
18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Brun’s combinatorial sieve

In this unit, we describe a more intricate version of the sieve of Eratosthenes, introduced
by Viggo Brun in order to study the Goldbach conjecture and the twin prime conjecture.
It is most useful for providing lower bounds; for upper bounds, the Selberg sieve (to be
introduced in the following unit) is much less painful.

1 Sieve setup

Let f : N → C be an arithmetic function, and suppose we want to estimate the sum of f
over primes. More precisely, let P be a set of primes, and put

P (z) =
∏

p≤z,p∈P

p.

If we define

S(x, z) =
∑

n≤x,(n,P (z))=1

f(n),

Ad(x) =
∑

n≤x,n≡0 (mod d)

f(n)

(with the dependence on P and f suppressed from the notation), we have

S(x, z) =
∑

d|P (z)

µ(d)Ad(x).

As before, suppose there is a multiplicative function g such that for d squarefree with all
prime factors in P ,

Ad(x) = g(d)X + rd(x),

with X = X(x) independent of d, and the error term rd(x) small when d is small relative to
x (in a sense to be made precise later). Suppose further that

g(p) ∈ [0, 1) (p ∈ P ); g(p) = 0 (p /∈ P ). (1)

(If we need to take g(p) = 1, then we cannot expect to get much of a contribution from
numbers not divisible by p; we should resign ourselves to this, and instead remove p from
P .) Then we can rewrite

S(x, z) = V (z)X + R(x, z)

V (z) =
∏

p|P (z)

(1 − g(p))

R(x, z) =
∑

d|P (z)

µ(d)rd(x).
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If z is small relative to x, which in practice will mean z < xα for some cutoff α ∈ (0, 1), we
may be able to show that the main term V (z)X dominates the error term R(x, z). Again,
the main term is what you would predict from the heuristic that if an integer is chosen
randomly, its divisibilities by different primes should act like independent random events.

For instance, if P is the set of all primes and z ≥ x1/2, then S(x, z) =
∑

p≤x f(p). If f is
the function

f(n) =

{

1 n − 2 prime

0 otherwise,

then by the error term in the prime number theorem for arithmetic progressions,

rd(x) = O(x log−A x)

for any fixed A > 0. (It is now important that we have that bound uniformly in d!) Also,
S(x, x1/2) counts twin primes up to x, whereas S(x, x1/(N+1)) counts primes p such that p+2
has no prime factor less than x1/(N+1), and hence has at most N prime factors.

2 Brun’s combinatorial sieve

We would like somewhat finer control than was provided by the sieve of Eratosthenes; the
trouble is that R(x, z) has too many terms for us to be able to control it.

Brun’s approach to get aronud this is to truncate the Möbius function by restricting it
to suitable subsets D+ and D−, subject to the restriction that for n a product of primes in
P , the incomplete convolutions

δ+(n) =
∑

d|n,d∈D+

µ(d), δ−(n) =
∑

d|n,d∈D−

µ(d)

satisfy
δ−(n) ≤ δ(n) ≤ δ+(n) (2)

for

δ(n) =
∑

d|n

µ(d) =

{

1 n = 1

0 n > 1.

One such choice would be to take D+ and D− to consist of all squarefree numbers whose
number of distinct prime factors is even or odd, respectively. This choice is much too crude;
we should instead make a choice that allows some cancellation in δ− and δ+ without messing
up the inequality (2). Moreover, we want to restrict D+ and D− to be subsets of {1, . . . , y}
for some y which is not too large compared to x.
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Let λ+(d) and λ−(d) denote the functions which agree with µ on D+ and D−, respectively,
and are zero elsewhere. Put

V ±(z) =
∑

d|P (z)

λ±(d)g(d)

R±(x, z) =
∑

d|P (z)

λ±(d)rd(x).

Then by virtue of (2), we have

V −(z)X + R−(x, z) ≤ S(x, z) ≤ V +(z)X + R+(x, z). (3)

It is not at all obvious how one can usefully arrange for D+, D− to satisfy (2); here is
Brun’s choice. For d a squarefree positive integer, write d = p1 · · · pr with p1 > · · · > pr. Set

D+ = {d = p1 · · · pr : pm < ym m odd}

D− = {d = p1 · · · pr : pm < ym m even},

where y1, y2, . . . are certain parameters which may depend on d. (By convention, 1 ∈ D±.)
We then have the following.

Lemma 1. With notation as above, let Vn(z) be the sum of g(p1 · · · pn)V (pn) over sequences
p1 > · · · > pn of primes such that:

(a) p1 < z;

(b) pn ≥ yn;

(c) pm < ym for m < n with m ≡ n (mod 2).

Then

V (z) = V +(z) −
∑

n≡1 (2)

Vn(z)

V (z) = V −(z) +
∑

n≡0 (2)

Vn(z)

and so
V −(z) ≤ V (z) ≤ V +(z). (4)

Proof. Exercise.
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In particular, for a given n, we deduce (2) from (4) by rigging up the set P so that
P (z) = n and putting g(d) = 1 for all d.

The functions λ+ and λ− given above are together called the combinatorial sieve with
parameters y1, y2, . . . . To use it, one must bound

R(x, y) =
∑

d<y,d|P (z)

|rd(x)|,

for y such that D± ⊂ {1, . . . , y}; in this case R(x, y) ≥ |R±(x, z)|, giving error bounds in
(3). One must also bound V ±(z).

3 Setting some parameters

To turn this into an actual numerical theorem, we must set the sieve parameters; we do this
following Iwaniec-Kowalski. Remember that we may allow the yi to depend on d.

