
18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Error bounds in the prime number theorem

In this unit, we introduce (without proof for now) a formula which relates the distribution
of primes to the zeroes of the Riemann zeta function. Given a suitable zero-free region for
ζ(s) in the critical strip, this can be used to prove the prime number theorem with an
estimate for the error term.

1 Zeta zeroes and prime numbers

For x /∈ N, define the counting function

ψ(x) =
∑

n≤x

Λ(n),

where Λ : N → R is the von Mangoldt function

Λ(n) =

{

log p n = pa, a ≥ 1

0 otherwise.

If x ∈ N, it is convenient to modify the definition to

ψ(x) =
∑

n<x

Λ(n) +
1

2
Λ(x).

Note that for the function ϑ we defined earlier as

ϑ(x) =
∑

p≤x

log p,

we have
ψ(x) − ϑ(x) = O(x1/2 log x) (x→ ∞)

so the prime number theorem is equivalent to

ψ(x) ∼ x (x→ ∞).

The formula of von Mangoldt expresses the difference ψ(x)−x in terms of the zeroes of ζ(s).
We will prove this formula in a later unit.

Theorem 1 (von Mangoldt’s formula). For x ≥ 2 and T > 0,

ψ(x) − x = −
∑

ρ:| Im(ρ)|<T

xρ

ρ
−
ζ ′(0)

ζ(0)
−

1

2
log(1 − x−2) +R(x, T )

with ρ running over the zeroes of ζ(s) in the region Re(s) ∈ [0, 1], and

R(x, T ) = O

(

x log2(xT )

T
+ (log x) min

{

1,
x

T 〈x〉

})

.

Here 〈x〉 denotes the distance from x to the nearest prime power other than possibly x itself.
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The region Re(s) ∈ [0, 1] is called the critical strip for ζ, because we can account for
all of the zeroes outside this strip: they are the trivial zeroes s = −2,−4, . . . forced by the
functional equation and the fact that Γ(s/2) has poles at nonpositive even integers. In fact,
the last term in the formula is merely −

∑

ρ
xρ

ρ
for ρ running over the trivial zeroes.

Incidentally, one can check by a numerical calculation that there are no real zeroes of ζ
in the critical strip, by numerically approximating the integral representation of ξ(s). This
raises an interesting point: in general, direct numerical approximation can be used to prove
that an analytic function does not vanish in a region, but not that it does vanish at a
particular point. The best one can do is use a zero-counting formula to prove that there
must be a zero near the proposed vanishing point.

Note that for x fixed, R(x, T ) = o(1) as T → ∞, so we have

ψ(x) − x = −
∑

ρ

xρ

ρ
−
ζ ′(0)

ζ(0)
−

1

2
log(1 − x−2)

as long as we interpret the sum over ρ to mean the limit of the partial sums over | Im(ρ)| < T
as T → ∞. This formula, while pretty, is not as useful in practice as the form with remainder;
we will use the remainder form by taking T to be some (preferably large) function of x as
x→ ∞.

2 How to use von Mangoldt’s formula

In order to use von Mangoldt’s formula to bound ψ(x)− x, we need to give an upper bound
on the sum

∑

ρ x
ρ/ρ for ρ running over nontrivial zeroes of ζ in the region | Im(s)| ≤ T .

Put β = Re(ρ), γ = Im(ρ). Suppose we can prove that β < 1 − f(|γ|) for some nonin-
creasing function f : [0,∞) → (0, 1/2); then

|xρ| = xβ < x1−f(|γ|) < x1−f(T )

and |ρ| ≥ |γ|. We thus have
∣

∣

∣

∣

∣

∣

∑

ρ:|γ|<T

xρ

ρ

∣

∣

∣

∣

∣

∣

≤ x1−f(T )
∑

ρ:|γ|<T

1

γ
.

Let N(T ) be the number of zeroes in the critical strip with |γ| ≤ T . Then

∑

ρ:0<|γ|<T

1

γ
=

∫ T

0

t−1dN(t) =
N(T )

T
+

∫ T

0

t−2N(t) dt.

