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Kiran S. Kedlaya, fall 2004

Tate algebras (or, Commutative algebra revisited)

We will now talk a bit about Tate algebras, which play a role like that of the polynomial
rings over a field in ordinary algebraic geometry.

As usual, K is a complete ultrametric field, which you may assume is discretely valued if
you prefer, and k is its residue field. Reminder: I write oK and mK for the valuation subring
of K and its maximal ideal, rather than the bizarre Ko and Koo used in [FvdP].

Convention: when I write
∑

I cIx
I , the sum will be running over tuples (normally of

nonnegative integers) I = (i1, . . . , in), and xI = xi1
1 · · ·xin

n .
References: The main reference is [FvdP, Section 3.1], but I have lots of issues with

the presentation, so I’ve supplemented from [BGR, 5.1]. Also, I’ll cite Lang’s Algebra (third
edition; numbering may differ in the current edition) in the exercises as [L].

Tate algebras

The Tate algebra (or standard affinoid algebra)

Tn = Tn,K = K〈x1, . . . , xn〉

is the subring of the ring of formal power series KJx1, . . . , xnK consisting of sums
∑

I cIx
I

such that |cI | → 0 as I → ∞; what that really means is that for any ε > 0, there are only
finitely many tuples I such that |cI | > ε. Such series are sometimes called strictly convergent
power series (as in [BGR]).

Define the Gauss norm on Tn by the formula∥∥∥∥∥∑
I

cIx
I

∥∥∥∥∥ = max
I
{|cI |};

note that the max is really a max and not a supremum, since the |cI | tend to 0. This is in
fact a norm, under which Tn becomes a Banach algebra over K of countable type (since the
monomials xI have dense span); in fact, it’s isomorphic as a Banach space to the space c0

of null sequences. (Trivial but handy consequence of this definition: the image of the Gauss
norm is the same as the image of K under its norm. This will let us do some “normalization”
arguments.)

As usual for normed rings, I write oTn to mean the subring of Tn consisting of elements
of norm ≤ 1, and mTn to mean the ideal of oTn consisting of elements of norm < 1. Then
oTn/mTn = k[x1, . . . , xn]; given f ∈ oTn , I’ll write f for its image in k[x1, . . . , xn] and call it
the reduction of f . (That’s why I don’t use the overbar for algebraic closures!)

Here are a few basic facts about Tate algebras.

Lemma 1. (a) A series
∑

cIx
I ∈ KJx1, . . . , xnK belongs to Tn if and only if the sum∑

cIα
i1
1 · · ·αin

n converges in K for any α1, . . . , αn ∈ oK.
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(b) Suppose that the residue field k = oK/mK is infinite. Then given a series
∑

cIx
I ∈ Tn,

there exist α1, . . . , αn ∈ oK such that∥∥∥∥∥∑
I

cIx
I

∥∥∥∥∥ =

∣∣∣∣∣∑
I

cIα
i1
1 · · ·αin

n

∣∣∣∣∣ .

(c) The Gauss norm is fully multiplicative: for all f, g ∈ Tn, ‖fg‖ = ‖f‖·‖g‖. (Remember,
a Banach algebra is only required to have ‖fg‖ ≤ ‖f‖ · ‖g‖.)

Proof. (a) This is clear; you need only check α1 = · · · = αn = 1.

(b) We may as well assume
∑

I cIx
I 6= 0. Let P (x1, . . . , xn) be the sum of cIx

I over all
tuples I for which |cI | is maximal. Then P is a polynomial in x1, . . . , xn, ‖P‖ =
‖

∑
I cIx

I‖, and

‖P (x1, . . . , xn)−
∑

I

cIx
I‖ < ‖P‖.

It thus suffices to prove the claim for P instead of the original series. But P can be
written as the product of some c ∈ K with a polynomial P0 which has coefficients in
oK but not all in mK . Since k is infinite, the reduction P0 does not vanish everywhere.
Pick α1, . . . , αn ∈ oK so that P0(α1, . . . , αn) /∈ mK ; then these are a good choice.

