18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
 Error bounds in the prime number theorem

In this unit, we introduce (without proof for now) a formula which relates the distribution of primes to the zeroes of the Riemann zeta function. Given a suitable zero-free region for $\zeta(s)$ in the critical strip, this can be used to prove the prime number theorem with an estimate for the error term.

1 Zeta zeroes and prime numbers

For $x \notin \mathbb{N}$, define the counting function

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)
$$

where $\Lambda: \mathbb{N} \rightarrow \mathbb{R}$ is the von Mangoldt function

$$
\Lambda(n)= \begin{cases}\log p & n=p^{a}, a \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

If $x \in \mathbb{N}$, it is convenient to modify the definition to

$$
\psi(x)=\sum_{n<x} \Lambda(n)+\frac{1}{2} \Lambda(x) .
$$

Note that for the function ϑ we defined earlier as

$$
\vartheta(x)=\sum_{p \leq x} \log p,
$$

we have

$$
\psi(x)-\vartheta(x)=O\left(x^{1 / 2} \log x\right) \quad(x \rightarrow \infty)
$$

so the prime number theorem is equivalent to

$$
\psi(x) \sim x \quad(x \rightarrow \infty)
$$

The formula of von Mangoldt expresses the difference $\psi(x)-x$ in terms of the zeroes of $\zeta(s)$. We will prove this formula in a later unit.
Theorem 1 (von Mangoldt's formula). For $x \geq 2$ and $T>0$,

$$
\psi(x)-x=-\sum_{\rho:|\operatorname{Im}(\rho)|<T} \frac{x^{\rho}}{\rho}-\frac{\zeta^{\prime}(0)}{\zeta(0)}-\frac{1}{2} \log \left(1-x^{-2}\right)+R(x, T)
$$

with ρ running over the zeroes of $\zeta(s)$ in the region $\operatorname{Re}(s) \in[0,1]$, and

$$
R(x, T)=O\left(\frac{x \log ^{2}(x T)}{T}+(\log x) \min \left\{1, \frac{x}{T\langle x\rangle}\right\}\right) .
$$

Here $\langle x\rangle$ denotes the distance from x to the nearest prime power other than possibly x itself.

The region $\operatorname{Re}(s) \in[0,1]$ is called the critical strip for ζ, because we can account for all of the zeroes outside this strip: they are the trivial zeroes $s=-2,-4, \ldots$ forced by the functional equation and the fact that $\Gamma(s / 2)$ has poles at nonpositive even integers. In fact, the last term in the formula is merely $-\sum_{\rho} \frac{x^{\rho}}{\rho}$ for ρ running over the trivial zeroes.

Incidentally, one can check by a numerical calculation that there are no real zeroes of ζ in the critical strip, by numerically approximating the integral representation of $\xi(s)$. This raises an interesting point: in general, direct numerical approximation can be used to prove that an analytic function does not vanish in a region, but not that it does vanish at a particular point. The best one can do is use a zero-counting formula to prove that there must be a zero near the proposed vanishing point.

Note that for x fixed, $R(x, T)=o(1)$ as $T \rightarrow \infty$, so we have

$$
\psi(x)-x=-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{\zeta^{\prime}(0)}{\zeta(0)}-\frac{1}{2} \log \left(1-x^{-2}\right)
$$

as long as we interpret the sum over ρ to mean the limit of the partial sums over $|\operatorname{Im}(\rho)|<T$ as $T \rightarrow \infty$. This formula, while pretty, is not as useful in practice as the form with remainder; we will use the remainder form by taking T to be some (preferably large) function of x as $x \rightarrow \infty$.

2 How to use von Mangoldt's formula

In order to use von Mangoldt's formula to bound $\psi(x)-x$, we need to give an upper bound on the sum $\sum_{\rho} x^{\rho} / \rho$ for ρ running over nontrivial zeroes of ζ in the region $|\operatorname{Im}(s)| \leq T$.

Put $\beta=\operatorname{Re}(\rho), \gamma=\operatorname{Im}(\rho)$. Suppose we can prove that $\beta<1-f(|\gamma|)$ for some nonincreasing function $f:[0, \infty) \rightarrow(0,1 / 2)$; then

$$
\left|x^{\rho}\right|=x^{\beta}<x^{1-f(|\gamma|)}<x^{1-f(T)}
$$

and $|\rho| \geq|\gamma|$. We thus have

$$
\left|\sum_{\rho:|\gamma|<T} \frac{x^{\rho}}{\rho}\right| \leq x^{1-f(T)} \sum_{\rho:|\gamma|<T} \frac{1}{\gamma}
$$

Let $N(T)$ be the number of zeroes in the critical strip with $|\gamma| \leq T$. Then

$$
\sum_{\rho: 0<|\gamma|<T} \frac{1}{\gamma}=\int_{0}^{T} t^{-1} d N(t)=\frac{N(T)}{T}+\int_{0}^{T} t^{-2} N(t) d t
$$

At this point we need some information about $N(T)$; again, we will prove this (and a bit more) later.

