18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)

The functional equations for Dirichlet L-functions
In this unit, we establish the functional equation property for Dirichlet L-functions. Much of the work is left as exercises.

1 Even characters

Let χ be a Dirichlet character of level N. We say χ is even if $\chi(-1)=1$ and odd if $\chi(-1)=-1$.

For χ even, we can derive a functional equation for $L(s, \chi)$ by imitating the argument we used for ζ. Start with

$$
\chi(n) \pi^{-s / 2} N^{s / 2} \Gamma(s / 2) n^{-s}=\int_{0}^{\infty} \chi(n) e^{-\pi n^{2} x / N} x^{s / 2-1} d x
$$

and sum over n to obtain

$$
\begin{equation*}
\pi^{-s / 2} N^{s / 2} \Gamma(s / 2) L(s, \chi)=\frac{1}{2} \int_{0}^{\infty} x^{s / 2-1} \theta(x, \chi) d x \tag{1}
\end{equation*}
$$

for

$$
\theta(x, \chi)=\sum_{n=-\infty}^{\infty} \chi(n) e^{-\pi n^{2} x / N}
$$

(Notice there is no additive constant because $\chi(0)=0$.)
Applying the Poisson summation formula to $\theta(x, \chi)$ looks problematic, because $\chi(n)$ does not extend nicely to a function on all of \mathbb{R}. Fortunately we can avoid this by doing a bit more Fourier analysis, but this time on the additive group $\mathbb{Z} / N \mathbb{Z}$: write

$$
\chi(n)=\sum_{m=1}^{N} c_{\chi, m} e^{2 \pi i m n / N}
$$

with

$$
c_{\chi, m}=\frac{1}{N} \sum_{l=1}^{N} \chi(l) e^{-2 \pi i l m / N}
$$

I'll come back to what this quantity $c_{\chi, m}$ actually is in a moment. In the meantime, let's see what happens when we use this new expression for $\chi(n)$. Or rather, I'll let you see what happens as an exercise; you should get

$$
\begin{equation*}
\theta(x, \chi)=(N / x)^{1 / 2} \sum_{m=1}^{N} c_{\chi, m} \sum_{n=-\infty}^{\infty} e^{-\pi(n N+m)^{2} /(x N)} . \tag{2}
\end{equation*}
$$

To get further, we need some description of the $c_{\chi, m}$ which is somehow uniform in m. Here it is: if m is coprime to N, then

$$
\begin{aligned}
c_{\chi, m} & =\frac{1}{N} \sum_{l=1}^{N} \chi(l) e^{-2 \pi i l m / N} \\
& =\frac{1}{N} \sum_{l=1}^{N} \overline{\chi(m)} \chi(l m) e^{-2 \pi i l m / N} \\
& =\bar{\chi}(m) c_{\chi, 1} .
\end{aligned}
$$

For m not coprime to N, we must assume χ is primitive, and then again

$$
\begin{equation*}
c_{\chi, m}=\bar{\chi}(m) c_{\chi, 1} \tag{3}
\end{equation*}
$$

but this is not so obvious; see exercises.
This gives us

$$
\theta(x, \chi)=(N / x)^{1 / 2} c_{\chi, 1} \theta\left(x^{-1}, \bar{\chi}\right)
$$

and now we are home free: again split the integral (1) at 1 and substitute $x \mapsto x^{-1}$ in one term, to obtain

$$
\begin{aligned}
\pi^{-s / 2} N^{s / 2} \Gamma(s / 2) L(s, \chi) & =\frac{1}{2} \int_{1}^{\infty} x^{s / 2-1} \theta(x, \chi) d x+\frac{1}{2} \int_{1}^{\infty} x^{-s / 2-1} \theta\left(x^{-1}, \chi\right) d x \\
& =\frac{1}{2} \int_{1}^{\infty} x^{s / 2-1} \theta(x, \chi) d x+\frac{1}{2} N^{1 / 2} c_{\chi, 1} \int_{1}^{\infty} x^{(1-s) / 2-1} \theta(x, \bar{\chi}) d x
\end{aligned}
$$

Similarly,

$$
\pi^{-s / 2} N^{s / 2} \Gamma(s / 2) L(s, \bar{\chi})=\frac{1}{2} \int_{1}^{\infty} x^{s / 2-1} \theta(x, \bar{\chi}) d x+\frac{1}{2} N^{1 / 2} c_{\bar{\chi}, 1} \int_{1}^{\infty} x^{(1-s) / 2-1} \theta(x, \chi) d x .
$$

It is elementary to check that $c_{\chi, 1} c_{\bar{\chi}, 1}=N^{-1}$ (see exercises); we thus obtain

$$
\begin{equation*}
\pi^{-(1-s) / 2} N^{(1-s) / 2} \Gamma((1-s) / 2) L(1-s, \bar{\chi})=N^{1 / 2} c_{\bar{\chi}, 1} \pi^{-s} N^{s / 2} \Gamma(s / 2) L(s, \chi) \tag{4}
\end{equation*}
$$

Again, the extra factors of π, N, Γ should be thought of as an "extra Euler factor" coming from the "prime at infinity".

