18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Dirichlet series and arithmetic functions

1 Dirichlet series

The Riemann zeta function ζ is a special example of a type of series we will be considering often in this course. A Dirichlet series is a formal series of the form $\sum_{n=1}^{\infty} a_{n} n^{-s}$ with $a_{n} \in \mathbb{C}$. You should think of these as a number-theoretic analogue of formal power series; indeed, our first order of business is to understand when such a series converges absolutely.

Lemma 1. There is an extended real number $L \in \mathbb{R} \cup\{ \pm \infty\}$ with the following property: the Dirichlet series $\sum_{n=1}^{\infty} a_{n} n^{-s}$ converges absolutely for $\operatorname{Re}(s)>L$, but not for $\operatorname{Re}(s)<L$. Moreover, for any $\epsilon>0$, the convergence is uniform on $\operatorname{Re}(s) \geq L+\epsilon$, so the series represents a holomorphic function on all of $\operatorname{Re}(s)>L$.

Proof. Exercise.
The quantity L is called the abscissa of absolute convergence of the Dirichlet series; it is an analogue of the radius of convergence of a power series. (In fact, if you fix a prime p, and only allow a_{n} to be nonzero when n is a power of p, then you get an ordinary power series in p^{-s}. So in some sense, Dirichlet series are a strict generalization of ordinary power series.)

Recall that an ordinary power series in a complex variable must have a singularity at the boundary of its radius of convergence. For Dirichlet series with nonnegative real coefficients, we have the following analogous fact.

Theorem 2 (Landau). Let $f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ be a Dirichlet series with nonnegative real coefficients. Suppose $L \in \mathbb{R}$ is the abscissa of absolute convergence for $f(s)$. Then f cannot be extended to a holomorphic function on a neighborhood of $s=L$.

Proof. Suppose on the contrary that f extends to a holomorphic function on the disc $|s-L|<$ ϵ. Pick a real number $c \in(L, L+\epsilon / 2)$, and write

$$
\begin{aligned}
f(s) & =\sum_{n=1}^{\infty} a_{n} n^{-c} n^{c-s} \\
& =\sum_{n=1}^{\infty} a_{n} n^{-c} \exp ((c-s) \log n) \\
& =\sum_{n=1}^{\infty} \sum_{i=0}^{\infty} \frac{a_{n} n^{-c}(\log n)^{i}}{i!}(c-s)^{i} .
\end{aligned}
$$

Since all coefficients in this double series are nonnegative, everything must converge absolutely in the disc $|s-c|<\epsilon / 2$. In particular, when viewed as a power series in $c-s$, this must give the Taylor series for f around $s=c$. Since f is holomorphic in the disc $|s-c|<\epsilon / 2$, the Taylor series converges there; in particular, it converges for some real number $L^{\prime}<L$.

But now we can run the argument backwards to deduce that the original Dirichlet series converges absolutely for $s=L^{\prime}$, which implies that the abscissa of absolute convergence is at most L^{\prime}. This contradicts the definition of L.

2 Euler products

Remember that among Dirichlet series, the Riemann zeta function had the unusual property that one could factor the Dirichlet series as a product over primes:

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{-1} .
$$

In fact, a number of natural Dirichlet series admit such factorizations; they are the ones corresponding to multiplicative functions.

We define an arithmetic function to simply be a function $f: \mathbb{N} \rightarrow \mathbb{C}$. Besides the obvious operations of addition and multiplication, another useful operation on arithmetic functions is the (Dirichlet) convolution $f * g$, defined by

$$
(f * g)(n)=\sum_{d \mid n} f(d) g(n / d)
$$

Just as one can think of formal power series as the generating functions for ordinary sequences, we may think of a formal Dirichlet series $\sum_{n=1}^{\infty} a_{n} n^{-s}$ as the "arithmetic generating function" for the multiplicative function $n \mapsto a_{n}$. In this way of thinking, convolution of multiplicative functions corresponds to ordinary multiplication of Dirichlet series:

$$
\sum_{n=1}^{\infty}(f * g)(n) n^{-s}=\left(\sum_{n=1}^{\infty} f(n) n^{-s}\right)\left(\sum_{n=1}^{\infty} g(n) n^{-s}\right) .
$$

In particular, convolution is a commutative and associative operation, under which the arithmetic functions taking the value 1 at $n=1$ form a group. The arithmetic functions taking all integer values (with the value 1 at $n=1$) form a subgroup (see exercises).

We say f is a multiplicative function if $f(1)=1$, and $f(m n)=f(m) f(n)$ whenever $m, n \in \mathbb{N}$ are coprime. Note that an arithmetic function f is multiplicative if and only if its Dirichlet series factors as a product (called an Euler product):

$$
\sum_{n=1}^{\infty} f(n) n^{-s}=\prod_{p}\left(\sum_{i=0}^{\infty} f\left(p^{i}\right) p^{-i s}\right) .
$$

In particular, the property of being multiplicative is clearly stable under convolution, and under taking the convolution inverse.

We say f is completely multiplicative if $f(1)=1$, and $f(m n)=f(m) f(n)$ for any $m, n \in \mathbb{N}$. Note that an arithmetic function f is multiplicative if and only if its Dirichlet series factors in a very special way:

$$
\sum_{n=1}^{\infty} f(n) n^{-s}=\prod_{p}\left(1-f(p) p^{-s}\right)^{-1}
$$

In particular, the property of being completely multiplicative is not stable under convolution.

