions.

(a) For a ∈ K and v ∈ V , ‖av‖ = |a|‖v‖.

(b) For v, w ∈ V , ‖v + w‖ ≤ max{‖v‖, ‖w‖}.

If moreover ‖v‖ = 0 implies v = 0, we say ‖ · ‖ is a norm. If V comes equipped with a norm,
we call it a normed space (over K).

If V is a normed space which is complete under its norm (or rather, under the induced
ultrametric d(v, w) = ‖v − w‖), we say V is a Banach space (over K). For instance, any
finite dimensional K-vector space is a Banach space. As in the traditional setting, there are
lots of simple examples of Banach spaces, e.g., the set of all null sequences (a0, a1, . . . ) over
K (that is, sequences with |ai| → 0 as i → ∞) with the supremum norm, or all bounded
sequences with the supremum norm, or all convergent sequences with the supremum norm,
or...

Two norms ‖ · ‖1 and ‖ · ‖2 on the same space V are equivalent if there exist α, β > 0
such that for all v ∈ V ,

α‖v‖1 ≤ ‖v‖2 ≤ β‖v‖1;

clearly this is actually an equivalence relation on norms. Equivalent norms induce the same
topology on V , but not conversely.

One makes subspaces and quotient spaces as follows. If f : V → W is an injective map
of vector spaces over K, W is a Banach space, and im(f) is closed, then the restriction of
the norm on W to V gives V the structure of a Banach space. If f : V → W is a surjective
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map of vector spaces over K, V is a Banach space, and ker(f) is closed, then the quotient
norm

‖w‖W = inf{‖v‖ : v ∈ V, f(v) = w}
is obviously a seminorm, but in fact it is also a norm. Namely, if ‖w‖W = 0, we can choose
v1, v2, · · · ∈ V with f(vi) = w for all i and ‖vi‖ → 0. Then vi − vj ∈ ker(f) for all i, j; fixing
i, letting j tend to ∞ and recalling that ker(f) is closed, we see that vi ∈ ker(f). Hence
w = 0; in other words, ‖ · ‖W is a norm.

By a similar argument, any Cauchy sequence in W converges: if {wi} is a Cauchy sequence
in W , we can choose lifts {vi} of the wi to V so that ‖vi − vi+1‖ → 0 as i →∞. Since V is
complete, the vi converge to a limit v such that ‖f(v)−wi‖W → 0 as i →∞, so {wi} has a
limit. We conclude that W W inherits from W the structure of a Banach space.

A lot of stuff you know about Banach spaces over R or C carries over to this setting
(so I’m not going to bother redoing the classical proofs in these cases; see the references).
Typical examples:

• Any finite dimensional vector space over K is a Banach space, and any two norms on
it are equivalent.

• A map f : V → W between Banach spaces is continuous (for the norm topologies)
if and only if it is bounded (i.e., there exists c > 0 such that ‖f(v)‖ ≤ c‖v‖ for all
v ∈ V ).

• Open mapping theorem: if f : V → W is a bounded surjective linear map between
Banach spaces, then f is an open map (the image of an open subset is open), and the
norm topology on W coincides with the quotient topology. More precisely, there exists
c > 0 such that any w ∈ W is the image of some v ∈ V with ‖v‖ ≤ c‖w‖. Corollary:
any bijective bounded linear map between Banach spaces is an isomorphism. (If anyone
wants me to go through the proof of this, let me know and I’ll prepare it for next time.)

• Closed graph theorem: the linear map f : V → W between two Banach spaces is
bounded if and only if its graph is closed under the product topology on V ⊕ W .
(Apply the open mapping theorem to the map between W and the quotient of V ⊕W
by the graph of f .)

However, the Hahn-Banach theorem extends verbatim only to spherically complete fields.
For more general fields, one needs an extra restriction on V . We say V is of countable type
if it contains a countable subset whose linear span is dense in V . (I think such a space in
the classical setting is said to be “separable”, but that word is sufficiently overburdened in
algebraic geometry!)

Lemma 1. Suppose V is a Banach space of countable type over K. Then for each R > 1,
there exists an at most countable set {ei} such that each v ∈ V can be written as a convergent
sum

∑
ciei with |ci| · ‖ei‖ → 0, and that any such sum satisfies

R−1 max
i
{|ci| · ‖ei‖} ≤ ‖

∑
cie

i‖ ≤ max |ci| · ‖ei‖.
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Proof. Exercise, or see [FvdP, Proposition 1.2.1].

Theorem 2 (Hahn-Banach). Let W ⊂ V be an inclusion of normed spaces, with V
complete, and suppose f : W → K is a bounded K-linear map; that is, there exists c > 0
such that |f(w)| ≤ c‖w‖ for all w ∈ W . Suppose further that either:

(a) V is of countable type, or

(b) K is spherically complete.

Then for any R > 1, there exists a K-linear map g : V → K extending f such that |g(v)| ≤
cR‖v‖ for all v ∈ V . Moreover, in case (b), we also have this conclusion with R = 1.

Proof. For (a), we may assume W is closed because any bounded linear map extends uniquely
from W to its closure. In that case, apply Lemma 1 to V/W to produce di ∈ V such that
each v ∈ V has a unique presentation as w +

∑
cidi with w ∈ W , ci ∈ K and |ci| → 0. Then

extend f by setting g(w +
∑

cidi) = f(w). For (b), see Schneider’s book; we won’t use this
part very much. (Again, let me know if you want to see this in detail.)

Note that the Hahn-Banach theorem always fails in general if K is not spherically com-
plete: if L is a spherically complete field containing K, and D1, D2, . . . is a decreasing
sequence of balls in K with empty intersection, then the identity map K → K cannot ex-
tend to a bounded map L → K, because any element of L in the intersection of the Di has
nowhere to go in K! (Thanks to Damiano Testa for noticing this.)

Exercises

1. Let K be an ultrametric field and let L be a finite extension of K. Show that the
absolute value of K extends uniquely to an absolute value on L, and that L is complete
if K is.

2. Prove that Cp (the completion of the algebraic closure of Qp) is algebraically closed
(this is basically Krasner’s Lemma), but not spherically complete.

3. Prove that every ultrametric field is contained in a spherically complete field with the
same value group and residue field. (Hint: take a bad descending sequence of balls, stick
something in it without changing the value group or residue field, then Zornicate.) This
implies the equivalence between “spherically complete” and “maximally complete”.

4. Prove Lemma 1 (or look it up in [FvdP, Proposition 1.2.1]).

5. Let k be a field, and let k((tQ)) denote the set of formal sums
∑

i∈Q cit
i, with each

ci ∈ k, whose support (the set of i such that ci 6= 0) is well-ordered (contains no infinite
decreasing subsequence). Prove that formal addition and multiplication of these are
well-defined, and that they form a field under these operations. These gadgets are var-
iously called Hahn series (because Hahn introduced them in 1907), Mal’cev-Neumann
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series (because Mal’cev and Neumann independently gave vast generalizations), or
generalized power series. If you really must look this up, see Chapter 13 of Passman’s
book The Algebraic Structure of Group Rings.

6. Prove that k((tQ)) is spherically closed. Deduce that if k is algebraically closed, then
so is k((tQ)).

7. (from Bjorn Poonen’s undergraduate thesis) Give an explicit construction of a spher-
ically complete field containing Cp. (Hint: you want to do something like making
k((tQ)), but starting from Qunr

p and writing down “generalized power series in p”. You
can make that make sense by quotienting an appropriate ring of things looking like
generalized power series by the ideal p− t. Or see my paper “Power series and p-adic
algebraic closures”.)
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