
18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Dirichlet series and arithmetic functions

1 Dirichlet series

The Riemann zeta function ζ is a special example of a type of series we will be considering
often in this course. A Dirichlet series is a formal series of the form

∑∞
n=1 ann

−s with an ∈ C.
You should think of these as a number-theoretic analogue of formal power series; indeed, our
first order of business is to understand when such a series converges absolutely.

Lemma 1. There is an extended real number L ∈ R ∪ {±∞} with the following property:
the Dirichlet series

∑∞
n=1 ann

−s converges absolutely for Re(s) > L, but not for Re(s) < L.
Moreover, for any ε > 0, the convergence is uniform on Re(s) ≥ L+ε, so the series represents
a holomorphic function on all of Re(s) > L.

Proof. Exercise.

The quantity L is called the abscissa of absolute convergence of the Dirichlet series; it is
an analogue of the radius of convergence of a power series. (In fact, if you fix a prime p, and
only allow an to be nonzero when n is a power of p, then you get an ordinary power series in
p−s. So in some sense, Dirichlet series are a strict generalization of ordinary power series.)

Recall that an ordinary power series in a complex variable must have a singularity at the
boundary of its radius of convergence. For Dirichlet series with nonnegative real coefficients,
we have the following analogous fact.

Theorem 2 (Landau). Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series with nonnegative real

coefficients. Suppose L ∈ R is the abscissa of absolute convergence for f(s). Then f cannot
be extended to a holomorphic function on a neighborhood of s = L.

Proof. Suppose on the contrary that f extends to a holomorphic function on the disc |s−L| <
ε. Pick a real number c ∈ (L,L+ ε/2), and write

f(s) =
∞∑
n=1

ann
−cnc−s

=
∞∑
n=1

ann
−c exp((c− s) log n)

=
∞∑
n=1

∞∑
i=0

ann
−c(log n)i

i!
(c− s)i.

Since all coefficients in this double series are nonnegative, everything must converge abso-
lutely in the disc |s−c| < ε/2. In particular, when viewed as a power series in c−s, this must
give the Taylor series for f around s = c. Since f is holomorphic in the disc |s − c| < ε/2,
the Taylor series converges there; in particular, it converges for some real number L′ < L.
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But now we can run the argument backwards to deduce that the original Dirichlet series
converges absolutely for s = L′, which implies that the abscissa of absolute convergence is
at most L′. This contradicts the definition of L.

2 Euler products

Remember that among Dirichlet series, the Riemann zeta function had the unusual property
that one could factor the Dirichlet series as a product over primes:

ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1.

In fact, a number of natural Dirichlet series admit such factorizations; they are the ones
corresponding to multiplicative functions.

We define an arithmetic function to simply be a function f : N→ C. Besides the obvious
operations of addition and multiplication, another useful operation on arithmetic functions
is the (Dirichlet) convolution f ∗ g, defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

Just as one can think of formal power series as the generating functions for ordinary se-
quences, we may think of a formal Dirichlet series

∑∞
n=1 ann

−s as the “arithmetic generating
function” for the multiplicative function n 7→ an. In this way of thinking, convolution of
multiplicative functions corresponds to ordinary multiplication of Dirichlet series:

∞∑
n=1

(f ∗ g)(n)n−s =

(
∞∑
n=1

f(n)n−s

)(
∞∑
n=1

g(n)n−s

)
.

In particular, convolution is a commutative and associative operation, under which the
arithmetic functions taking the value 1 at n = 1 form a group. The arithmetic functions
taking all integer values (with the value 1 at n = 1) form a subgroup (see exercises).

We say f is a multiplicative function if f(1) = 1, and f(mn) = f(m)f(n) whenever
m,n ∈ N are coprime. Note that an arithmetic function f is multiplicative if and only if its
Dirichlet series factors as a product (called an Euler product):

∞∑
n=1

f(n)n−s =
∏
p

(
∞∑
i=0

f(pi)p−is

)
.

In particular, the property of being multiplicative is clearly stable under convolution, and
under taking the convolution inverse.
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We say f is completely multiplicative if f(1) = 1, and f(mn) = f(m)f(n) for any
m,n ∈ N. Note that an arithmetic function f is multiplicative if and only if its Dirichlet
series factors in a very special way:

∞∑
n=1

f(n)n−s =
∏
p

(1− f(p)p−s)−1.

In particular, the property of being completely multiplicative is not stable under convolution.

