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More on affinoid algebras

Addenda on the spectral seminorm

A norm on a Banach algebra A is power-multiplicative if ‖fn‖ = ‖f‖n for any f ∈ A and any
positive integer n. Our proof that the Gauss norm on Tn has a topological characterization
adapts to show that for any affinoid algebra A, there is at most one power-multiplicative
Banach norm on A. We now know that if a power-multiplicative norm exists, it must be the
spectral seminorm; hence such a norm exists if and only if A is reduced.

In fact, the spectral seminorm is “minimal” in the following sense [BGR, Corollary
3.8.2/2].

Proposition 1. Let A be an affinoid algebra with norm ‖ · ‖. Then for all f ∈ A, ‖f‖spec ≤
‖f‖. In particular, |f(x)| ≤ ‖f‖ for any x ∈ Max A.

Proof. Apply the formula
‖f‖spec = lim

n→∞
‖fn‖1/n

and note that ‖fn‖ ≤ ‖f‖n because ‖ · ‖ is a Banach algebra norm.

This yields the following characterization of nilpotent elements, in the vein of our char-
acterization of power-bounded elements [BGR, Proposition 6.2.3/2].

Proposition 2. For A an affinoid algebra and f ∈ A, the following statements are equiva-
lent:

(a) f is topologically nilpotent (i.e., {fn} is a null sequence in A);

(b) |f(x)| < 1 for all x ∈ Max A;

(c) ‖f‖spec < 1.

Proof. The equivalence of (b) and (c) follows from the maximum modulus principle, and
(a) implies (c) by the previous proposition. Given (c), choose c ∈ K and m ∈ N such that
|c| > 1 but ‖cfm‖spec ≤ 1. Then cfm is power-bounded (from last time), so c−1(cfm) = fm

is topologically nilpotent, as then is f . Thus (c) implies (a), and we are done.

Spectral norms are Banach norms

We now know that the spectral seminorm on a reduced affinoid algebra is a norm. However,
more than that is true: it is a Banach norm. (This proof is from [FvdP, Theorem 3.4.9]; the
proof in [BGR, Theorem 6.2.4/1] is a bit more intricate.)

Lemma 3. Let A ↪→ B be an inclusion of affinoid algebras. Then the spectral seminorm on
B restricts to the spectral seminorm on A.
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Proof. Choose a Banach norm ‖ · ‖ on B; it then restricts to a Banach norm on A, and
applying the formula ‖f‖spec = limn→∞ ‖fn‖1/n gives us the claim.

Theorem 4. Let A be a reduced affinoid algebra. Then A is complete under ‖ · ‖spec. In
particular, every Banach algebra norm on A is equivalent to the spectral norm.

Proof. The last sentence will follow from what we showed earlier: any two Banach algebra
norms on an affinoid algebra are equivalent. So we focus on showing that A is complete.

We first reduce to the case where A is an integral domain. Let p1, . . . , pm be the minimal
primes of A. Choose a Banach norm ‖·‖A on A, put Ai = A/pi (which is an integral domain),
and equip each Ai with the quotient norm induced by ‖ · ‖A. Then A1 ⊕ · · · ⊕ Am becomes
a finitely generated Banach module over A under the max norm

(a1, . . . , am) = max
i
{‖ai‖}.

Let i : A → A1 ⊕ · · · ⊕Am be the canonical injection; then i(A) is an A-submodule of A1 ⊕
· · ·⊕Am. By the lemma from “p-adic functional analysis 2”, i(A) is closed in A1⊕· · ·⊕Am,
and i is an isomorphism onto its image by the open mapping theorem. The map i is isometric
for the spectral norms, so proving that the spectral norm on each Ai is equivalent to the
quotient norm proves that the spectral norm on A is equivalent to ‖ · ‖A.

From now on, we assume A is an integral domain. If B is a reduced affinoid algebra
containing A, showing that B is complete under its spectral seminorm implies that A is
complete under its spectral seminorm, thanks to the previous lemma. In particular, we can
write A as a finite integral extension of Td for some d ≥ 0, and take B to be the integral
closure of Td in the normal closure of Frac A over Frac Td. This lets us break the problem
into two steps.

(a) Show that if A is finite over Td and Frac A is purely inseparable over Frac Td, then the
spectral norm on A is complete.

(b) Show that if B is finite over A, Frac B is Galois over Frac A, and the spectral norm on
A is fully multiplicative and complete, then the spectral norm on B is complete.

So we work on these two steps separately.

