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Kiran S. Kedlaya, fall 2004

Rigid analytic spaces (at last!)

We are now ready to talk about rigid analytic spaces in earnest. I’ll give the definition
and then some examples; we may discuss some of these examples in more detail, as interest
dictates.

References: [FvdP, Chapter 4] and [BGR, Chapter 9]. Additional references are given
throughout the text.

Locally G-ringed spaces and rigid spaces

A locally G-ringed space is a set X with a G-topology and a sheaf of rings OX whose stalks at
each x ∈ X are local rings. A morphism between two such gadgets f : (X,OX) → (Y,OY ) is
a continuous map f : X → Y (i.e., one pulling admissible opens/coverings back to admissible
opens/coverings) and a sheaf-of-rings homomorphism f−1(OY ) → OX such that the induced
homomorphisms on stalks are local homomorphisms. As usual, the pushforward f∗ of a O-
module is just the sheaf-theoretic direct image and the pullback is the sheaf-theoretic inverse
image tensored up to OX using the homomorphism f−1(OY ) → OX . As pointed out last
time, any affinoid space is a locally G-ringed space: the stalk at a point coincides with the
local ring of the affinoid algebra at the corresponding maximal ideal.

A (very weak, weak, somewhat weak, strong) affinoid space is a locally G-ringed space of
the form Max A, for some affinoid algebra A, equipped with the corresponding G-topology.
Note that homomorphisms between affinoid algebras give rise to morphisms of the corre-
sponding affinoid spaces for any of the four types of G-topologies.

Lemma 1. The contravariant functor from affinoid algebras to affinoid spaces (viewed as
a subcategory of the locally G-ringed spaces) is an equivalence for any of the four types of
G-topologies, with quasi-inverse given by the global sections functor.

Proof. The nontrivial assertion here is that there can be at most one morphism of locally
G-ringed spaces with a given action on global sections. The action on points is uniquely de-
termined because the induced homomorphisms on stalks are local; the sheaf map is uniquely
determined by the universal property defining affinoid subdomains. For more details, see
[BGR, Proposition 9.3.1/1].

A (very weak, weak, somewhat weak, strong) rigid analytic space (over K) is a locally G-
ringed space X for which there exists an admissible covering {Ui}i∈I of X with the following
properties.

(a) Each Ui is a (very weak, weak, somewhat weak, strong) affinoid space.

(b) A subset U of X is admissible if and only if U ∩ Ui is admissible for each i ∈ I.
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Note that the concepts become more expansive as you make the topology finer; the term
“rigid analytic space” without qualification usually means a strong rigid analytic space.

A coherent (resp. coherent locally free) sheaf on a rigid analytic space is one which on
the elements of some admissible affinoid covering looks like the sheaf associated to a finitely
generated (resp. finite free) module over the structure sheaf. Of course, on a general space,
a coherent sheaf need not be generated by its global sections.

A closed analytic subspace of a rigid space X is a subspace which on the elements of some
admissible affinoid covering looks like the zero locus of some ideal. (This is what you might
think of as being analogous to a “closed subscheme”.)

Example: generic fibres

A nice set of relatively simple examples of rigid spaces come from Raynaud’s “generic fibre”
construction.

Let P = Spf A be an affine formal scheme of finite type over oK , that is, A is an oK-
algebra complete for the ideal mKA and topologically finitely generated over oK . Then
AK = A⊗oK

K is an affinoid algebra; we call the corresponding affinoid space Max AK the
generic fibre of P . If P is not affine, we can construct the generic fibre by glueing this
construction.

The points of the generic fibre correspond to subschemes of P which are integral and finite
flat over oK . In particular, there is a specialization map spe : AK → Pk (where Pk = P⊗oK

k,
and k is as always the residue field of K) taking one of these points to its special fibre. Note
that the generic fibre consists of the space plus the specialization map; the space itself isn’t
enough to recover P .

If P is projective, then the generic fibre can be identified with the closed points of the
usual generic fibre. In this case, one has a form of the “GAGA principle”: any coherent sheaf
on the analytic generic fibre is algebraic, and the analytic (Čech) and algebraic cohomologies
coincide. This is one of Kiehl’s theorems, on which more at a later date.

