### 18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) The Bombieri-Vinogradov theorem (proof) (revised 9 May 07)

In this unit, we prove the Bombieri-Vinogradov theorem, in the form stated in the previous unit.

## 1 Bounding character sums

For $f$ an arithmetic function, put

$$
D_{f}(x ; N, m)=\sum_{n \leq x, n \equiv m} f(n)-\frac{1}{\phi(N)} \sum_{n \leq x, n \in(\mathbb{Z} / N \mathbb{Z})^{*}} f(n) ;
$$

that is, $D_{f}(x ; N, m)$ measures the deviation between the sum of $f$ on an arithmetic progression, and the sum on all arithmetic progressions of the same modulus. The following lemma tells us that bounding this deviation allows us to control the sum of $f$ twisted by a Dirichlet character.

Lemma 1. Let $f$ be an arithmetic function with support in $\{1, \ldots, x\}$, and put $|f|_{2}=$ $\left(\sum_{n}|f(n)|^{2}\right)^{1 / 2}$. Suppose that for some $\Delta \in(0,1]$, we have

$$
\begin{equation*}
\left|D_{f}(x ; N, m)\right| \leq x^{1 / 2} \Delta^{9}|f|_{2} \tag{1}
\end{equation*}
$$

whenever $m \in(\mathbb{Z} / N \mathbb{Z})^{*}$. Then for any nonprincipal character $\chi$ of modulus $r$, and any positive integer $s$,

$$
\left|\sum_{n \in(\mathbb{Z} / s \mathbb{Z})^{*}} f(n) \chi(n)\right| \leq x^{1 / 2} \Delta^{3} r \tau(s)|f|_{2}
$$

Proof. By Möbius inversion, we can write

$$
\sum_{n \in(\mathbb{Z} / s \mathbb{Z})^{*}} f(n) \chi(n)=\sum_{k \mid s} \mu(k) \sum_{n \equiv 0(k)} f(n) \chi(n) .
$$

We split this sum on $k$ at $K=\Delta^{-6}$. We bound the sum for each fixed $k>K$ by CauchySchwarz; the total is thus dominated by

$$
\sum_{k \mid s, k>K}|f|_{2}(x / k)^{1 / 2} \leq|f|_{2} x^{1 / 2} K^{-1 / 2} \tau(s)
$$

For the terms $k \leq K$, we write the sum as (using Möbius inversion again)

$$
\sum_{k \mid s, k \leq K} \mu(k) \sum_{\ell \mid k} \mu(\ell) \sum_{n \in(\mathbb{Z} / \ell \mathbb{Z})^{*}} f(n) \chi(n) .
$$

We split the inside sum over classes modulo $\ell r$; on each class, we apply (1). Since we are summing over all residue classes, and $\chi$ is nonprincipal, the main terms cancel out; the sum is thus dominated by

$$
|f| x^{1 / 2} \Delta^{9} \sum_{k \mid s, k \leq K} \sum_{\ell \mid k}|\mu(\ell)| \phi(\ell r) \leq|f|_{2} x^{1 / 2} \Delta^{9} K \phi(r) \tau(s) .
$$

Since $K=\Delta^{-6}$, we may add the two bounds to give the desired inequality.
Using the large sieve inequality, we obtain the following.
Theorem 2. There exists an absolute constant $c>0$ with the following property. Let $f$ be an arithmetic function with support in $\{1, \ldots, x\}$ satisfying (1). Let $g$ be an arithmetic function with support in $\{1, \ldots, y\}$, and let $h=f \star g$ be the Dirichlet convolution. Then

$$
\sum_{N \leq Q} \max _{m \in(\mathbb{Z} / N \mathbb{Z})^{*}}\left|D_{h}(x y ; N, m)\right| \leq c|f|_{2}|g|_{2}\left(\Delta(x y)^{1 / 2}+x^{1 / 2}+y^{1 / 2}+Q\right) \log ^{2} Q
$$

