
18.727, Topics in Algebraic Geometry (rigid analytic geometry)
Kiran S. Kedlaya, fall 2004

Tate’s acyclicity theorem (amended 25 Oct 04)

The goal of this lecture is to prove Tate’s acyclicity theorem (or more properly, the
Gerritzen-Grauert-Tate theorem): coherent sheaves on an affinoid space are acyclic for Čech
cohomology.

References: [FvdP, Section 4.2] and [BGR, 8.2]; also, [BGR, 7.3.5] for the Gerritzen-
Grauert theorem. Also see Tate’s original notes (Rigid analytic spaces, Invent. Math. 12
(1971), 257–289); more on these below. I haven’t read Gerritzen and Grauert’s original paper
(Die Azyklizität der affinoiden Überdeckungen, in Global Analysis, Papers in honor of K.
Kodaira, Princeton University Press, 1969, 159–184), if for no other reason than that I don’t
read German, so I can’t comment on it.

Comments I should have made last time

All of the G-topologies on an affinoid space from last time depend only on the reduced
quotient of the affinoid algebra. Namely, it’s clear that the notion of a rational subspace
is insensitive to nilpotents, since it’s defined by evaluating functions on MaxA. But also
the notion of an affinoid subspace is insensitive: if φ : A → B is the homomorphism cor-
responding to an affinoid subspace of MaxA, we just take φred : Ared → Bred to be the
homomorphism corresponding to the same subspace of MaxAred = MaxA. That means
there’s no harm in working only with reduced affinoid algebras for the moment (though it
won’t make that much difference either way).

Also, if φ : A → B is a homomorphism of affinoids, we say φ is a closed immersion
if it is surjective. Also, we say φ is a locally closed immersion (resp. open immersion) if
the homomorphism on stalks OY,φ(x) → OX,x is always surjective (resp. bijective). Any map
defining an affinoid subspace is a locally closed immersion (see previous handout). See [BGR,
7.3.3] for more on immersions, including some of the results that go into the argument in
the next section.

A bit about the reduction process

The general idea in this handout is to reduce the checking of acyclicity for one type of
coverings to checking for a simpler type. Here is the basic statement you use.

Lemma 1. Let X be a space equipped with a G-topology, let F be a presheaf on X, let {Ui}i∈I

be an admissible covering of X, and let {Vj}j∈J be an admissible covering of X refining {Ui}.
Suppose that F is an acyclic sheaf on the restriction of the covering {Vj} to each intersection
Ui0 ∩· · ·∩Uin. Then F is an acyclic sheaf for the covering {Ui} if and only if it is an acyclic
sheaf for the covering {Vj}.

Proof. This is really saying that a certain Leray spectral sequence degenerates; to see it more
explicitly, see [BGR, Corollary 8.1.4/3].
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Affinoid subspaces and rational subspaces

The goal of this section is to sketch a proof of the following theorem. A complete proof
appears in [BGR, 7.3.5].

Theorem 2 (Gerritzen-Grauert). Let A be an affinoid algebra, and let X be an affinoid
subspace of MaxA. Then A is a finite union of rational subspaces of MaxA.

Beware that the converse is not true: not every finite union of rational subspaces of
MaxA is an affinoid subspace (as mentioned last time).

Let’s start the argument to see where a näıve approach gets stuck. As noted above, I may
assume A is reduced. Let φ : A → B denote the representing homomorphism for X, and
choose a surjection ψ : A〈x1, . . . , xn〉 → B that sections φ. We want to argue by induction on
n, but this is a bit tricky because the image of A〈x1, . . . , xi〉 in B need not be the coordinate
ring of an affinoid subspace. One already sees this in the rational case: if f0, f1, f2 generate
the unit ideal but f0, f1 do not, then A〈x1, x2〉/(f1 − f0x1, f2 − f0x2) is the coordinate ring
of an affinoid subspace but A〈x1〉/(f1 − f0x1) is not.

To get around this, we use a relative form of of Weierstrass preparation. Recall that a
series f in Tn = K〈x1, . . . , xn〉 was said to be distinguished (in xn) of degree d if, when we
write f =

∑
cix

i
n with ci ∈ Tn−1, we have:

• cd is a unit in Tn−1;

• ‖cd‖Tn−1 = maxi{‖ci‖Tn−1};

• ‖cd‖Tn−1 > ‖ci‖Tn−1 for i > d.