Incidentally, one sometimes wants to form the “generic fibre” of things which are not
topologically finitely generated over oK , like oKJtK, whose generic fibre should be the open
unit disc over K. One has to be a bit careful: the ring oKJtK is not a valuation ring, because
there are series

∑
cnt

n with |cn| < 1 for all n but |cn| → 1 as n →∞. In fact, I don’t know
a good general construction to put here; any suggestions?

Example: the Tate curve, for real this time

Let X be a rigid space, and let Γ be a group acting on X. We say the action of Γ is
discontinuous if X admits an admissible covering {Ui}i∈I by affinoids such that for each i,
the set of γ ∈ Γ such that Xγ

i ∩Xi 6= ∅ is finite. If this set only ever consists of the identity
element of Γ, the action is free.

Let Gm,K be the rigid analytic multiplicative group over K; if you like, you can think of
it as the result of removing 0 and ∞ from the generic fibre of P1

oK
(which is just the space
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P we discussed before). For q ∈ K with |q| > 1, the action of Z on Gm,K in which n acts by
multiplication by qn is free, since we can cover Gm,K admissibly with the affinoids

|q|n/2 ≤ |x| ≤ |q|(n+1)/2

and no one of these meets its image under the action of a nonzero n ∈ Z.
For more, see [FvdP, Section 5.1].

Example: Mumford curves

The group PGL2(K) acts on P, the generic fibre of P1
oK

. For Γ a subgroup of PGL2(K), let
L ⊆ P be the set of limit points of Γ (that is, the set of a ∈ P for which there exists a point
b ∈ P and a sequence γ1, γ2, . . . of distinct elements of Γ with bγn → a as n → ∞). We say
Γ is discontinuous if L 6= P, and the topological closure of any orbit is compact.

A Schottky group is a finitely generated nontrivial discontinuous group Γ with no non-
trivial finite subgroup. For Γ a Schottky group, let Ω be the complement of L in P. Then
we may form the quotient Ω/Γ (since the action is discontinuous in the sense of the previous
section), and—a la peanut butter sandwiches!1—the result is the analytification of a smooth
projective curve, called a Mumford curve. The group Γ is necessarily free of some finite num-
ber g of generators, and g is also the genus of the curve. There is more combinatorial data
hidden in this description, on which Γ is acting (including information about the reduction
type of the curve), and the whole picture is tied up with the theory of Shimura varieties,
and with stable reduction of curves.

Related example: the Drinfel’d upper half-space of dimension n over K is the subspace of
the analytified projective space Pn

K minus the union of all K-rational hyperplanes. The group
PGLn(K) acts on this space, and one gets a lot of interesting spaces by forming quotients by
discrete subgroups. This sort of business goes under the heading of “p-adic uniformization”.

For more, see [FvdP, Section 5.4].

G-topologies and ordinary topologies

I wanted to mention a result that compares Čech cohomology and sheaf cohomology on some
rigid spaces, but first I need to fix the fact that affinoid spaces do not have enough points.
This will involve Before giving the statement, I need some “extra points” on an affinoid
space, or more generally on any G-topological space. Given a space X equipped with a
G-topology, a G-filter (or simply “filter”) on X is a collection F of admissible subsets with
the following properties.

(a) X ∈ F , ∅ /∈ F .

(b) If U1, U2 ∈ F , then U1 ∩ U2 ∈ F .

1The “abracadabra” phrase of The Amazing Mumford, the magician Muppet on Sesame Street. I have
been unable to confirm reports that this Muppet is actually named after Mumford the mathematician.
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(c) If U1 ⊆ U2 and U1 ∈ F , then U2 ∈ F .

A prime filter is a filter F also satisfying

(d) if U ∈ F and {Ui}i∈I is an admissible covering of U , then Ui ∈ F for some i ∈ I.

A maximal filter (or ultrafilter) is a filter F which is maximal under inclusion; such a filter
is clearly also prime. For each x ∈ X, the set of admissibles containing x is a maximal filter.

Let P(X) and M(X) denote the sets of prime and maximal filters, respectively, on X,
and likewise for any admissible open U of X (that is, P(U) consists of prime filters of X in
which U appears). Equip P(X) with the ordinary topology generated by the P(U); then
there is a natural morphism of sites σ : X → P(X), and it turns out that the functors σ∗
and σ∗ are equivalences between the categories of abelian sheaves on X and on P(X) [FvdP,
Theorem 7.1.2].