Proof. We have

$$
D_{h}(x y ; N, a)=\frac{1}{\phi(N)} \sum_{\chi \neq \chi_{0}} \bar{\chi}(a)\left(\sum_{m} f(m) \chi(m)\right)\left(\sum_{n} g(n) \chi(n)\right)
$$

with $\chi$ running over Dirichlet characters of modulus $N$. Rewriting this as a sum only over primitive characters (factoring $N=r s$, where $r$ is the "primitive modulus"), and using the fact that $\phi(r s) \geq \phi(r) \phi(s)$ for all $r, s$, we can bound the left side of the desired inequality by

$$
\begin{equation*}
\sum_{s \leq Q} \frac{1}{\phi(s)} \sum_{1<r \leq Q} \frac{1}{\phi(r)} \sum_{\chi}\left|\sum_{(m, s)=1} f(m) \chi(m)\right|\left|\sum_{(n, s)=1} g(n) \chi(n)\right|, \tag{2}
\end{equation*}
$$

with $\chi$ now running over primitive characters of level $r$.
We now split the sum over $r$ at $R=\Delta^{-1}$. For $r \leq R$, we apply Lemma 1 ; those terms are dominated by

$$
|f||g| y^{1 / 2} \Delta^{3} \sum_{s \leq Q} \frac{\tau(s)}{\phi(s)} \sum_{r \leq R} r \leq c|f||g| y^{1 / 2} \Delta^{3} R^{2} \log ^{2} Q
$$

(Note: we are not doing anything to the $g$ terms other than bounding the whole sum by $|g|$ and pulling it out. We apply the lemma to the $f$ terms.) For $r>R$, we split the sum further into ranges like $P<r \leq 2 P$ and apply the multiplicative large sieve inequality in each range. Rather, we apply it twice: once with the $f$ sum to obtain

$$
\sum_{P<r \leq 2 P} \frac{1}{\phi(r)} \sum_{\chi}\left|\sum_{(m, s)=1} f(m) \chi(m)\right|^{2} \leq \frac{1}{P}\left(4 P^{2}+x-1\right)|f|_{2}^{2},
$$

and again with the $g$ sum. Putting together with Cauchy-Schwarz, we get a bound

$$
\sum_{P<r \leq 2 P} \frac{1}{\phi(r)} \sum_{\chi}\left|\sum_{m \in(\mathbb{Z} / s \mathbb{Z})^{*}} f(m) \chi(m)\right|\left|\sum_{n \in(\mathbb{Z} / s \mathbb{Z})^{*}} g(n) \chi(n)\right| \leq \frac{1}{P}\left(4 P^{2}+x\right)^{1 / 2}\left(4 P^{2}+y\right)^{1 / 2}|f|_{2}|g|_{2} .
$$

Now summing, over $P=R, 2 R, \ldots$ until $P>Q$, we get a bound on the sum over $r$ in (2) of

$$
c|f|_{2}|g|_{2}\left(Q+x^{1 / 2}+y^{1 / 2}+x^{1 / 2} y^{1 / 2} R^{-1}\right)
$$

(That $R^{-1}$ is the reason we had to limit this argument to $r$ large.) The sum over $s$ throws on another two factors of $\log Q$, yielding the claim.

## 2 Proof of the theorem

We now proceed to the proof of the Bombieri-Vinogradov theorem. First, we mention an identity of Vaughan that will be useful: for any $y, z \geq 1$ and $n>z$,

$$
\begin{equation*}
\Lambda(n)=\sum_{b \leq y, b \mid n} \mu(b) \log \frac{n}{b}-\sum_{b \leq y, c \leq z, b c \mid n} \mu(b) \Lambda(c)+\sum_{b>y, c>z, b c \mid n} \mu(b) \Lambda(c) . \tag{3}
\end{equation*}
$$

Given $x$, define the incomplete logarithm

$$
\lambda(\ell)=\log \ell-\sum_{k \leq x^{1 / 5}, k \mid \ell} \Lambda(k)
$$

then (3) with $y=z=x^{1 / 5}$ implies that for $x^{1 / 5}<n \leq x$,

$$
\begin{equation*}
\Lambda(n)=\sum_{\ell m=n, m \leq x^{1 / 5}} \lambda(\ell) \mu(m)+\sum_{\ell m=n, x^{1 / 5}<m \leq x^{4 / 5}} \lambda(\ell) \mu(m) . \tag{4}
\end{equation*}
$$

Let $\Lambda_{0}(n)$ and $\Lambda_{1}(n)$ denote the two sums on the right side of (4). Then

$$
D_{\Lambda}(x ; N, m)=D_{\Lambda_{0}}(x ; N, m)+D_{\Lambda_{1}}(x ; N, m)+O\left(x^{1 / 5} \log x\right)
$$

with the error term coming from terms with $n<x^{1 / 5}$.
It is straightforward to prove that

$$
\begin{equation*}
\sum_{N \leq Q} \max _{m \in(\mathbb{Z} / N \mathbb{Z})^{*}}\left|D_{\Lambda_{0}}(x ; N, m)\right|=O\left(Q x^{2 / 5} \log x\right) \tag{5}
\end{equation*}
$$

so we concentrate on the contribution from $\Lambda_{1}$. We want to apply Theorem 2, but we cannot write the sum $\Lambda_{1}(n)$ as a convolution because of the restriction $n \leq x$.