(Remember we said f was normalized distinguished if in fact ‖cd‖ = 1, and we habitually
dropped the word “normalized”. However, it’ll be more convenient here not to normalize.)

For f ∈ A〈x1, . . . , xn〉 and x ∈ MaxA, we say f is distinguished of degree d at x if
the image of f in (A/mx)〈x1, . . . , xn〉 is distinguished of degree d (resp. ≤ d). We say f is
distinguished of degree d if f is distinguished of degree d at each x ∈ MaxA; if instead f is
distinguished of some degree ≤ d at each x ∈ MaxA, but not necessarily always the same
degree, we say f is distinguished of degree ≤ d. Note that f is distinguished of degree 0 (or
≤ 0) if and only if it is a unit.

Lemma 3. Suppose f ∈ A〈x1, . . . , xn〉 is distinguished of degree ≤ d. Then the set

U = {x ∈ MaxA : f is distinguished of degree d at x}

is a rational subspace of A.

Proof. Write f =
∑

i cix
i
n with ci ∈ A〈x1, . . . , xn−1〉, and let fi denote the constant coefficient

of ci. Then it is easy to check (or see [BGR, Lemma 7.3.5/7]) that

U = {x ∈ MaxA : |fi(x)| ≤ |fd(x)| (i = 0, . . . , d− 1)}.

Since f is distinguished of some degree at each x ∈ MaxA, the functions f0, . . . , fd have
no common zero, and hence generate the unit ideal. Thus U is a rational subspace, as
desired.
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Lemma 4 (“Relative distinction”). Suppose the coefficients of f ∈ A〈x1, . . . , xn〉 have
no common zero on MaxA. Then there is an A-algebra automorphism τ of A〈x1, . . . , xn〉
such that f τ is distinguished of degree ≤ d, for some nonnegative integer d.

Proof. Exercise; it’s pretty similar to the proof we gave when A = K.

Lemma 5. Suppose that f ∈ A〈x1, . . . , xn〉 is distinguished of degree d. Then the map

A〈x1, . . . , xn−1〉 → A〈x1, . . . , xn〉/(f)

is finite.

Proof. As in the nonrelative case, the point is that 1, xn, . . . , x
d−1
n−1 generate the quotient over

A〈x1, . . . , xn−1〉. (Note that if you write f as a series in xn, its coefficient of xd
n has no zeroes

in MaxA〈x1, . . . , xn−1〉 and so is a unit.)

Now back to the proof. We have our map φ : A→ B defining an affinoid subdomain, and
we chose a surjection ψ : A〈x1, . . . , xn〉 → B that sections φ. By Lemma 4, we can arrange
for the kernel of ψ to contain a series f which is distinguished of degree ≤ d for some d.

Let U be the subset of MaxA at which f is distinguished of degree d; then U is a rational
subspace by Lemma 3. (It could of course be empty!) We now show that X ∩ U is a finite
union of rational subspaces of U , and hence of MaxA. Let A′ be the coordinate ring of U ;
then the map A′〈x1, . . . , xn−1〉 → A′〈x1, . . . , xn〉/(f) is finite by Lemma 5, as then is the
map

A′〈x1, . . . , xn−1〉 → B⊗̂AA
′.

However, ψ : A′ → B⊗̂AA
′ represents an affinoid subspace of U = MaxA′, which means that

the local rings at its points are isomorphic to the corresponding local rings at the points of
MaxA′. It follows that the map A′〈x1, . . . , xn−1〉 → B⊗̂AA

′, being finite but not inducing
any nontrivial extensions of local rings, must actually be surjective. (For more clarification,
see [BGR, Proposition 7.3.3/8].) So we may apply the induction hypothesis to conclude that
X ∩ U is a finite union of rational subspaces U1 ∪ · · · ∪ Us.

To finish, we need one more lemma.