Write d = p1 · · · pr with p1 > · · · > pr; we now take

ym = (y/(p1 · · ·pm))1/β ,

where β > 1 will be specified later. This makes it clear that all elements of D+ ∪D− belong
to {1, . . . , y} except possibly for single primes in D−. We can remedy this by requiring z ≤ y;
more precisely, we will take z = y1/s for some s ≥ β.

We will also need to make some restriction on the multiplicative function g. Namely, we
assume that for some K > 1 and κ > 0, we have for all w, z,

∏

w≤p<z

(1 − g(p))−1 ≤ K

(

log z

log w

)κ

. (5)

We refer to κ as a sieve dimension of the function g. This number is quite critical; it will
determine how large we can make z compared to y, which determines how many small primes
we can use for sieving.

4 Bounding the main term

We need an upper bound on V +(z) and a lower bound on V −(z); we get both of these by
getting an upper bound on Vn(z). First, let us simplify the sum by relaxing the summation
conditions. We claim that for any tuple p1, . . . , pn appearing in the sum defining Vn(z), and
any m < n,

p1 · · · pm−1p
β
m < y. (6)

Namely, if m ≡ n (mod 2), we have the stronger inequality

p1 · · · pm−1p
1+β
m < y.
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If m > 1 and m 6≡ n (mod 2), we have

p1 · · ·pm−1p
β
m < p1 · · · pm−2p

1+β
m−1 < y.

Finally, if m = 1 and m 6≡ n (mod 2), we have

pβ
1 < zβ = yβ/s ≤ y.

From (6), we deduce by induction on m that

p1 · · · pm < y1−(1−β−1)m

(m = 1, . . . , n − 1).

In particular,

pn ≥ (y/(p1 · · · pn−1))
1/(β+1) ≥ y

1

β+1
(1−β−1)n−1

≥ y
1

β
(1−β−1)n

≥ zn

if we put
zn = z(1−β−1)n

.

We will now retain only the conditions z > p1 > · · · > pn ≥ zn on the primes, which will
make the sum bigger because every summand is nonnegative. That is,

Vn(z) ≤
∑

z>p1>···>pn≥zn

g(p1 · · · pn)V (pn)

≤
1

n!
V (zn)

(

∑

zn≤p<z

g(p)

)n

≤
1

n!
V (zn)

(

log
V (zn)

V (z)

)n

.

Here is where we need the assumption (5) about the sieve dimension. It implies

V (zn)

V (z)
≤ K(1 + (β − 1)−1)κn < Ken/b

for β = κb + 1 (using the bound 1 + x ≤ ex for x = (β − 1)−1 = 1/(κb)), which gives us

Vn(z) <
K

n!

(n

b
+ log K

)n

en/bV (z)

≤
K

n!

(n

b
e1/b
)n

KbV (z)

(using the bound 1 + x ≤ ex for x = b(log K)/n). Since n! ≥ e(n/e)n (by taking logs and
comparing integrals), we obtain

Vn(z) < e−1anKb+1V (z)
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for a = b−1e1+b−1

.
To conclude, we clean things up a bit. Remember that we were at liberty to choose

β > 1, which is equivalent to choosing b > 0. By taking b sufficiently large, we can force
a < 1; for instance, we could take b = 9 to get a < e−1. Note also that because

p1 > · · · > pn ≥ yn = (y/(p1 · · · pn))1/β ,

we have pn+β
1 > y. Since we also have p1 < z = y1/s, we deduce that Vn(z) = 0 unless

n + β > s. Therefore

∑

n>0

Vn(z) =
∑

n>s−β

Vn(z) <
as−β

e(1 − a)
Kb+1V (z).

To conclude, we have the following bound (Theorem 6.1 in Iwaniec-Kowalski).

Theorem 2. In the combinatorial sieve with parameters y1, y2, . . . as above, and β = 9κ+1,
for any multiplicative function g(d) satisfying (1) and (5) for a given K, and any s ≥ β, for
z = y1/s we have

V +(z) < (1 + eβ−sK10)V (z)

V −(z) > (1 + eβ−sK10)V (z).

Consequently,

(1 − eβ−sK10)V (z)X − R(x, zs) ≤ S(x, z) ≤ (1 + eβ−sK10)V (z)X + R(x, zs).

5 Consequences for twin almost-primes

Again consider the example

f(n) =

{

1 n − 2 prime

0 otherwise.

By applying the combinatorial sieve, we may deduce the following (see exercises).

Theorem 3. There are infinitely many primes p such that p + 2 is the product of at most
twenty distinct primes.

By refinements of the sieving method, Chen was able to prove the following.

Theorem 4. There are infinitely many primes p such that p + 2 is the product of at most
two distinct primes.

This is tantalizingly close to the twin prime conjecture, but it seems that sieving methods
fall short of delivering that particular prize.

One can also use the combinatorial sieve to deduce that the number of twin primes ≤ x
is O(x/ log2 x); however, since this is a question about an upper bound rather than a lower
bound, we will be able to derive this much less painfully using the Selberg sieve.
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Exercises

1. Prove Lemma 1. (Hint: use the identity

V (z) = 1 −
∑

p<z

g(p)V (p)

plus inclusion-exclusion.)

2. Apply the combinatorial sieve to show that the number of integers less than or equal
to x with no prime factors less than x1/20 is at least cx/ log2 x for some c > 0. (You will
need the prime number theorem in arithmetic progressions with error term, in order
to control the error term R(x, z).) Then deduce Theorem 3.
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