The topological space P(X) is typically pretty unwieldy. For rigid analytic spaces,
Berkovich theory gives a way to recover all of the information in P(X) by working on
M(X), which is still a bigger space than X itself but is small enough to be more wieldy
(and is more closely analogous to spaces you see in ordinary analysis). We’ll introduce this
perspective sometime later in the term.

Čech versus sheaf cohomology

Here’s a precise comparison statement between Čech and sheaf cohomology (it may not be
optimal, but almost surely some sort of finiteness hypothesis is necessary). See van der Put,
Cohomology of affinoid spaces, Comp. Math. 45 (1982), 165–198, Proposition 1.4.4.

Proposition 2. Let X be a strong rigid analytic space with an at most countable admissible
covering {Ui}i∈I such that each Ui is an affinoid space, and each Ui ∩ Uj is an affinoid
subspace of Ui. Then Čech cohomology computes sheaf cohomology for any abelian sheaf on
X.

Note that I said any abelian sheaf, not necessarily a coherent sheaf.

Sketch of proof. Put P(X) = ∪iP(Ui). Given a sheaf F , pick one injective abelian group Gp

containing Fp for each p ∈ P(X), and define the presheaf Gp on P(X) by G(U) =
∏

p∈U Gp.
Then G is a sheaf and its stalk at p is Gp; in particular, G is injective. Let H be the presheaf
cokernel of the injection F → G; then H+ is a sheaf, and coincides with the sheafification of
H.

Define K as the presheaf cokernel of H → H+, so that K+ = 0. At this point one must
verify that for X as chosen, the fact that K+ = 0 implies that Ȟ i(X,K) = 0 for all i.
This, despite being more or less formal, is the heart of the matter; see Lemma 1.4.5 of the
aforecited paper. (The point of the hypothesis on X is that any cover can be refined to a
countable cover by affinoid subspaces.)

4



Given that Ȟ i(X,K) = 0 for all i, the Čech cohomologies of H and H+ must coincide.
We thus have an exact sequence

0 → Ȟ0(X,F) → Ȟ0(X,G) → Ȟ0(X,H+) → Ȟ1(X,F) → 0

and isomorphisms Ȟ i(X,H+) → Ȟ i+1(X,F). Comparing the first sequence with the analo-
gous sequence in sheaf cohomology, you get Ȟ1(X,F) ∼= H1(X,F) for all F . Now proceed
by induction and “dimension shifting”: given Ȟ i(X,F) ∼= H i(X,F) for all F , apply this
isomorphism with F replaced by H+.

Exercises

1. (Rigid Hartogs’ lemma) Let X be the rigid space obtained from Max K〈x1, . . . , xn〉,
for some n ≥ 2, by removing the point (0, . . . , 0). Prove that O(X) = K〈x1, . . . , xn〉.

2. Suppose that K is spherically complete. Prove that every coherent locally free sheaf
on the open annulus {x ∈ P : r1 < |x| < r2} is free. (The rank 1 case is more or less
an exercise I gave earlier.) If you get stuck, see my preprint “Semistable reduction...
II” on my web site. Warning: a general coherent sheaf on an open annulus need not
be generated by global sections!

Problems

These aren’t listed as exercises because I don’t know how to do them!

1. (from Richard Taylor) Let X be the rigid space obtained from Max K〈x1, . . . , xn〉, for
some n ≥ 2, by removing all of the K-rational points. Is O(X) = K〈x1, . . . , xn〉? How
about if you remove all K-rational planes of codimension at least 2?

2. Let X be an affinoid space, let U be a connected (in the G-topological sense) affinoid
subspace, and choose f ∈ O(U). Let Y be the union of all connected affinoid subspaces
V containing U for which there exists g ∈ O(U) with restriction f . (I’m trying to think
of Y as the “domain of definition” of f .) Does there exist g ∈ O(Y ) extending f? If
so, is g unique? Also, what else can you say about Y (e.g., can one have Y = U?)

3. What is the “right” level of generality for the assertion that Čech cohomology computes
sheaf cohomology on a rigid analytic space?
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