3 Examples of multiplicative functions

Here are some examples of multiplicative functions, some of which you may already be
familiar with. All assertions in this section are left as exercises.

• The unit function ε: ε(1) = 1 and ε(n) = 0 for n > 1. This is the identity under ∗.

• The constant function 1: 1(n) = 1.

• The Möbius function µ: if n is squarefree with d distinct prime factors, then µ(n) =
(−1)d, otherwise µ(n) = 0. This is the inverse of 1 under ∗.

• The identity function id: id(n) = n.

• The k-th power function idk: idk(n) = nk.

• The Euler totient function φ: φ(n) counts the number of integers in {1, . . . , n} coprime
to n. Note that 1 ∗ φ = id, so id ∗µ = φ.

• The divisor function d (or τ): d(n) counts the number of integers in {1, . . . , n} dividing
n. Note that 1 ∗ 1 = d.

• The divisor sum function σ: σ(n) is the sum of the divisors of n. Note that 1 ∗ id =
d ∗ φ = σ.

• The divisor power sum functions σk: σk(n) =
∑

d|n d
k. Note that σ0 = d and σ1 = σ.

Also note that 1 ∗ idk = σk.

Of these, only ε, 1, id, idk are completely multiplicative. We will deal with some more
completely multiplicative functions, the Dirichlet characters, in a subsequent unit.

Note that all of the Dirichlet series corresponding to the aforementioned functions can be
written explicitly in terms of the Riemann zeta function; see exercises. An important non-
multiplicative function with the same property is the von Mangoldt function Λ = µ∗ log; see
exercises.
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Exercises

1. Prove Lemma 1. Then exhibit examples to show that a Dirichlet series with some
abscissa of absolute convergence L ∈ R may or may not converge absolutely on Re(s) =
L.

2. Give a counterexample to Theorem 2 in case the series need not have nonnegative real
coefficients. (Optional, and I don’t know the answer: must a Dirichlet series have a
singularity somewhere on the abscissa of absolute convergence?)

3. Let f : N → Z be an arithmetic function with f(1) = 1. Prove that the convolution
inverse of f also has values in Z; deduce that the set of such f forms a group under
convolution. (Likewise with Z replaced by any subring of C, e.g., the integers in an
algebraic number field.)

4. Prove the assertions involving ∗ in Section 3. Then use them to write the Dirichlet
series for all of the functions introduced there in terms of the Riemann zeta function.

5. Here is a non-obvious example of a multiplicative function. Let r2(n) be the number
of pairs (a, b) of integers such that a2 + b2 = n. Prove that r2(n)/4 is multiplicative,
using facts you know from elementary number theory.

6. We defined the von Mangoldt function as the arithmetic function Λ = µ ∗ log. Prove
that

Λ(n) =

{
log(p) n = pi, i ≥ 1

0 otherwise

and that the Dirichlet series for Λ is −ζ ′/ζ.

7. For t a fixed positive real number, verify that the function

Z(s) = ζ2(s)ζ(s+ it)ζ(s− it)

is represented by a Dirichlet series with nonnegative coefficients which does not con-
verge everywhere. (Hint: check s = 0.)

8. Assuming that ζ(s) − s/(s − 1) extends to an entire function (we’ll prove this in a
subsequent unit), use the previous exercise to give a second proof that ζ(s) has no
zeroes on the line Re(s) = 1.

9. (Dirichlet’s hyperbola method) Suppose f, g, h are arithmetic functions with f = g ∗h,
and write

G(x) =
∑
n≤x

g(n), H(x) =
∑
n≤x

h(n).
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Prove that (generalizing a previous exercise)

∑
n≤x

f(n) =

(∑
d≤y

g(d)H(x/d)

)
+

∑
d≤x/y

h(d)G(x/d)

−G(y)H(x/y).

10. Prove that the abscissa of absolute convergence L of a Dirichlet series
∑∞

n=1 ann
−s

satisfies the inequality

L ≤ lim sup
n→∞

(
1 +

log |an|
log n

)
(where log 0 = −∞), with equality if the |an| are bounded away from 0. Then exhibit
an example where the inequality is strict. (Thanks to Sawyer for pointing this out.)
Optional (I don’t know the answer): is there a formula that computes the abscissa of
absolute convergence in general? Dani proposed

lim sup
n→∞

log
∑

m≤n |am|
log n

but Sawyer found a counterexample to this too.
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