3 Examples of multiplicative functions

Here are some examples of multiplicative functions, some of which you may already be familiar with. All assertions in this section are left as exercises.

- The unit function $\varepsilon: \varepsilon(1)=1$ and $\varepsilon(n)=0$ for $n>1$. This is the identity under $*$.
- The constant function $1: 1(n)=1$.
- The Möbius function μ : if n is squarefree with d distinct prime factors, then $\mu(n)=$ $(-1)^{d}$, otherwise $\mu(n)=0$. This is the inverse of 1 under $*$.
- The identity function $\operatorname{id}: \operatorname{id}(n)=n$.
- The k-th power function $\mathrm{id}^{k}: \mathrm{id}^{k}(n)=n^{k}$.
- The Euler totient function $\phi: \phi(n)$ counts the number of integers in $\{1, \ldots, n\}$ coprime to n. Note that $1 * \phi=\mathrm{id}$, so id $* \mu=\phi$.
- The divisor function d (or τ): $d(n)$ counts the number of integers in $\{1, \ldots, n\}$ dividing n. Note that $1 * 1=d$.
- The divisor sum function $\sigma: \sigma(n)$ is the sum of the divisors of n. Note that $1 * \mathrm{id}=$ $d * \phi=\sigma$.
- The divisor power sum functions $\sigma_{k}: \sigma_{k}(n)=\sum_{d \mid n} d^{k}$. Note that $\sigma_{0}=d$ and $\sigma_{1}=\sigma$. Also note that $1 * \mathrm{id}^{k}=\sigma_{k}$.

Of these, only $\varepsilon, 1, \mathrm{id}, \mathrm{id}^{k}$ are completely multiplicative. We will deal with some more completely multiplicative functions, the Dirichlet characters, in a subsequent unit.

Note that all of the Dirichlet series corresponding to the aforementioned functions can be written explicitly in terms of the Riemann zeta function; see exercises. An important nonmultiplicative function with the same property is the von Mangoldt function $\Lambda=\mu * \log$; see exercises.

Exercises

1. Prove Lemma 1. Then exhibit examples to show that a Dirichlet series with some abscissa of absolute convergence $L \in \mathbb{R}$ may or may not converge absolutely on $\operatorname{Re}(s)=$ L.
2. Give a counterexample to Theorem 2 in case the series need not have nonnegative real coefficients. (Optional, and I don't know the answer: must a Dirichlet series have a singularity somewhere on the abscissa of absolute convergence?)
3. Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be an arithmetic function with $f(1)=1$. Prove that the convolution inverse of f also has values in \mathbb{Z}; deduce that the set of such f forms a group under convolution. (Likewise with \mathbb{Z} replaced by any subring of \mathbb{C}, e.g., the integers in an algebraic number field.)
4. Prove the assertions involving * in Section 3. Then use them to write the Dirichlet series for all of the functions introduced there in terms of the Riemann zeta function.
5. Here is a non-obvious example of a multiplicative function. Let $r_{2}(n)$ be the number of pairs (a, b) of integers such that $a^{2}+b^{2}=n$. Prove that $r_{2}(n) / 4$ is multiplicative, using facts you know from elementary number theory.
6. We defined the von Mangoldt function as the arithmetic function $\Lambda=\mu * \log$. Prove that

$$
\Lambda(n)= \begin{cases}\log (p) & n=p^{i}, i \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and that the Dirichlet series for Λ is $-\zeta^{\prime} / \zeta$.
7. For t a fixed positive real number, verify that the function

$$
Z(s)=\zeta^{2}(s) \zeta(s+i t) \zeta(s-i t)
$$

is represented by a Dirichlet series with nonnegative coefficients which does not converge everywhere. (Hint: check $s=0$.)
8. Assuming that $\zeta(s)-s /(s-1)$ extends to an entire function (we'll prove this in a subsequent unit), use the previous exercise to give a second proof that $\zeta(s)$ has no zeroes on the line $\operatorname{Re}(s)=1$.
9. (Dirichlet's hyperbola method) Suppose f, g, h are arithmetic functions with $f=g * h$, and write

$$
G(x)=\sum_{n \leq x} g(n), \quad H(x)=\sum_{n \leq x} h(n) .
$$

Prove that (generalizing a previous exercise)

$$
\sum_{n \leq x} f(n)=\left(\sum_{d \leq y} g(d) H(x / d)\right)+\left(\sum_{d \leq x / y} h(d) G(x / d)\right)-G(y) H(x / y) .
$$

10. Prove that the abscissa of absolute convergence L of a Dirichlet series $\sum_{n=1}^{\infty} a_{n} n^{-s}$ satisfies the inequality

$$
L \leq \limsup _{n \rightarrow \infty}\left(1+\frac{\log \left|a_{n}\right|}{\log n}\right)
$$

(where $\log 0=-\infty$), with equality if the $\left|a_{n}\right|$ are bounded away from 0 . Then exhibit an example where the inequality is strict. (Thanks to Sawyer for pointing this out.) Optional (I don't know the answer): is there a formula that computes the abscissa of absolute convergence in general? Dani proposed

$$
\limsup _{n \rightarrow \infty} \frac{\log \sum_{m \leq n}\left|a_{m}\right|}{\log n}
$$

but Sawyer found a counterexample to this too.

