18.727, Topics in Algebraic Geometry (rigid analytic geometry) Kiran S. Kedlaya, fall 2004 More on affinoid algebras

Addenda on the spectral seminorm

A norm on a Banach algebra A is *power-multiplicative* if $||f^n|| = ||f||^n$ for any $f \in A$ and any positive integer n. Our proof that the Gauss norm on T_n has a topological characterization adapts to show that for any affinoid algebra A, there is at most one power-multiplicative Banach norm on A. We now know that if a power-multiplicative norm exists, it must be the spectral seminorm; hence such a norm exists if and only if A is reduced.

In fact, the spectral seminorm is "minimal" in the following sense [BGR, Corollary 3.8.2/2].

Proposition 1. Let A be an affinoid algebra with norm $\|\cdot\|$. Then for all $f \in A$, $\|f\|_{\text{spec}} \leq \|f\|$. In particular, $|f(x)| \leq \|f\|$ for any $x \in \text{Max } A$.

Proof. Apply the formula

$$||f||_{\text{spec}} = \lim_{n \to \infty} ||f^n||^{1/n}$$

and note that $||f^n|| \le ||f||^n$ because $||\cdot||$ is a Banach algebra norm.

This yields the following characterization of nilpotent elements, in the vein of our characterization of power-bounded elements [BGR, Proposition 6.2.3/2].

Proposition 2. For A an affinoid algebra and $f \in A$, the following statements are equivalent:

(a) f is topologically nilpotent (i.e., $\{f^n\}$ is a null sequence in A);

(b)
$$|f(x)| < 1$$
 for all $x \in \operatorname{Max} A$;

(c) $||f||_{\text{spec}} < 1.$

Proof. The equivalence of (b) and (c) follows from the maximum modulus principle, and (a) implies (c) by the previous proposition. Given (c), choose $c \in K$ and $m \in \mathbb{N}$ such that |c| > 1 but $||cf^m||_{\text{spec}} \leq 1$. Then cf^m is power-bounded (from last time), so $c^{-1}(cf^m) = f^m$ is topologically nilpotent, as then is f. Thus (c) implies (a), and we are done.

Spectral norms are Banach norms

We now know that the spectral seminorm on a reduced affinoid algebra is a norm. However, more than that is true: it is a Banach norm. (This proof is from [FvdP, Theorem 3.4.9]; the proof in [BGR, Theorem 6.2.4/1] is a bit more intricate.)

Lemma 3. Let $A \hookrightarrow B$ be an inclusion of affinoid algebras. Then the spectral seminorm on B restricts to the spectral seminorm on A.

Proof. Choose a Banach norm $\|\cdot\|$ on B; it then restricts to a Banach norm on A, and applying the formula $\|f\|_{\text{spec}} = \lim_{n \to \infty} \|f^n\|^{1/n}$ gives us the claim.

Theorem 4. Let A be a reduced affinoid algebra. Then A is complete under $\|\cdot\|_{\text{spec}}$. In particular, every Banach algebra norm on A is equivalent to the spectral norm.

Proof. The last sentence will follow from what we showed earlier: any two Banach algebra norms on an affinoid algebra are equivalent. So we focus on showing that A is complete.

We first reduce to the case where A is an integral domain. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ be the minimal primes of A. Choose a Banach norm $\|\cdot\|_A$ on A, put $A_i = A/\mathfrak{p}_i$ (which is an integral domain), and equip each A_i with the quotient norm induced by $\|\cdot\|_A$. Then $A_1 \oplus \cdots \oplus A_m$ becomes a finitely generated Banach module over A under the max norm

$$(a_1,\ldots,a_m) = \max\{||a_i||\}$$

Let $i: A \to A_1 \oplus \cdots \oplus A_m$ be the canonical injection; then i(A) is an A-submodule of $A_1 \oplus \cdots \oplus A_m$. By the lemma from "*p*-adic functional analysis 2", i(A) is closed in $A_1 \oplus \cdots \oplus A_m$, and *i* is an isomorphism onto its image by the open mapping theorem. The map *i* is isometric for the spectral norms, so proving that the spectral norm on each A_i is equivalent to the quotient norm proves that the spectral norm on *A* is equivalent to $\|\cdot\|_A$.

From now on, we assume A is an integral domain. If B is a reduced affinoid algebra containing A, showing that B is complete under its spectral seminorm implies that A is complete under its spectral seminorm, thanks to the previous lemma. In particular, we can write A as a finite integral extension of T_d for some $d \ge 0$, and take B to be the integral closure of T_d in the normal closure of Frac A over Frac T_d . This lets us break the problem into two steps.

- (a) Show that if A is finite over T_d and Frac A is purely inseparable over Frac T_d , then the spectral norm on A is complete.
- (b) Show that if B is finite over A, Frac B is Galois over Frac A, and the spectral norm on A is fully multiplicative and complete, then the spectral norm on B is complete.

So we work on these two steps separately.

(a) There is nothing to show unless the characteristic of K is p > 0. Let K' be the completed algebraic closure of K; then for some integer m,

$$A \subseteq K' \langle x_1^{1/p^m}, \dots, x_d^{1/p^m} \rangle$$

so it's enough to check the completeness of $K'\langle x_1^{1/p^m}, \ldots, x_d^{1/p^m} \rangle$ under its spectral norm. But again, this is true because that spectral norm is the Gauss norm.