(c) Write f =
∑

I cIx
I , g =

∑
J dJxJ , and fg =

∑
H eHxH . Let I be the tuple maximizing

|cI | which is first in lexicographic order. (That is, you compare tuples by first comparing
their first components, then their second if the firsts are tied, then their thirds, and so
on.) Likewise, let J be the tuple maximizing |dJ | which is first in lexicographic order.
Then eI+J equals cIdJ plus some other terms of the form cI′dJ ′ , where I ′ and J ′ are
two other tuples adding up to I + J . But that means that either I ′ must precede I in
lexicographic order, in which case |cI′| < |cI | and |dJ ′| ≤ |dJ |, or J ′ must precede J in
lexicographic order, in which case |cI′| ≤ |cI | and |dJ ′| ≤ |dJ |. In any case, we see that
|eI+J − cIdJ | < |cIdJ |, so |eI+J | = |cIdJ . It follows that ‖fg‖ ≥ ‖f‖ · ‖g‖; since we
already know the other inequality, we have ‖fg‖ = ‖f‖ · ‖g‖.

It is worth noting what the units are in Tn; since we can normalize in Tn, we just treat
units of norm 1. (This is [BGR, Proposition 5.1.3/1].)

Lemma 2. For f ∈ Tn with ‖f‖ = 1, the following are equivalent.

(a) f is a unit in oTn.

(b) f is a unit in Tn.

(c) f is constant (i.e., is a unit in k[x1, . . . , xn]).

(d) |f(0)| = 1 and ‖f − f(0)‖ < 1.
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Proof. Note that (a) and (b) are equivalent because ‖ · ‖ is fully multiplicative. Clearly (a)
implies (c), and (c) and (d) are equivalent. Finally, given (d), the series f(0)

∑
i(1− f/f0)

i

converges to a reciprocal of f in oTn , so (a) follows.

Also, note that there is an isomorphism

K〈x1, . . . , xm〉⊗̂K〈y1, . . . , yn〉 ∼= K〈x1, . . . , xm, y1, . . . , yn〉.

The Tate algebra is meant to be the “ring of functions on the closed unit polydisc”. Its
properties are a blend between properties of polynomial rings and formal power series rings.
This hybrid nature makes it possible to do analytic geometry using Tate algebras using a lot
of our intuition from algebraic geometry.

Weierstrass preparation

We say f ∈ oTn is (normalized) distinguished (in xn) of degree d if

f = c0 + c1xn + · · ·+ cdx
d
n

with cd ∈ k∗ and ci ∈ oTn for i = 0, . . . , d− 1. Note that ‖f‖ = 1, whence the “normalized”;
if you allow something of this form times an element of K∗, you get elements which are
distinguished in the terminology of [BGR]. However, for this lecture, all my distinguished
elements will also be normalized, so I won’t keep saying “normalized”. (Terminology rant:
[FvdP] use “regular” for my “normalized distinguished”, but the word “regular” will come
up later with a more useful meaning.)

Then one has the following results; see [FvdP, Theorem 3.1.1] and [BGR, 5.2]. (Caution:
[FvdP] incorrectly applies the moniker “preparation” to (c) instead of (b).)

Theorem 3. (a) (Division algorithm) Suppose f ∈ oTn is distinguished in xn of degree d.
Then any g ∈ Tn can be uniquely written as qf + r such that q ∈ Tn and r ∈ Tn−1[xn],
where the degree of r in xn is less than d. Moreover, ‖g‖ = max{‖q‖, ‖r‖}.

(b) (Preparation) If f ∈ oTn is distinguished in xn of degree d, then there is a unique way
to write f = gh with g ∈ oTn−1 [xn] monic of degree d (and hence distinguished) and
h ∈ o∗Tn

.

(c) (Distinction) If f1, . . . , fm ∈ oTn all have norm 1, then there exists an automorphism
τ of Tn (preserving Gauss norms) such that f τ

1 , . . . , f τ
m are distinguished in xn.

The last parenthetical is actually moot, as all automorphisms of Tn will preserve the
Gauss norm, but this will only become obvious a bit later.