(a) There is nothing to show unless the characteristic of K is p > 0. Let K ′ be the
completed algebraic closure of K; then for some integer m,

A ⊆ K ′〈x1/pm

1 , . . . , x
1/pm

d 〉

so it’s enough to check the completeness of K ′〈x1/pm

1 , . . . , x
1/pm

d 〉 under its spectral
norm. But again, this is true because that spectral norm is the Gauss norm.

(b) Put G = Gal(Frac B/ Frac A), and put

Trace(f) =
∑
g∈G

f g;

2



this gives a map from Frac B to Frac A such that ‖Trace(f)‖A,spec ≤ ‖f‖B,spec. (This
trace is the same as the trace of multiplication by f as a Frac A-linear transformation
on Frac B.) From basic algebra, we know that the Frac A-linear pairing

(x, y) 7→ Trace(xy)

on Frac B is nondegenerate.

Choose e1, . . . , en ∈ B which form a basis for Frac B over Frac A, and let e∗1, . . . , e
∗
n

be the dual basis for the trace pairing. We show that Ae1 + · · · + Aen is a Banach
module under the spectral norm, by showing that the spectral norm is equivalent to
the maximum norm

‖f1e1 + · · ·+ f1en‖B,spec = max
i
{‖fi‖A,spec}.

Choose a0 ∈ A such that a0e
∗
j ∈ ospec

B for j = 1, . . . , n; now given f1e1 + · · · + fnen ∈
Ae1 + · · ·+ Aen, we have

a0fj = Trace(a0e
∗
j

∑
i

fiei)

‖Trace(a0e
∗
j

∑
i

fiei)‖A,spec ≤ ‖a0e
∗
j

∑
i

fiei‖B,spec

≤ ‖
∑

i

fiei‖B,spec.

Therefore
‖

∑
i

fiei‖B,spec ≥ ‖a0‖A,spec max
i
{‖fi‖A,spec}.

Since we also have

‖
∑

i

fiei‖B,spec ≤ max
i
{‖fi‖A,spec}max

i
{‖ei‖B,spec},

the spectral norm restricted to Ae1 + · · · + Aen is equivalent to the maximum norm,
and so is a Banach norm.

For some a ∈ A, aB ⊆ Ae1 + · · ·+ Aen; since the spectral norm on A is multiplicative,
the spectral norm on B is thus complete.

Note that this theorem can also be interpreted as follows: a sequence of elements of A
converges to zero under some (any) Banach algebra norm if and only if it converges uniformly
to zero on Max A.
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The reduction of an affinoid algebra

In case you are wondering when the spectral seminorm is not just a norm but is actually
fully multiplicative (like the Gauss norm), here is your answer. Recall that for A an affinoid
algebra, we defined

ospec
A = {f ∈ A : ‖f‖spec ≤ 1}.

Now define
mspec

A = {f ∈ A : ‖f‖spec < 1}

and A
spec

= ospec
A /mspec

A ; we call the latter the reduction of A. Then we have the following
[BGR, Proposition 6.2.3/5].

Proposition 5. The spectral seminorm is a fully multiplicative norm if and only if A is
reduced and A is an integral domain.

Note that A being an integral domain is not enough; see exercises.

Proof. We already know that the spectral seminorm is a norm if and only if A is reduced; also,
if A is reduced and the spectral norm is fully multiplicative, then the product of elements of
spectral norm 1 again has spectral norm 1, so A is an integral domain. Conversely, suppose
A is reduced and A is an integral domain. Given f, g ∈ A nonzero, there exists an integer n
such that ‖f‖n

spec and ‖g‖n
spec belong to |K∗|, by the maximum modulus principle. (Namely,

the spectral seminorm is always the norm of the evaluation of f at some point whose residue
field is finite over K.) Choose c, d ∈ K∗ with c‖f‖n

spec = d‖g‖n
spec = 1. Then the product of

the images of cfn and dgn in A must be nonzero because A is an integral domain; that is,
‖cfndgn‖spec = 1. Hence

1 = ‖cfndgn‖spec = c‖f‖n
spec · d‖g‖n

spec

and (by power-multiplicativity of the spectral seminorm) it follows that ‖fg‖spec = ‖f‖spec ·
‖g‖spec.

Exercises

1. Give an explicit example of an affinoid algebra A which is an integral domain, but
whose spectral seminorm is not fully multiplicative. (Hint: consider power series in x
and x−1 which converge on a suitable annulus; your motivation should functions on a
complex annulus which have their suprema on opposite boundary components. We’ll
look more at this geometric situation in the next few lectures.)
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