Pay close attention to the fact that unless $\chi=\bar{\chi}$, the functional equation 4 relates two different L-functions. In a few circumstances, this makes it less useful than if it related a single $L(s, \chi)$ to itself, but so be it.

Also note that quantity $c_{\chi, 1}$ is related to the more commonly introduced Gauss sum associated to χ :

$$
\tau(\chi)=N c_{\bar{\chi}, 1}=\sum_{l=1}^{N} \chi(l) e^{2 \pi i l / N}
$$

For more about Gauss sums, see the exercises.

2 Odd characters

We have to do something different if $\chi(-1)=-1$, as then the function $\theta(x, \chi)$ as defined above is identically zero. Instead we use

$$
\theta_{1}(x, \chi)=\sum_{n=\infty}^{\infty} n \chi(n) e^{-n^{2} \pi x / N}
$$

and shift s around a bit. Namely,

$$
\pi^{-(s+1) / 2} N^{(s+1) / 2} \Gamma((s+1) / 2) L(s, \chi)=\frac{1}{2} \int_{0}^{\infty} \theta_{1}(x, \chi) x^{(s+1) / 2-1} d x
$$

Again you split the integral at $x=1$ and use an inversion formula; this time the right identity is

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} n e^{-n^{2} \pi x / N+2 \pi i m n / N}=i(N / x)^{3 / 2} \sum_{n=-\infty}^{\infty}\left(n+\frac{m}{N}\right) e^{-\pi(n+m / N)^{2} N / x} \tag{5}
\end{equation*}
$$

You should end up with the functional equation

$$
\begin{equation*}
\pi^{-(2-s) / 2} N^{(2-s) / 2} \Gamma((2-s) / 2) L(1-s, \bar{\chi})=-i \tau(\bar{\chi}) N^{-1 / 2} \pi^{-(1+s) / 2} N^{(1+s) / 2} \Gamma((1+s) / 2) L(s, \chi) \tag{6}
\end{equation*}
$$

Since this is now the third time through this manner of argument, I leave further details to the exercises.

Exercises

1. Prove the following functional equations for Γ :

$$
\begin{aligned}
\Gamma(s) \Gamma(1-s) & =\frac{\pi}{\sin \pi s} \\
\Gamma(s) \Gamma(s+1 / 2) & =2^{1-2 s} \pi^{1 / 2} \Gamma(2 s)
\end{aligned}
$$

Then use these to give a simplified functional equation for ζ of the form " $\zeta(1-s)$ equals $\zeta(s)$ times some explicit function".
2. Prove that (3) holds for χ primitive whether or not m is coprime to N.
3. Prove that for χ primitive, $\tau(\chi) \overline{\tau(\chi)}=N$. (Warning: the value of $\tau(\chi) \tau(\bar{\chi})$ depends on whether χ is even or odd.) Then exhibit an example where this fails if χ is imprimitive.
4. For χ a Dirichlet character of level N, based on the functional equation, where does $L(s, \chi)$ have zeroes and poles in the region $\operatorname{Re}(s) \leq 0$?
5. Prove that

$$
\sum_{n=-\infty}^{\infty} e^{-(n+\alpha)^{2} \pi / x}=x^{1 / 2} \sum_{n=-\infty}^{\infty} e^{-n^{2} \pi x+2 \pi i n \alpha} \quad(\alpha \in \mathbb{R}, x>0)
$$

then prove (5) by the same method (namely Poisson summation).
6. Use the previous exercise to deduce (2).
7. Prove the functional equation (6).
8. Pick an example of a nonprincipal nonprimitive character χ, and write out the functional equation for $L(s, \chi)$.
9. (Dirichlet) For $a, b \in \mathbb{Z}$ and $f: \mathbb{R} \rightarrow \mathbb{C}$ a function obtained by taking a continuous function on $[a, b]$ and setting its other values to 0 , the Poisson summation formula still holds if interpreted as

$$
\frac{1}{2} f(a)+f(a+1)+\cdots+f(b-1)+\frac{1}{2} f(b)=\sum_{n=-\infty}^{\infty} \hat{f}(n)
$$

(you don't have to prove this). Apply this to the function

$$
f(t)= \begin{cases}e^{2 \pi i t^{2} / N} & t \in[0, N] \\ 0 & \text { otherwise }\end{cases}
$$

in order to evaluate $\sum_{n=1}^{N} e^{2 \pi i n^{2} / N}$ for N a positive integer. Then use this to compute $G(\chi)$ for χ the quadratic character $\chi(m)=\left(\frac{m}{p}\right)$. (Optional, not to be turned in: give a more elementary computation of $G(\chi)^{2}$.)