(b) Put G = Gal(Frac B/Frac A), and put

$$\operatorname{Trace}(f) = \sum_{g \in G} f^g;$$

this gives a map from Frac *B* to Frac *A* such that $\|\operatorname{Trace}(f)\|_{A,\operatorname{spec}} \leq \|f\|_{B,\operatorname{spec}}$. (This trace is the same as the trace of multiplication by *f* as a Frac *A*-linear transformation on Frac *B*.) From basic algebra, we know that the Frac *A*-linear pairing

$$(x, y) \mapsto \operatorname{Trace}(xy)$$

on $\operatorname{Frac} B$ is nondegenerate.

Choose $e_1, \ldots, e_n \in B$ which form a basis for Frac *B* over Frac *A*, and let e_1^*, \ldots, e_n^* be the dual basis for the trace pairing. We show that $Ae_1 + \cdots + Ae_n$ is a Banach module under the spectral norm, by showing that the spectral norm is equivalent to the maximum norm

$$||f_1e_1 + \dots + f_1e_n||_{B,\text{spec}} = \max_i \{||f_i||_{A,\text{spec}}\}.$$

Choose $a_0 \in A$ such that $a_0 e_j^* \in \mathfrak{o}_B^{\text{spec}}$ for $j = 1, \ldots, n$; now given $f_1 e_1 + \cdots + f_n e_n \in Ae_1 + \cdots + Ae_n$, we have

$$a_0 f_j = \operatorname{Trace}(a_0 e_j^* \sum_i f_i e_i)$$
$$\|\operatorname{Trace}(a_0 e_j^* \sum_i f_i e_i)\|_{A,\operatorname{spec}} \le \|a_0 e_j^* \sum_i f_i e_i\|_{B,\operatorname{spec}}$$
$$\le \|\sum_i f_i e_i\|_{B,\operatorname{spec}}.$$

Therefore

$$\|\sum_{i} f_{i} e_{i}\|_{B, \text{spec}} \ge \|a_{0}\|_{A, \text{spec}} \max_{i} \{\|f_{i}\|_{A, \text{spec}} \}.$$

Since we also have

$$\|\sum_{i} f_{i} e_{i}\|_{B, \text{spec}} \le \max_{i} \{\|f_{i}\|_{A, \text{spec}}\} \max_{i} \{\|e_{i}\|_{B, \text{spec}}\},\$$

the spectral norm restricted to $Ae_1 + \cdots + Ae_n$ is equivalent to the maximum norm, and so is a Banach norm.

For some $a \in A$, $aB \subseteq Ae_1 + \cdots + Ae_n$; since the spectral norm on A is multiplicative, the spectral norm on B is thus complete.

Note that this theorem can also be interpreted as follows: a sequence of elements of A converges to zero under some (any) Banach algebra norm if and only if it converges uniformly to zero on Max A.

The reduction of an affinoid algebra

In case you are wondering when the spectral seminorm is not just a norm but is actually fully multiplicative (like the Gauss norm), here is your answer. Recall that for A an affinoid algebra, we defined

$$\mathfrak{o}_A^{\text{spec}} = \{ f \in A : \|f\|_{\text{spec}} \le 1 \}.$$

Now define

$$\mathfrak{m}_A^{\text{spec}} = \{ f \in A : \|f\|_{\text{spec}} < 1 \}$$

and $\overline{A}^{\text{spec}} = \mathfrak{o}_A^{\text{spec}}/\mathfrak{m}_A^{\text{spec}}$; we call the latter the *reduction* of A. Then we have the following [BGR, Proposition 6.2.3/5].

Proposition 5. The spectral seminorm is a fully multiplicative norm if and only if A is reduced and \overline{A} is an integral domain.

Note that A being an integral domain is not enough; see exercises.

Proof. We already know that the spectral seminorm is a norm if and only if A is reduced; also, if A is reduced and the spectral norm is fully multiplicative, then the product of elements of spectral norm 1 again has spectral norm 1, so \overline{A} is an integral domain. Conversely, suppose A is reduced and \overline{A} is an integral domain. Given $f, g \in A$ nonzero, there exists an integer n such that $\|f\|_{\text{spec}}^n$ and $\|g\|_{\text{spec}}^n$ belong to $|K^*|$, by the maximum modulus principle. (Namely, the spectral seminorm is always the norm of the evaluation of f at some point whose residue field is finite over K.) Choose $c, d \in K^*$ with $c\|f\|_{\text{spec}}^n = d\|g\|_{\text{spec}}^n = 1$. Then the product of the images of cf^n and dg^n in \overline{A} must be nonzero because \overline{A} is an integral domain; that is, $\|cf^n dg^n\|_{\text{spec}} = 1$. Hence

$$1 = \|cf^n dg^n\|_{\operatorname{spec}} = c\|f\|_{\operatorname{spec}}^n \cdot d\|g\|_{\operatorname{spec}}^n$$

and (by power-multiplicativity of the spectral seminorm) it follows that $||fg||_{\text{spec}} = ||f||_{\text{spec}} \cdot ||g||_{\text{spec}}$.

Exercises

1. Give an explicit example of an affinoid algebra A which is an integral domain, but whose spectral seminorm is not fully multiplicative. (Hint: consider power series in xand x^{-1} which converge on a suitable annulus; your motivation should functions on a complex annulus which have their suprema on opposite boundary components. We'll look more at this geometric situation in the next few lectures.)