Proof. (a) We first verify uniqueness. If qf + r = q′f + r′ are two different decompositions
of the same g, then (q − q′)f = r′ − r. By the full multiplicativity of the Gauss
norm, this means ‖q − q′‖ = ‖r′ − r‖; pick some c ∈ K with |c| = ‖q − q′‖−1. Then
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c(q−q′)f = c(r′−r) and so the same is true with bars everywhere; but that contradicts
uniqueness in the ordinary division algorithm for polynomials.

We next verify the claim about the norm. If g = qf + r, then on one hand

‖g‖ ≤ max{‖qf‖, ‖r‖} = max{‖q‖, ‖r‖},

and we know we have equality if ‖q‖ 6= ‖r‖. But if ‖q‖ = ‖r‖ > ‖g‖, we can choose
c ∈ K with |c| = ‖q‖−1, and then cg = cqf + cr. But the reduction of cg is zero,
so by the uniqueness in the ordinary division algorithm, cq and cr would also have
to have zero reductions, contradiction. So even in case ‖q‖ = ‖r‖ we must have
‖g‖ = max{‖q‖, ‖r‖}.
Now for existence. We first check this in case f = f0 = c0 + c1xn + · · · + cdx

d
n with

each ci ∈ oTn−1 ; this forces cd ∈ o∗K . Put g =
∑

dIx
I , and apply the ordinary ordinary

division algorithm to write xI = qIf +rI with qI , rI ∈ Tn−1[zn], with the degree of rI in
zn being less than d. By what we already showed, we have max{‖qI‖, ‖rI‖} = ‖xI‖ = 1;
thus the series

q =
∑

I

dIqI , r =
∑

I

dIrI

converge in Tn and Tn−1[zn], respectively (the latter because I’ve bounded the degrees,
so I really get a polynomial in zn and not a series). By design, g = qf + r.

Now for the general case; write f = f0 − D where f0 is as in the previous case and
‖D‖ < 1. Given g, we put g0 = g; given gi, apply what I just did to write

gi = qif0 + ri = qif + ri + qiD

and put gi+1 = qiD. Then q =
∑

i qi and r =
∑

ri converge to limits satisfying
g = qf + r, and r is again a polynomial in zn of degree less than d.

(b) We first check existence. Apply division to obtain q′, r′ such that xd
n = q′f + r′, and

put q = xd
n − r′; then q ∈ oTn−1 [xn] is monic of degree d and q′f = q. On reductions,

we have q = q′f , and q and f are polynomials of the same degree. Hence q′ is a unit,
and so q′ is a unit by Lemma 2. We can thus factor f = gh with g = q and h = (q′)−1.

We next check uniqueness. If f = gh is a presentation of the desired form, we have

xd
n = h−1f + (xd

n − g),

and this is what you get from an application of (a). Thus specifying f uniquely
determines xd

n − g, and hence determines g and h.

(c) I’ll let you find the easy proof for k infinite for yourself; instead, I’ll give the slightly
more elaborate argument that also works for k finite. Write fl =

∑
cI,lt

I for l =
1, . . . ,m, and choose integers e1, . . . , en−1 ≥ 0 such that whenever I 6= J are among
the finitely many tuples with |cI,l| = |cJ,l| = 1 for some l, we have

e1i1 + · · ·+ en−1in−1 + in 6= e1ij + · · ·+ en−1jn−1 + jn.
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(For instance, you can choose the ei to be successive powers of a bigger than any value
of i1, . . . , in that shows up in the tuples.) Let τ be the automorphism which substitutes
xi + xei

n in place of xi for i = 1, . . . , n− 1 (and fixes xn). Then

f τ
l =

∑
cI,l(x1 + xe1

n )i1 · · · (xn−1 + xen−1
n )in−1xin

n ;

if you pick out the unique tuple i1, . . . , in maximizing e = e1i1+· · ·+en−1in−1+in, then
in the reduction, the unique term of highest degree that you see is xe

n. That means
each f τ

l is distinguished.