At this point we need some information about N(T ); again, we will prove this (and a bit
more) later.

Theorem 2 (Hadamard). We have N(T ) = O(T log T ) as T → ∞.
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This implies that
∣

∣

∣

∣

∣

∣

∑

ρ:|γ|<T

1

γ

∣

∣

∣

∣

∣

∣

= O(log2 T ),

so
∣

∣

∣

∣

∣

∣

∑

ρ:|γ|<T

xρ

ρ

∣

∣

∣

∣

∣

∣

= O(x1−f(T ) log2 T ).

For x an integer, we now take T = T (x) to be a suitable function of x, and invoke von
Mangoldt’s formula with remainder to deduce that

ψ(x) − x = O

(

x1−f(T ) log2 T (x) +
x log2 x

T (x)
+
x log2 T (x)

T (x)

)

. (1)

3 The Riemann Hypothesis

Riemann calculated a few of the zeroes of ζ and, based on this evidence, made the following
remarkable conjecture (whose resolution is worth $1,000,000 from the Clay Mathematics
Institute).

Conjecture 3 (Riemann Hypothesis). The nontrivial zeroes of ζ all lie on the line Re(s) =
1
2
.

This is a best-case scenario in terms of deducing error bounds on ψ(x) − x. Namely,
suppose every nontrivial zero ρ of ζ satisfies c ≤ Re(ρ) ≤ 1 − c for some c ∈ (0, 1/2); then
we can take f(T ) = c in (1), yielding

ψ(x) − x = O

(

x1−c log2 T (x) +
x log2 x

T (x)
+
x log2 T (x)

T (x)

)

.

By taking T (x) = x, we obtain

ψ(x) − x = O(x1−c log2 x).

If I can take c to be any value less than 1/2, that means

ψ(x) − x = O(x1/2+ε) (ε > 0),

and similarly one gets a strong estimate on π(x) (see exercises).
Unfortunately, for no value of c > 0 are we able at present to prove that every nontrivial

zero ρ satisfies Re(ρ) ≤ 1 − c. We will give a much smaller zero-free region in a later unit.
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4 Variants for L-functions

For χ a Dirichlet character, define

ψ(x, χ) =
∑

n≤x

χ(n)Λ(n),

where again we multiply the n = x term by 1/2 if it is present.

Theorem 4. For χ a nonprincipal Dirichlet character of level N ,

ψ(x, χ) = −
∑

ρ:|γ|<T

xρ

ρ
− (1 − a) log x− b(χ) +

∞
∑

m=1

xa−2m

2m− a
+R(x, T ),

where b(χ) is an explicit constant, a = 1 for χ even and a = 0 for χ odd, and

R(x, T ) = O

(

x log2(NxT )

T
+ (log x) min

{

1,
x

T 〈x〉

})

.

For a fixed N , one can use this formula together with a zero-free region for all of the
L(s, χ) with χ of level N , to obtain a prime number theorem for arithmetic progressions of
difference N with an estimate for the error term.

However, one would also like to be able to establish a prime number theorem with error
term for arithmetic progressions where the difference is allowed to vary. In this case, one
of course must have a zero-free region for all of the relevant characters. But there are two
extra complications.

• One must understand how the constant b(χ) varies with χ.

• One must deal with possible roots of L(s, χ) that are very close to s = 0 or s = 1
(so-called Siegel zeroes).

Dealing with these goes beyond the level of detail I have in mind for this course; see Daven-
port §14–22 for a systematic exposition.

Exercises

1. Assume that ψ(x) = x + o(x1−ε) for some given ε ∈ (0, 1/2). Deduce a corresponding
upper bound for π(x) − li(x), where li(x) is the logarithmic integral function

li(x) =

∫ x

2

dt

log t
.

Then deduce that
π(x) −

x

log x
6= o(x1−δ)

for any δ > 0. (This last statement can be proved unconditionally, but don’t worry
about that for now.) This is the sense in which li(x) is a better approximation than
x/(log x) of the count of primes.
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