18.727, Topics in Algebraic Geometry (rigid analytic geometry)
Kiran S. Kedlaya, fall 2004
More on affinoid algebras

Addenda on the spectral seminorm

A norm on a Banach algebra A is power-multiplicative if || f|| = || f||™ for any f € A and any
positive integer n. Our proof that the Gauss norm on T}, has a topological characterization
adapts to show that for any affinoid algebra A, there is at most one power-multiplicative
Banach norm on A. We now know that if a power-multiplicative norm exists, it must be the
spectral seminorm; hence such a norm exists if and only if A is reduced.

In fact, the spectral seminorm is “minimal” in the following sense [BGR, Corollary
3.8.2/2].

Proposition 1. Let A be an affinoid algebra with norm || -||. Then for all f € A, || f|lspec <
\fIl. In particular, |f(x)| < ||f]| for any x € Max A.

Proof. Apply the formula
[ llpec = T [ 7"

and note that || f"|| < ||f|I" because || - || is a Banach algebra norm. O

This yields the following characterization of nilpotent elements, in the vein of our char-
acterization of power-bounded elements [BGR, Proposition 6.2.3/2].

Proposition 2. For A an affinoid algebra and f € A, the following statements are equiva-
lent:

(a) f is topologically nilpotent (i.e., {f"} is a null sequence in A);
(b) |f(x)| <1 for all z € Max A;
(¢) I fllspec < 1.

Proof. The equivalence of (b) and (c¢) follows from the maximum modulus principle, and
(a) implies (c¢) by the previous proposition. Given (c), choose ¢ € K and m € N such that
lc| > 1 but ||cf™|lspec < 1. Then c¢f™ is power-bounded (from last time), so ¢~ (cf™) = f™
is topologically nilpotent, as then is f. Thus (c) implies (a), and we are done. O

Spectral norms are Banach norms

We now know that the spectral seminorm on a reduced affinoid algebra is a norm. However,
more than that is true: it is a Banach norm. (This proof is from [FvdP, Theorem 3.4.9]; the
proof in [BGR, Theorem 6.2.4/1] is a bit more intricate.)

Lemma 3. Let A — B be an inclusion of affinoid algebras. Then the spectral seminorm on
B restricts to the spectral seminorm on A.



Proof. Choose a Banach norm || - || on B; it then restricts to a Banach norm on A, and
applying the formula || f||spec = lim,, oo || f*[|/™ gives us the claim. O

Theorem 4. Let A be a reduced affinoid algebra. Then A is complete under || - ||spec. In
particular, every Banach algebra norm on A is equivalent to the spectral norm.

Proof. The last sentence will follow from what we showed earlier: any two Banach algebra
norms on an affinoid algebra are equivalent. So we focus on showing that A is complete.

We first reduce to the case where A is an integral domain. Let py,...,p,, be the minimal
primes of A. Choose a Banach norm ||-||4 on A, put A; = A/p; (which is an integral domain),
and equip each A; with the quotient norm induced by || - ||4. Then A; & --- @& A,, becomes
a finitely generated Banach module over A under the max norm

(alv B 7am) = mzaX{HaZH}

Leti: A— Ay @@ A, be the canonical injection; then i(A) is an A-submodule of A; ®
- @ A,,. By the lemma from “p-adic functional analysis 2", i(A) is closed in A1 @ --- B A,
and 7 is an isomorphism onto its image by the open mapping theorem. The map ¢ is isometric
for the spectral norms, so proving that the spectral norm on each A; is equivalent to the
quotient norm proves that the spectral norm on A is equivalent to || - || 4.

From now on, we assume A is an integral domain. If B is a reduced affinoid algebra
containing A, showing that B is complete under its spectral seminorm implies that A is
complete under its spectral seminorm, thanks to the previous lemma. In particular, we can
write A as a finite integral extension of T, for some d > 0, and take B to be the integral
closure of Ty in the normal closure of Frac A over FracTy. This lets us break the problem
into two steps.

(a) Show that if A is finite over T; and Frac A is purely inseparable over Frac T}, then the
spectral norm on A is complete.

(b) Show that if B is finite over A, Frac B is Galois over Frac A, and the spectral norm on
A is fully multiplicative and complete, then the spectral norm on B is complete.