Lemma 6. Let X be an affinoid subspace of MaxA, and let U be the rational subspace given
by

U = {x ∈ MaxA : |fi(x)| ≤ |f0(x)| (i = 1, . . . ,m)},

for some f0, . . . , fm generating the unit ideal in A. Suppose that U ⊆ X. Then for some
ε > 1 in the divisible closure of |K∗|, the rational subspace

Uε = {x ∈ MaxA : |fi(x)| ≤ ε|f0(x)| (i = 1, . . . ,m)}

has the property that X ∩ Uε is also a rational subspace.
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Proof. The proof is an approximation argument adapted from [BGR, Extension Lemma
7.3.4/10]. Again, let ψ : A〈x1, . . . , xn〉 → B be a surjection sectioning the map A → B.
Since U ⊆ X, we can choose a1, . . . , an ∈ A such that |ai − fN

0 xi|U < 1 for some N ∈ N. By
a continuity argument (see exercises, or [BGR, Proposition 7.3.4/8]), we can choose ε > 1
such that |ai − fN

0 xi|Uε < 1 for all i, and such that f0 has no zeroes on Uε.
If we then write Aε and Bε for the coordinate rings of Uε and X ∩ Uε, respectively, then

the map Aε → Bε factors as

Aε → Aε〈y1, . . . , yn〉/(y1 − fN
0 x1, . . . , an − fN

0 xn) → Bε.

and that the latter map is surjective. Thus we can cut out X ∩Uε within Uε by imposing
the conditions that |ai| ≤ 1 and that some other functions actually vanish.

Using the previous lemma, we can grow each of U1, · · · , Us slightly to some U ′
1, . . . , U

′
s

and still know that each X ∩U ′
i is a union of rational subspaces. By so doing, we can ensure

that the complement X \ (U ′
1 ∪ · · · ∪ U ′

n) is contained in a union of rational subspaces V of
MaxA which is in turn contained in the subspace of MaxA on which f is not distinguished of
degree d, i.e., is distinguished of degree ≤ d−1. (That is, each U ′

i is a “strict neighborhood”
of Ui, and this ensures that X \ (U ′

1 ∪ · · · ∪U ′
n) is contained in a union of rational subspaces

of MaxA not meeting U . See next mini-section for more details.) By induction on d, we can
cover X ∩ V with rational subspaces, completing the argument.

Strict neighborhoods

Here’s a clarification of the last argument in the previous section. For U an admissible open
in a strong G-topological space X having the property that X \ U is also admissible, we
say an admissible open V containing U is a strict neighborhood of U in X if the covering
{V,X \ U} of X is admissible.

We then have the following lemma; compare this to the examples of admissible covers we
discussed for P.

Lemma 7. Let A be an affinoid algebra, and let U be the rational subspace of MaxA given
by

U = {x ∈ MaxA : |fi(x)| ≤ |f0(x)| (i = 1, . . . ,m)},

for some f0, . . . , fm generating the unit ideal in A. For ε > 1 in the divisible closure of |K∗|,
define the rational subspace

Uε = {x ∈ MaxA : |fi(x)| ≤ ε|f0(x)| (i = 1, . . . ,m)}.

Then an admissible open subset V of MaxA for the strong G-topology is a strict neighborhood
of U if and only if it contains some Uε. Moreover, if V is a strict neighborhood, then there is
a finite union of rational subspaces of MaxA, contained in MaxA \ U , which together with
some affinoid subspace contained in U form a cover (automatically admissible) of MaxA.
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Proof. We first check that each Uε is a strict neighborhood of U . Choose δ in the divisible
closure of |K∗| with ε > δ > 1; for j = 1, . . . ,m, put

Vδ,j = {x ∈ MaxA : δ|f0(x)| ≤ |fj(x)|, |fi(x)| ≤ |fj(x)| (i 6= j)}.

Then Vδ,j is rational: if δN = |c| for c ∈ K, then Vδ,j is the rational subspace defined by the
functions fN

j , cf
N
0 and the fN

i for i 6= j. The union of the Vδ,j consists of those x for which
maxi>0{|fi(x)|} ≥ δ|f0(x)|, so this plus Uε covers MaxA. This gives an admissible cover
refining the cover {Uε,MaxA \ U}, so Uε is a strict neighborhood.

Conversely, suppose V is a strict neighborhood of Uε. Then there exist finitely many
affinoid subspaces of MaxA contained in the complement of U , whose union together with
V covers MaxA. Let W1, . . . ,Wr be those subspaces; then the function

|f0(x)|
maxi>0{|fi(x)|}

takes a maximum value on each Wj, by a suitable application of the maximum modulus
principle. If the maximum over all of W1, . . . ,Wr is δ < 1, then Uε ⊆ V whenever ε < δ.

Acyclicity of affinoid coverings

By the Gerritzen-Grauert theorem, we know that every finite covering of an affinoid space by
affinoid subspaces can be refined to a finite covering by rational subspaces. Tate proved that
finite rational coverings are acyclic for Čech cohomology, by which it follows that they are
also acyclic for finite affinoid coverings. The latter is known as “Tate’s acyclicity theorem”,
though the name “Gerritzen-Grauert-Tate theorem” would be more apt.