More properties of Tate algebras

Weierstrass preparation immediately yields the analogue of the Hilbert basis theorem for
Tate algebras; in the case of K discretely valued, this is a theorem of Fulton. (Yes, that
Fulton! See: A note on weakly complete algebras, Bull. Amer. Math. Soc. 75 (1969),
591–593.)

Proposition 4 (Hilbert basis theorem). The ring Tn is noetherian.

Proof. Induction on n. Given a nonzero ideal I of Tn, choose f ∈ I nonzero, and apply
distinction to find an automorphism τ of Tn such that f τ is distinguished in xn of some
degree d. Using division, we see that Iτ is generated by f τ together with Iτ ∩ Tn−1[zn]. By
the induction hypothesis, Tn−1 is noetherian, as then is Tn−1[zn] by the usual Hilbert basis
theorem. Thus Iτ is finitely generated, as then is I.

Proposition 5. The ring Tn is a unique factorization domain.

Proof. Again, induct on n. Given f ∈ Tn, suppose f = g1 · · · gm = h1 · · ·hn are two factor-
izations of f into irreducibles; by pushing scalars around, we may reduce to the case where
‖gi‖ = ‖hj‖ = 1 for all i, j. By distinction, there exists an automorphism τ of Tn such that
f , the gτ

i , and the hτ
j are all distinguished. By preparation, we can write each gτ

i = Piui

with Pi ∈ oTn−1 [xn] monic and ui ∈ o∗Tn
, and likewise write hτ

j = Qjvj with Qj ∈ oTn−1 [xn]
monic and vj ∈ o∗Tn

. Then P1 · · ·Pm equals Q1 · · ·Qn times a unit, but both sides are monic
polynomials in xn over oTn−1 , necessarily of the same degree (since that’s true on the re-
ductions). Thanks to the uniqueness of the preparation of P1 · · ·Pm, we must in fact have
P1 · · ·Pm = Q1 · · ·Qn. Moreover, each Pi and Qj is irreducible in Tn, hence also in Tn−1[xn];
thus the factorizations agree up to units, by the unique factorization theorem for polynomials
over a UFD (i.e., unique factorization over a field plus “Gauss’s lemma”). That proves that
the original factorizations of f τ , and hence of f , agree up to units.

Proposition 6. The Krull dimension of Tn is n.

Proof. The sequence of prime ideals

(0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · (x1, x2, · · · , xn)
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shows that the Krull dimension is at least n. On the other hand, for any irreducible f ∈ Tn,
by distinction plus preparation, Tn/(f) is finite over Tn−1, and so has Krull dimension n− 1.
(Remember that making a finite ring extension of a noetherian ring cannot increase its Krull
dimension.) Hence Tn has Krull dimension at most n, yielding the claim.

Affinoid algebras and Noether normalization

An affinoid algebra is a K-algebra A of the form Tn/a for some ideal a. By Fulton’s theorem,
A is noetherian.

Note that there are a couple of minor discrepancies between this definition and the one in
[FvdP, 3.1]. For one, they use the term “Tate algebra” to mean any affinoid algebra; I have
seen this elsewhere, but I still think it is nonstandard (e.g., [BGR] does not do this). For
another, they define affinoid algebras as integral extensions of Tate algebras. This amounts
to using the business end of the Noether normalization theorem (see below), and strikes me
as bizarre.

Proposition 7 (Noether normalization). Let a be an ideal of Tn, and let A = Tn/a be
the corresponding affinoid algebra. Then there exists a finite injective map Td → A for some
d; moreover, the Krull dimension of A is equal to d.

Proof. We first prove the existence of the map, by induction on n. We may as well assume a

is a nontrivial ideal; by distinction and preparation, after applying an automorphism of Tn

we may assume that a contains a monic polynomial f ∈ Tn−1[xn]. Then Tn/(f) is finite over
Tn−1; if we put b = a ∩ Tn−1, then Tn/a is finite over Tn−1/b. By the induction hypothesis,
Tn−1/b is finite over some Td, yielding the claim.

