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p-adic uniformization and Shimura curves

I’m going to wrap things up by, in a sense, coming full circle; we’re going to discuss p-adic
uniformization, which ties in closely to the Tate curve we constructed at the very beginning
of the course.

References: I’m pulling a lot of this out of: J.-F. Boutot et H. Carayol, Uniformisation
p-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld, Astérisque 196-
197. I will cite this as [BC]. Thanks to Samit for the reference. Also see [FvdP, Section 5.4]
for more details on how to take quotients of P1 to make “Mumford curves”.

Quaternion algebras

Can someone suggest a good reference for this?
A few reminders about quaternion algebras: a quaternion algebra over a field F is a

central simple algebra of degree 2 over F , i.e., a division algebra with center F of dimension
4 as an F -vector space, i.e., an element of the Brauer group of F of order 2. (Whether you
allow the exceptional case M2(F ), the “split quaternion algebra”, is a matter of convention.)

Over a complete discretely valued field, there is a unique “ring of integers” in a quater-
nion algebra: it is the set of elements whose norm (element times its conjugate, a/k/a the
determinant of the multiplication-by-said-element map) has absolute value ≤ 1. We call this
the maximal order of the quaternion algebra. Over a number field F , by a maximal order
of a quaternion algebra D we mean an oF -subalgebra oD with oD ⊗oF

F = D. There exists
at least one such, and any two are conjugate.

We say a quaternion algebra D over a number field splits at a place v (a completion,
either archimedean or corresponding to a finite prime) if when you complete at v, you get
the split quaternion algebra rather than an honest one. By class field theory, the number of
nonsplit places is always even.

The Drinfeld upper half-plane

Throughout this lecture and the next, let K be a discretely valued complete nonarchimedean
field with finite residue field k = Fq. Let C be the completed algebraic closure of K. Let π
be a uniformizer of o. See [BC, Part I] for details.

Define the Drinfeld upper half-plane Ω to be the analytic subspace of P1
C obtained by

removing the K-rational points; those form a closed subset in the metric topology, so their
complement is admissible and this really makes sense as a rigid analytic space.

Note that the group PGL2(K) acts on Ω. The action is not free, because you can have
fixed points over quadratic extensions of K.

One may think of P1(C) as the set of C-homothety classes of K-linear maps K2 → C;
Ω corresponds to those classes represented by injective maps. So you may think of Ω as
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classifying “rank two K-lattices inside C”, much as the complex upper half plane classifies
rank two Z-lattices inside C.

There is also a natural formal scheme Ω̂ with generic fibre Ω; it is most easily described
in terms of the building associated to PGL2(K), which is the following graph. Consider the
set of homothety classes of o-lattices in K2 as the vertices; join two classes by an edge if
you can find representing lattices L1, L2 with πL1 ⊂ L2 ⊂ L1. The edges out of each vertex
can be identified with P1

Fq
; if you imagine the graph as a CW-complex, its points correspond

to homothety classes of norms on K2. (You should be thinking Berkovich here...) Namely,
if v1,v2 is a basis, and I take a point on the edge joining ov1 + ov2 with ov1 + πov2, its
corresponding norm is

‖a1v1 + a2v2‖ = max{|a1|, qt|a2|}

with t ∈ [0, 1].
Note that one has a natural map from Ω to the building: given an element of Ω describing

an injective map from K2 to C, compose with the norm on C to get a norm on K2. Call
this map λ.

Each vertex v of the building gives us a way to identify P1
K with the generic fibre of a

projective line over o; call the latter Pv. Let Ω̂v be the formal completion, along the special
fibre, of the complement in Pv of the rational points on the special fibre; the corresponding
rigid space is λ−1(v).

If vw is an edge corresponding to a pair of lattices L1, L2 with πL1 ⊂ L2 ⊂ L1, let Pvw

be the blowup of Pv at the point on its special fibre defined by L2; we have a canonical
identification Pvw

∼= Pvw. Let Ω̂vw be the formal completion, along the special fibre, of the
complement in Pvw of the nonsingular rational points on the special fibre (so leave in the

crossing point); the corresponding rigid space is λ−1(vw). We can now paste the Ω̂v and Ω̂vw

together to get a formal scheme Ω̂ with generic fibre Ω, and PGL2(K) acts on it.

There are various ways to interpret Ω̂ as a “moduli space” (i.e., it represents some natural
functors); see [BC, I.4 and I.5].

Aside: I won’t discuss it further here, but there is also a Drinfeld upper half-space of
any dimension n. You get it by taking Pn+1(C) and removing all K-rational hyperplanes
(not just K-rational points!). This carries an action of PGLn+1(K); I think you can also
analogize to other linear groups, but I don’t know where anyone has done that.

Drinfeld’s half-plane and formal oD-modules

Let D be a quaternion algebra with center K. Fix a choice of a quadratic extension K ′ of
K contained in D, and let o′ be its ring of integers.