First, however, we need some further simplification of the types of coverings we are using.
Let A be an affinoid algebra. Given f1, . . . , fn ∈ A having no common zero (i.e., generating
the unit ideal), put

Ui = {x ∈ MaxA : |fj(x)| ≤ |fi(x)| (j 6= i)}.

Then U1, . . . , Un form a covering of MaxA by rational subspaces; such a covering is called a
standard rational covering of MaxA.

Lemma 8. Every finite covering of MaxA by affinoid subspaces can be refined to a standard
rational covering.

Proof. By the Gerritzen-Grauert theorem, we may assume without loss of generality that we
are starting with a finite covering by rational subspaces V1, . . . , Vm. Suppose Vi is defined by
the inequalities |gij(x)| ≤ |gi0(x)| for gij ∈ A generating the unit ideal, with j running from
1 to some ni. Now take the f ’s to be the products of the form

g1j1 · · · gnjn (1 ≤ ji ≤ ni)

in which some ji is equal to 0; these have no common zero because gi0 has no zero on Vi,
and the Vi cover X. Moreover, the standard cover given by these f ’s refines the given cover
(exercise).
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In fact, we can do better. Given f1, . . . , fn ∈ A, put

U≤
i = {x ∈ MaxA : |fi(x)| ≤ 1}, U≥

i = {x ∈ MaxA : |fi(x)| ≥ 1}.

Then the collection of sets of the form U∗
1 ∩· · ·∩U∗

n, where each ∗ ∈ {≤,≥}, form a covering
of MaxA; such a covering is called a Laurent covering of MaxA. (You might be surprised
that such a covering is permitted! After all, in P the analogous thing would have been the
closed unit disc and its inverse, which only meet along their boundary. But in fact that is
indeed an admissible cover, since both spaces are rational! The point is that glueing two
discs along their “boundary” is completely reasonable from our point of view, since that
boundary is huge–and rational.)

Lemma 9. Every finite covering of MaxA by affinoid subspaces can be refined to a Laurent
covering.

Proof. By Lemma 8, it suffices to start with a standard rational covering, say the one gen-
erated by f1, . . . , fn. By the maximum modulus principle, there exists c ∈ K∗ such that

|c|−1 < inf
x∈X

{max
i
{|fi(x)|}}.

(More explicitly, the subspace on which |fi(x)| is maximized by i = j is a rational subspace,
hence affinoid, and |fi(x)| achieves its maximum there by the maximum modulus principle.)
The point then is that

max
i
{|cfi(x)|} > 1 for all x ∈ MaxA.

Then the Laurent covering generated by cf1, . . . , cfn may not refine the original standard
covering, but it has the following convenient property: for each U in my new covering,
the restriction of my old (standard rational) covering to U is a standard rational covering
generated by units on U . (If U is the open consisting of those x where |fi(x)| ≥ 1 for i ∈ S
and |fi(x)| ≤ 1 for i /∈ S, then the restriction of the old covering to U is the standard rational
covering generated by the cfi for i ∈ S, which are units in U .)

It thus suffices to check that a standard rational covering generated by units g1, . . . , gm

can be refined to a Laurent covering. But this is easy: just use the functions gi/gj for
1 ≤ i < j ≤ m as the generators (exercise).

Theorem 10 (Acyclicity theorem for the structure sheaf). Let X = MaxA be an
affinoid space. Then for any finite covering of X by affinoid subspaces and any finitely
generated A-module M , the presheaf M on X (for the somewhat weak G-topology) associated
to M , whose sections on an affinoid space U with coordinate ring B are M ⊗A B, is a sheaf
and its higher Čech cohomology spaces vanish.

