18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Error bounds in the prime number theorem

In this unit, we introduce (without proof for now) a formula which relates the distribution
of primes to the zeroes of the Riemann zeta function. Given a suitable zero-free region for
C(s) in the critical strip, this can be used to prove the prime number theorem with an
estimate for the error term.

1 Zeta zeroes and prime numbers

For = ¢ N, define the counting function
(x) =) Aln),
n<x

where A : N — R is the von Mangoldt function

| =p%a>1
A(n) = JlogP n=phaz
0 otherwise.

If x € N, it is convenient to modify the definition to

o) =3 Am) + %A(x).

n<x
Note that for the function ¥ we defined earlier as
I(x) = logp,
p<z
we have
P(z) —9(z) = O(z"*logz) (v — o0)
so the prime number theorem is equivalent to
Yx)~z (27— 00).

The formula of von Mangoldt expresses the difference )(z) —z in terms of the zeroes of ((s).
We will prove this formula in a later unit.

Theorem 1 (von Mangoldt’s formula). For z > 2 and T > 0,

P(z) — o =— Z %—%—%log(l—x”)—kR(w,T)

with p running over the zeroes of ((s) in the region Re(s) € [0,1], and

R(z,T) =0 (w + (log ) min {1, %w)}) .

Here (z) denotes the distance from x to the nearest prime power other than possibly x itself.

pi| Im(p) | <T

1



The region Re(s) € [0,1] is called the critical strip for ¢, because we can account for
all of the zeroes outside this strip: they are the trivial zeroes s = —2,—4,... forced by the
functional equation and the fact that I'(s/2) has poles at nonpositive even integers. In fact,
the last term in the formula is merely — > p %; for p running over the trivial zeroes.

Incidentally, one can check by a numerical calculation that there are no real zeroes of (
in the critical strip, by numerically approximating the integral representation of £(s). This
raises an interesting point: in general, direct numerical approximation can be used to prove
that an analytic function does not vanish in a region, but not that it does vanish at a
particular point. The best one can do is use a zero-counting formula to prove that there
must be a zero near the proposed vanishing point.

Note that for z fixed, R(z,T) = o(1) as T'— o0, so we have

vy -o == 0 - S - Slog1 - a)

p

as long as we interpret the sum over p to mean the limit of the partial sums over | Im(p)| < T
as T — oo. This formula, while pretty, is not as useful in practice as the form with remainder;
we will use the remainder form by taking 7' to be some (preferably large) function of = as
T — 00.

2 How to use von Mangoldt’s formula

In order to use von Mangoldt’s formula to bound ¢ (x) — z, we need to give an upper bound
on the sum > , T’ /p for p running over nontrivial zeroes of ¢ in the region | Im(s)| < T.

Put 8 = Re(p),y = Im(p). Suppose we can prove that § < 1 — f(|y|) for some nonin-
creasing function f : [0, 00) — (0,1/2); then

|zf| = 2P < 21D 1=F(T)

and |p| > |y|. We thus have

| i) 1
> a3 L

plv<T p plv|<T
Let N(T) be the number of zeroes in the critical strip with |y| < T. Then
1 4 N(T 4
Y o o—= / t7 AN (t) = N(T) +/ t72N(t) dt.
0 v 0 T 0
p:0<|y|<T

At this point we need some information about N(7'); again, we will prove this (and a bit
more) later.

Theorem 2 (Hadamard). We have N(T') = O(T'logT) as T — 0.
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This implies that

plv|<T
SO

o
Z = = Oz D log? T).

p
pily|<T

For x an integer, we now take 7' = T'(x) to be a suitable function of x, and invoke von
Mangoldt’s formula with remainder to deduce that

(1)

2 2
W(z)—ax =0 (xl_f(T) log? T(z) + 208 & | rlog Tm)

Tx) | T

3 The Riemann Hypothesis

Riemann calculated a few of the zeroes of ( and, based on this evidence, made the following
remarkable conjecture (whose resolution is worth $1,000,000 from the Clay Mathematics
Institute).

Conjecture 3 (Riemann Hypothesis). The nontrivial zeroes of ¢ all lie on the line Re(s) =
1

5.

This is a best-case scenario in terms of deducing error bounds on ¢ (x) — z. Namely,
suppose every nontrivial zero p of ( satisfies ¢ < Re(p) < 1 — ¢ for some ¢ € (0,1/2); then
we can take f(T) = cin (1), yielding

Y(x)—z=0 (xl_c log? T'(z) + zlog’ v xlOgQT(‘”))

T(x) T'(x)
By taking T'(x) = x, we obtain
Y(z) — 2 = O(x' “log? x).
If T can take ¢ to be any value less than 1/2, that means
Y(@) -2 =0@"*)  (e>0),

and similarly one gets a strong estimate on 7(z) (see exercises).
Unfortunately, for no value of ¢ > 0 are we able at present to prove that every nontrivial
zero p satisfies Re(p) < 1 — ¢. We will give a much smaller zero-free region in a later unit.



4 Variants for L-functions

For x a Dirichlet character, define
Y, x) = Y x(n)A(n),
n<x
where again we multiply the n = x term by 1/2 if it is present.

Theorem 4. For x a nonprincipal Dirichlet character of level N,

a—2m

b =— 3 Lo —alogr b))+ o+ R(z,T),

P 2m —a
piyI<T

where b(x) is an explicit constant, a = 1 for x even and a =0 for x odd, and

R(z,T)=0 (w + (log ) min {1, ﬁ}) .

For a fixed N, one can use this formula together with a zero-free region for all of the
L(s, x) with y of level N, to obtain a prime number theorem for arithmetic progressions of
difference N with an estimate for the error term.

However, one would also like to be able to establish a prime number theorem with error
term for arithmetic progressions where the difference is allowed to vary. In this case, one
of course must have a zero-free region for all of the relevant characters. But there are two
extra complications.

e One must understand how the constant b(x) varies with x.
e One must deal with possible roots of L(s, x) that are very close to s = 0 or s =1
(so-called Siegel zeroes).

Dealing with these goes beyond the level of detail I have in mind for this course; see Daven-
port §14-22 for a systematic exposition.

Exercises

1. Assume that ¢ (x) = z + o(z'7°) for some given € € (0,1/2). Deduce a corresponding
upper bound for 7(x) — li(x), where li(z) is the logarithmic integral function
Todt
li(x) = —.
5 logt

Then deduce that .

m(z) # o(z'?)

for any ¢ > 0. (This last statement can be proved unconditionally, but don’t worry
about that for now.) This is the sense in which li(z) is a better approximation than
x/(log z) of the count of primes.

B log x