Theorem 2 (Hadamard). We have $N(T)=O(T \log T)$ as $T \rightarrow \infty$.

This implies that

$$
\left|\sum_{\rho:|\gamma|<T} \frac{1}{\gamma}\right|=O\left(\log ^{2} T\right)
$$

so

$$
\left|\sum_{\rho:|\gamma|<T} \frac{x^{\rho}}{\rho}\right|=O\left(x^{1-f(T)} \log ^{2} T\right)
$$

For x an integer, we now take $T=T(x)$ to be a suitable function of x, and invoke von Mangoldt's formula with remainder to deduce that

$$
\begin{equation*}
\psi(x)-x=O\left(x^{1-f(T)} \log ^{2} T(x)+\frac{x \log ^{2} x}{T(x)}+\frac{x \log ^{2} T(x)}{T(x)}\right) . \tag{1}
\end{equation*}
$$

3 The Riemann Hypothesis

Riemann calculated a few of the zeroes of ζ and, based on this evidence, made the following remarkable conjecture (whose resolution is worth $\$ 1,000,000$ from the Clay Mathematics Institute).

Conjecture 3 (Riemann Hypothesis). The nontrivial zeroes of ζ all lie on the line $\operatorname{Re}(s)=$ $\frac{1}{2}$.

This is a best-case scenario in terms of deducing error bounds on $\psi(x)-x$. Namely, suppose every nontrivial zero ρ of ζ satisfies $c \leq \operatorname{Re}(\rho) \leq 1-c$ for some $c \in(0,1 / 2)$; then we can take $f(T)=c$ in (1), yielding

$$
\psi(x)-x=O\left(x^{1-c} \log ^{2} T(x)+\frac{x \log ^{2} x}{T(x)}+\frac{x \log ^{2} T(x)}{T(x)}\right) .
$$

By taking $T(x)=x$, we obtain

$$
\psi(x)-x=O\left(x^{1-c} \log ^{2} x\right)
$$

If I can take c to be any value less than $1 / 2$, that means

$$
\psi(x)-x=O\left(x^{1 / 2+\epsilon}\right) \quad(\epsilon>0)
$$

and similarly one gets a strong estimate on $\pi(x)$ (see exercises).
Unfortunately, for no value of $c>0$ are we able at present to prove that every nontrivial zero ρ satisfies $\operatorname{Re}(\rho) \leq 1-c$. We will give a much smaller zero-free region in a later unit.

4 Variants for L-functions

For χ a Dirichlet character, define

$$
\psi(x, \chi)=\sum_{n \leq x} \chi(n) \Lambda(n)
$$

where again we multiply the $n=x$ term by $1 / 2$ if it is present.
Theorem 4. For χ a nonprincipal Dirichlet character of level N,

$$
\psi(x, \chi)=-\sum_{\rho:|\gamma|<T} \frac{x^{\rho}}{\rho}-(1-a) \log x-b(\chi)+\sum_{m=1}^{\infty} \frac{x^{a-2 m}}{2 m-a}+R(x, T)
$$

where $b(\chi)$ is an explicit constant, $a=1$ for χ even and $a=0$ for χ odd, and

$$
R(x, T)=O\left(\frac{x \log ^{2}(N x T)}{T}+(\log x) \min \left\{1, \frac{x}{T\langle x\rangle}\right\}\right)
$$

For a fixed N, one can use this formula together with a zero-free region for all of the $L(s, \chi)$ with χ of level N, to obtain a prime number theorem for arithmetic progressions of difference N with an estimate for the error term.

However, one would also like to be able to establish a prime number theorem with error term for arithmetic progressions where the difference is allowed to vary. In this case, one of course must have a zero-free region for all of the relevant characters. But there are two extra complications.

- One must understand how the constant $b(\chi)$ varies with χ.
- One must deal with possible roots of $L(s, \chi)$ that are very close to $s=0$ or $s=1$ (so-called Siegel zeroes).
Dealing with these goes beyond the level of detail I have in mind for this course; see Davenport $\S 14-22$ for a systematic exposition.

Exercises

1. Assume that $\psi(x)=x+o\left(x^{1-\epsilon}\right)$ for some given $\epsilon \in(0,1 / 2)$. Deduce a corresponding upper bound for $\pi(x)-\operatorname{li}(x)$, where $\operatorname{li}(x)$ is the logarithmic integral function

$$
\operatorname{li}(x)=\int_{2}^{x} \frac{d t}{\log t}
$$

Then deduce that

$$
\pi(x)-\frac{x}{\log x} \neq o\left(x^{1-\delta}\right)
$$

for any $\delta>0$. (This last statement can be proved unconditionally, but don't worry about that for now.) This is the sense in which $\operatorname{li}(x)$ is a better approximation than $x /(\log x)$ of the count of primes.