We are interested in special formal oD-modules over a o-algebra B; such a thing is a
formal o-module X of dimension 2 (in the sense of last time) plus an action i : oD → End(X)
compatible with the o-action, such that Lie(X) becomes a free B⊗o o′-module of rank 1. In
particular, we are going to insist that these also have height 4 (I think this is as a o-algebra,
but I’m not positive).
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Anyway, Drinfeld showed that there exists a universal deformation of such a formal
module over Fq plus some extra data (a “quasi-isogeny of height 0” on the reduction), which

lives on Ω̂⊗̂oôunr. This is kind of a long story, and it’s in the same spirit as the discussion
of Lubin-Tate formal groups from last time (even though the formal groups are all two-
dimensional, the extra endomorphisms make the situation look like the Lubin-Tate case) so
I’m not going to discuss it further here. See [BC, Section 2] for all the gory details.

Shimura curves and the upper half plane

Things like modular curves are obtained complex analytically by taking the complex upper
half plane and quotienting by the action of a discrete group, like PGL2(Z). If you take a group
commensurable with PGL2(Z) (a congruence subgroup), you get a classical modular curve;
in that case, you have to compactify by adding in the orbits of P1

Q (the cusps). However,
Shimura noticed you can also take quotients by things like the unit group of a maximal
order in a quaternion algebra (the maximal order is , and get algebraic curves over Q (not
just over C). Moreover, like the modular curves, which are moduli spaces for elliptic curves
plus some extra structure, Shimura’s curves are moduli spaces for certain two-dimensional
abelian varieties with extra endomorphisms by that maximal order in the quaternion algebra
(so-called “false elliptic curves”).

Let me make this more precise before proceeding to the rigid analogue of this description.
Let ∆ be an indefinite quaternion algebra with center Q. (“Indefinite” means that ∆⊗Q R is
split, so is congruent to M2(R) rather than the Hamilton quaternions.) For R a commutative
Q-algebra, let ∆∗(R) denote the group of units in the noncommutative ring ∆ ⊗Q R. Let

Af = Z ⊗Q Ẑ denote the ring of finite adèles (where Ẑ =
∏

p Zp is the profinite completion

of Z), and let H± = P1(C) \P1(R) be the upper and lower half planes in C. Then Shimura’s
observation is that for any open compact subgroup U of ∆∗(Af ), the (left) quotient

∆∗(Q)\[H± ×∆∗(Af )/U ]

can be naturally identified with the C-points of a projective algebraic curve SU over Q (look
Ma, no cusps!), and that the curve is a coarse moduli space for a moduli problem concerning
two-dimensional abelian varieties with endomorphisms by o∆ and “level U structure”. (And
of course if U is “sufficiently small”, the moduli space is even fine.)

Shimura curves and the rigid upper half plane

Let p be a prime where ∆ does not split, so that ∆p = ∆ ⊗Q Qp is an honest quaternion
algebra over Qp. Then ∆∗

p has a unique maximal compact subgroup U0
p , namely the units of

the maximal order of ∆p, and there is a decreasing sequence of compact subgroups Un
p given

by units congruent to 1 modulo pn.
Suppose my level structure U looks like Un

p times some compact open subgroup Up of the
prime-to-p part of ∆∗(Af ). The theorem of Cherednik-Drinfeld (you can spell that first one
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“Čerednik” if you prefer; you can spell that second one “Drinfel’d” if you prefer too) says
that if you form the rigid analytic quotient

GL2(Qp)\[(Ω̂⊗̂Ẑunr
p )× ZU ],

you get the analytification of SU again! Here

ZU = Up\∆∗
(Af )/∆

∗
(Q)

is a double coset space whose quotient by ∆
∗
(Qp) is finite.

But what the heck is ∆? I’ll come back to that in a moment. First, let me point out
that (if I read [BC] correctly) Cherednik proved this originally by some not-so-enlightening
argument; Drinfeld’s contribution was to match up the moduli interpretation of the Shimura
curve with the moduli interpretation of Ω̂, giving a much more conceptual proof of the
theorem in the bargain.

But what the heck is ∆?

Glad you asked. ∆ is the quaternion algebra obtained from ∆ by switching the invariants
at p and ∞; i.e., ∆ looks like ∆ at all finite primes other than p, but it splits at p and is
definite (nonsplit in the real place).

Why does that come up? By Tate-Honda (see [BC, Proposition III.2]):

• there is a unique isogeny class of two-dimensional abelian varieties over Fp equipped
with an action of o∆;

• any such abelian variety A is isogenous to the product of two supersingular elliptic
curves;

• the algebra Endo∆
(A)⊗Q is isomorphic to ∆.

The fact that there is this “switcheroo” between the quaternion algebra which acts on the
abelian surfaces and the quaternion algebra you use in forming the rigid analytic quotient
may seem like a trifle or even a nuisance, but it’s actually a wonderful thing! It underlies
certain “hidden symmetries” in the theory of automorphic forms, like the Jacquet-Langlands
correspondence. A certain geometric realization of this correspondence is a crucial part of
Ribet’s proof of Serre’s epsilon conjecture, and in particular that the modularity of elliptic
curves implies Fermat’s last theorem. (I have now told you every last thing I know about
this. Go talk to David Helm for more information.)

That’s all, folks!

Thanks for attending the course. Oh, and if you have corrections marked in your notes, I’d
love to get some by email so I can assemble a more definitive compilation of the notes.
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