To get around this, we cut the interval $1 \leq n \leq x$ into $O\left(\delta^{-1}\right)$ subintervals of the form $y<n \leq(1+\delta) y$, where $x^{1 / 5}<\delta \leq 1$ is a parameter we will set later. We cover the summation range

$$
\ell m=n, x^{1 / 5}<m \leq x
$$

by ranges

$$
\ell m=n, L<\ell \leq(1+\delta) L, M<m \leq(1+\delta) M
$$

with $L, M$ taking values $(1+\delta)^{j}$. We run $L, M$ over the ranges $x^{1 / 5}<L, M<x^{4 / 5}$ with $L M=x$; the only trouble is that we do not properly cover the areas $n<x^{1 / 5}$ and $(1+\delta)^{-1} x<$ $n<(1+\delta) x$. The contribution from the error regions is $O\left(\delta N^{-1} x \log x\right)$.

What remains is the sum over $L, M$ of

$$
D(L, M ; N, m)=\sum_{l, m \equiv m} \lambda(\ell) \mu(m)-\frac{1}{\phi(N)} \sum_{l m \in(\mathbb{Z} / N \mathbb{Z})^{*}}
$$

where $l, m$ run over $L<\ell \leq(1+\delta) L, M<m \leq(1+\delta) M$. For each $L, M$, we may apply Theorem 2 with $\Delta=(\log x)^{-A}$; the hypothesis (1) is satisfied by the Siegel-Walfisz theorem (the error bound on the prime number theorem in arithmetic progressions). If we take $Q=\Delta x^{1 / 2}$, we get

$$
\sum_{N \leq Q} \max _{m \in(\mathbb{Z} / N \mathbb{Z})^{*}}|D(L, M ; N, m)|=O\left(\delta \Delta x(\log x)^{3}\right)
$$

Summing over $L, M$, we obtain

$$
\sum_{N \leq Q} \max _{m \in(\mathbb{Z} / N \mathbb{Z})^{*}}\left|D_{\Lambda_{1}}(x ; N, m)\right|=O\left(\left(\delta^{-1} x+\Delta\right) x(\log x)^{3}\right.
$$

We now choose $\delta=\Delta^{1 / 2}$, so this bound becomes $\Delta^{1 / 2} x(\log x)^{3}$. Adding back in (5) gives

$$
\sum_{N \leq \Delta x^{1 / 2}} \max _{m \in(\mathbb{Z} / N \mathbb{Z})^{*}}\left|\psi(x ; N, m)-\frac{\psi(x)}{\phi(N)}\right|=O\left(\Delta^{1 / 2} x(\log x)^{3}\right) .
$$

Using the prime number theorem with error term, we can take $\psi(x)=x+O(\delta x)$. This gives the Bombieri-Vinogradov theorem with $B(A)=2 A+6$.

## 3 The Barban-Davenport-Halberstam theorem

We leave the proof of the Barban-Davenport-Halberstam theorem to the reader; it is actually somewhat simpler than Bombieri-Vinogradov. Here is the key step.

Theorem 3. There exists an absolute constant $c>0$ with the following property. Let $f$ be an arithmetic function with support in $\{1, \ldots, x\}$ satisfying (1). Then

$$
\sum_{N \leq Q} \sum_{a \in(\mathbb{Z} / N \mathbb{Z})^{*}}\left|D_{f}(x ; N, m)\right|^{2} \leq c|f|^{2}(\Delta x+Q)(\log Q)^{2}
$$

We note in passing the following corollary.

Corollary 4. With conditions as in Theorem 2, for $a b \neq 0$, we have

$$
\sum_{N \leq Q,(a b, N)=1}\left|\sum_{m, n: a m \equiv b n(N),(m n, N)=1} f(m) g(n)-\frac{1}{\phi(N)}\left(\sum_{(m, N)=1} f(m)\right)\left(\sum_{(n, N)=1} g(n)\right)\right|
$$

## Exercises

1. Prove (3).
2. Use (3) to deduce (4).
3. Prove (5).
4. Prove Theorem 3, by imitating the proof of Theorem 2.
5. Deduce Corollary 4 from Theorem 3. (Hint: rewrite the difference in terms of $D_{f}$ and $D_{g}$.)