So we work on these two steps separately.

(a) There is nothing to show unless the characteristic of K is p > 0. Let K’ be the
completed algebraic closure of K’; then for some integer m,

1/pm 1/p™
AC K'(z)/” ,...,xd/p )
so it’s enough to check the completeness of K’ (a:}/ P m, e ,:L‘Cl/ P m) under its spectral
norm. But again, this is true because that spectral norm is the Gauss norm.

(b) Put G = Gal(Frac B/ Frac A), and put

Trace(f) = 3 f*

geG



this gives a map from Frac B to Frac A such that || Trace(f)||aspec < ||f|lBspec- (This

trace is the same as the trace of multiplication by f as a Frac A-linear transformation
on Frac B.) From basic algebra, we know that the Frac A-linear pairing

(x,y) — Trace(zy)

on Frac B is nondegenerate.

Choose ey, ...,e, € B which form a basis for Frac B over Frac A, and let ej,..., e}

be the dual basis for the trace pairing. We show that Ae; 4+ --- + Ae, is a Banach
module under the spectral norm, by showing that the spectral norm is equivalent to
the maximum norm

||f161 + flenHB,Spec = m?X{HfiHA,SPec}-

Choose ag € A such that ape} € 03" for j = 1,...,n; now given fie; +--- + fre, €
Aey + - - -+ Ae,, we have

ao fj = Trace(aope} Z fie:)
i
| Trace(aoe; Z fiei)l| aspec < laoe] Z fieill B.spec
i i
S ” Z fiei”B,spec-
i

Therefore

A,spec mZaX{ H fz “A,spec}-

1D fieill Bspee > llaol

7

Since we also have

I Z fi€il Bspec < ml.aX{HfiHA,Spec} ml.aX{HGi”B,Spec}a
i

the spectral norm restricted to Ae; + --- + Ae,, is equivalent to the maximum norm,
and so is a Banach norm.

For some a € A, aB C Aey + - - -+ Ae,; since the spectral norm on A is multiplicative,
the spectral norm on B is thus complete.

[]

Note that this theorem can also be interpreted as follows: a sequence of elements of A
converges to zero under some (any) Banach algebra norm if and only if it converges uniformly
to zero on Max A.



The reduction of an affinoid algebra

In case you are wondering when the spectral seminorm is not just a norm but is actually
fully multiplicative (like the Gauss norm), here is your answer. Recall that for A an affinoid
algebra, we defined

ot ={feA: | fllspec < 1}
Now define
m?ec = {f €A: ”fHSPeC < 1}

and A = 0% /mP*; we call the latter the reduction of A. Then we have the following
[BGR, Proposition 6.2.3/5].

Proposition 5. The spectral seminorm is a fully multiplicative norm if and only if A s
reduced and A is an integral domain.

Note that A being an integral domain is not enough; see exercises.

Proof. We already know that the spectral seminorm is a norm if and only if A is reduced; also,
if A is reduced and the spectral norm is fully multiplicative, then the product of elements of
spectral norm 1 again has spectral norm 1, so A is an integral domain. Conversely, suppose
A is reduced and A is an integral domain. Given f, g € A nonzero, there exists an integer n
such that || f||% .. and ||g[|%,. belong to [K*|, by the maximum modulus principle. (Namely,
the spectral seminorm is always the norm of the evaluation of f at some point whose residue
field is finite over K.) Choose ¢,d € K* with ¢/ f||%.. = d||g||%.. = 1. Then the product of

— spec spec
the images of ¢f™ and dg™ in A must be nonzero because A is an integral domain; that is,
lefdg™||spec = 1. Hence

L= [lef*dg*[lspec = €ll fllSpec - dllgllSpec

and (by power-multiplicativity of the spectral seminorm) it follows that || f¢|/spec = || f]lspec -
91lspec- O
Exercises

1. Give an explicit example of an affinoid algebra A which is an integral domain, but
whose spectral seminorm is not fully multiplicative. (Hint: consider power series in x
and z~! which converge on a suitable annulus; your motivation should functions on a
complex annulus which have their suprema on opposite boundary components. We’'ll
look more at this geometric situation in the next few lectures.)