Proof. By Leray’s theorem and Lemma 8, it is enough to check this for Laurent coverings.
In fact, it is enough to check a Laurent covering generated by a single element. (If you want
to see this reduction written out in more detail, see [BGR, Chapter 8].)
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I’ll first check for M = A, i.e., M = O. Say the Laurent covering is generated by f ∈ A.
By the same argument as we used for P, it suffices to show that

0 → A→ A〈f〉 ⊕ A〈f−1〉 d0

→ A〈f, f−1〉 → 0 (1)

is exact, where

A〈f〉 = A〈x〉/(x− f)

A〈f−1〉 = A〈y〉/(yf − 1)

A〈f, f−1〉 = A〈x, y〉/(x− f, yf − 1)

and d0 is the difference between the two canonical maps. The exactness of this sequence can
be verified by chasing through the diagram

0

��

0

��
(x− f)A〈x〉 ⊕ (yf − 1)A〈y〉

��

// (x− f)A〈x, y〉/(xy − 1)

��

// 0

0 // A

id

��

// A〈x〉 ⊕ A〈y〉

��

// A〈x, y〉/(xy − 1)

��

// 0

0 // A // A〈f〉 ⊕ A〈f−1〉 d0 //

��

A〈f, f−1〉

��

// 0

0 0

by checking exactness of the first and second rows, and of all of the columns.
In fact, the sequence (1) is not only exact, but split: there is a splitting induced by

continuity from the map A[x, y] → A〈f〉 ⊕ A〈f−1〉 that sends xiyj to xi−j if i ≥ j and to
yj−i if i < j. (That is, extend by continuity to a map on A〈x, y〉 and note that the ideal
(x − f, yf − 1) is contained in the kernel.) That means the sequence remains exact upon
tensoring over A by any A-module M , so we get the desired result for any M .

Pay careful attention to where we used the fact that M is finitely generated: it’s because
we only tensored in the last step. If M were not finitely generated, we would also have to
have completed the tensor product, and as has been pointed out before, completing tensor
products over arbitrary Banach algebras is a somewhat unpredictable operation.

Any sheaf arising from a finite A-module is called a coherent sheaf ; note that it also
gives a sheaf on the strong topology by abstract G-topology properties. (Less abstract, you
compute the sections on an arbitrary open by covering it admissibly with affinoid subspaces,
or even rational subspaces, and glueing sections on those together.) Tate’s theorem implies
on one hand that coherent sheaves can be specified on a finite cover by affinoid subspaces
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(by providing modules and glueing isomorphisms), and on the other hand that they always
have trivial higher Čech cohomology. Life is good.

Next time: we are now ready to start glueing affinoids together to form rigid analytic
spaces!

Historical note: Tate’s notes

Warning: this “history” is mostly secondhand (or thirdhand), so don’t rely on this too
heavily.

Tate’s original notes, in which he proves the acyclicity theorem for coverings of an affinoid
space by rational subsets (or rather, by “special affine subsets” in his terminology, but the
result is equivalent), are conventionally dated to 1962, when he lectured on the subject of
rigid analytic spaces at Harvard. The subject took off like a shot after that, but Tate only
distributed his notes privately and steadfastly refused to publish them. At some point,
however, Tate’s trusted chain of custody broke down, and the notes came into the possession
of the editors of Inventiones, who ultimately decided (to posterity’s benefit) that these should
appear in print. (I believe what happened is that someone stole the notes out of the drawer
in his office where he kept them, but I don’t have a corroboration for this handy. And even
if I did, I wouldn’t tell who did it!)

While Tate did introduce the concept of an affinoid subspace (or “affine subset” in his
terminology), he did not even formulate the question of whether an arbitrary finite covering
by affinoid subspaces is acyclic. This was resolved by Gerritzen and Grauernt, who form
part of the “German school” that developed rigid analytic geometry more fully in the 1960s.
(Besides the aforementioned, and also the authors of [BGR], this school most notably includes
Kiehl, who proved some key finiteness theorems which we will touch on a bit later.)

Exercises

1. Prove the “relative distinction lemma” (Lemma 4). (Hint: see [BGR, Proposition
7.3.5/9].)

2. Let A be an affinoid algebra, let f0, . . . , fn ∈ A generate the unit ideal, and for ε in
the divisible closure of |K∗|, put

Uε == {x ∈ MaxA : |fi(x)| ≤ ε|f0(x)| (i = 1, . . . ,m)}.

Prove that for any g ∈ A, the function ε 7→ |g|Uε extends to a continuous function from
R>0 to R≥0.

3. Complete the verifications of Lemma 8 and Lemma 9.

4. Prove that any affinoid subset of P is rational. (Hint: first check that our old concept
of “rational subspace of P”, restricted to subsets of the closed unit disc, is consistent
with our new concept of a rational subspace. Then apply Gerritzen-Grauert to reduce
to checking that a finite union of rational subspaces of the closed unit disc is rational.)
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