For the statement about the Krull dimension, we need only recall that for A → B a
finite injective homomorphism of noetherian rings, the rings A and B have the same Krull
dimension, and that the Krull dimension of Td is d by Proposition 6.

Warning: unlike in the polynomial situation, an affinoid algebra can have an affinoid
subalgebra of greater Krull dimension! See [FvdP, Exercises 3.2.2].

Note that the Nullstellensatz for Tate algebras falls out as a consequence.

Corollary 8. For any maximal ideal m of Tn, the field Tn/m is finite over K.

Proof. A field has Krull dimension 0, so by Noether normalization, there must exist a finite
map K = T0 → Tn/m.

Affinoid algebras are Banach algebras (and canonically so!)

Recall the following lemma (Lemma 1 from “functional analysis, part 2”).

Lemma 9. Let A be a Banach algebra over K which is noetherian as a ring. Let M be a
Banach module over A which is module-finite over A. Then any A-submodule of M is closed.
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In particular, since Tn is noetherian, any ideal of Tn is closed. Hence any affinoid algebra
A inherits from a presentation Tn → A a quotient norm, under which it becomes a Banach
algebra.

It turns out that the topology of an affinoid algebra is uniquely determined by its K-
algebra structure, and all K-algebra homomorphisms of affinoid algebras. To see this, we
need to back up and do a little more functional analysis; the following is [BGR, Proposi-
tion 3.7.5/2].

Proposition 10. Let B be a noetherian Banach algebra over K, and suppose there exists a
collection S of ideals of B such that:

(a) for any b ∈ S, dimK B/b < ∞;

(b) ∩b∈Sb = (0).

Then any K-algebra homomorphism of a noetherian Banach algebra A over K into B is
continuous (hence bounded).

Proof. Let f : A → B be a K-algebra homomorphism; we will apply the closed graph
theorem to the graph of f . Namely, we need to show that if {xn} is a null sequence in A
and f(xn) → y in B, then y = 0.

Pick an ideal b ∈ S; note that b is closed, by Lemma 9. Put a = f−1(b), so that a is closed
in A, each of A/a and B/b inherits a quotient norm, and A/a → B/b is injective. Since
B/b is finite dimensional over K, so is A/a, and any linear map between finite dimensional
K-vector spaces is continuous. (Remember that there is only one equivalence class of norms
on a finite dimensional K-vector space!) Thus we must have y ∈ b for each b; since the b

have trivial intersection, we have y = 0.

Corollary 11. Any K-algebra homomorphism between affinoid algebras is continuous. In
particular, for a fixed affinoid algebra A, the quotient norms induced by different presenta-
tions Tn → A are all equivalent.

Now I can clarify my remark from earlier about norm-preserving automorphisms of Tn.

Corollary 12. Any automorphism of Tn preserves the Gauss norm.

Proof. This follows from the previous corollary and the fact that we can recover the Gauss
norm from the topology of Tn. Namely, an element f ∈ Tn satisfies ‖f‖ ≤ 1 if and only if
for any null sequence {cn} in K, {cnf} is null in Tn.

In other words, the Gauss norm is a “canonical” norm for Tn. There is an analogous
function on an arbitrary affinoid algebra, but it’s only a seminorm in general; we’ll talk more
about it soon.

7



Exercises

These exercises are from Section 6 of my preprint “Full faithfulness for overconvergent F -
isocrystals”, which you can grab from the arXiv if you get stuck.

1. Using distinction, prove that the action of GLn(Tn) on n-tuples which generate the
unit ideal is transitive. (Hint: compare to a proof of the analogous statement for
polynomials; see [L, Theorem XXI.3.4].)

2. Prove that every finitely generated module over Tn has a finite free resolution. (Hint:
this time, see [L, Theorem XXI.3.6].)

3. Prove the analogue of the Quillen-Suslin theorem for Tn: every finitely generated pro-
jective module over Tn is free. (Hint: use [L, Theorem XXI.2.1] to show that a finite
projective is stably free, that is, its direct sum with some free is free. Then compare
[L, Theorem XXI.3.6].)
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