
18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Introduction to large sieve inequalities

In this unit, we consider a relatively simple example of a large sieve inequality, of the
sort introduced by Linnik. This is a setup for the multiplicative large sieve inequality we
will need for Bombieri-Vinogradov.

1 Overview

The purpose of a “large sieve” is to allow sieving over a range of primes not possible with
the traditional sieve methods we considered earlier. The price to be paid is that one only
gets results of an aggregate nature. For instance, in the Bombieri-Vinogradov theorem, we
will consider the error terms in the prime number theorem in arithmetic progression for all
moduli in some range, and show that the sum of the errors cannot be too large.

This said, a “large sieve inequality” does not itself involve a sieve, at least not the way we
look at these things nowadays; the sieves only appear in the application. The general large
sieve problem: given a finite set V of vectors v ∈ C

n, find the smallest constant C = C(V )
such that for any vector x ∈ Cn,

∑

v∈V

|v · x|2 ≤ Cx · x. (1)

(Note that v · x is the usual Hermitian inner product.) Of course one has C ≤
∑

v∈V v · v by
Cauchy-Schwarz term by term, but this is nowhere near optimal if the vectors v are pointing
in all different directions, as then the vector x cannot simultaneously be nearly parallel to all
of them. A trivial example is given by an orthonormal set of vectors, in which case C = 1;
see the exercises for another simple example.

In number theory applications, we tend to view the same setup as follows. Given a finite
set X of complex-valued sequences, and a cutoff N , find a constant C = C(X, N) such that
for any an ∈ C,

∑

x∈X

∣

∣

∣

∣

∣

∑

n≤N

anx(n)

∣

∣

∣

∣

∣

2

≤ C
∑

n≤N

|an|
2.

2 An additive large sieve

In the additive large sieve, we take the sequences x ∈ X to be of the form exp(2πiαn) for
some α = αx ∈ R (or better, in R/Z). In order for these to be “not too parallel”, we insist
that the corresponding αx be δ-spaced for some δ > 0, i.e., if x, y ∈ X are distinct, then
αx − αy must have distance at least δ from the nearest integer. The following inequality
is due independently to Selberg, and to Montgomery and Vaughan; it refines a result of
Davenport and Halberstam.
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Theorem 1. Fix δ ∈ (0, 1/2]. Let S ⊂ R be a δ-spaced set (necessarily finite). Then for
any an ∈ C for M < n ≤ M + N ,

∑

α∈S

∣

∣

∣

∣

∣

∑

M<n≤M+N

an exp(2πiαn)

∣

∣

∣

∣

∣

2

≤ (δ−1 + N − 1)
∑

M<n≤M+N

|an|
2.

The key input is the following inequality, a variation of a classic inequality of Hilbert.

Lemma 2. Let λ1, . . . , λn be real numbers with |λi − λj| ≥ δ whenever i 6= j. Then for any
z1, . . . , zn ∈ C,

∣

∣

∣

∣

∣

∑

i6=j

zizj

λi − λj

∣

∣

∣

∣

∣

≤
π

δ

n
∑

i=1

|zi|
2.

Proof. Exercise.

Corollary 3. For S = {α1, . . . , αn} a δ-spaced set and z1, . . . , zn ∈ C,
∣

∣

∣

∣

∣

∑

i6=j

zizj

sin π(αi − αj)

∣

∣

∣

∣

∣

≤ δ−1
n

∑

i=1

|zi|
2.

Proof. Let K be a large positive integer. By the previous lemma applied to the set of M +αi

and the numbers (−1)Mzi for i = 1, . . . , n and M = 1, . . . , K, we get
∣

∣

∣

∣

∣

∣

∑

(i,M)6=(j,N)

(−1)M−N zizj

M − N + αi − αj

∣

∣

∣

∣

∣

∣

≤
πK

δ

n
∑

i=1

|zi|
2.

It changes nothing to run the sum over pairs of pairs in which only i 6= j, since the terms
(i, M), (i, N) and (i, N), (i, M) cancel each other. Put k = M −N and divide by K to obtain

∣

∣

∣

∣

∣

∑

i6=j

zizj

K
∑

k=−K

(

1 −
|k|

K

)

(−1)k

k + αi − αj

∣

∣

∣

∣

∣

≤
π

δ

n
∑

i=1

|zi|
2.

Taking K → ∞ and recalling that

1

α
+

∞
∑

k=1

(

(−1)k

k + α
+

(−1)−k

−k + α

)

=
π

sin πα

yields the claim.

Corollary 4. With notation as in the previous corollary, for any x ∈ R,
∣

∣

∣

∣

∣

∑

i6=j

zizj

sin 2πx(αi − αj)

sin π(αi − αj)

∣

∣

∣

∣

∣

≤ δ−1
n

∑

i=1

|zi|
2.
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Proof. Apply the previous corollary twice, multiplying zi by exp(±2πixαi).

We also need the following “duality” lemma.

Lemma 5 (Duality). Let Am,n ∈ C and C ∈ R be constants such that for any βn ∈ C,

∑

m

∣

∣

∣

∣

∣

∑

n

βnAm,n

∣

∣

∣

∣

∣

2

≤ C
∑

n

|βn|
2.

Then for any αm ∈ C,
∑

n

∣

∣

∣

∣

∣

∑

m

αmAm,n

∣

∣

∣

∣

∣

2

≤ C
∑

m

|αm|
2.

Proof. Exercise.

Proof of Theorem 1. We prove here only the bound with the factor δ−1 + N − 1 replaced by
δ−1 + N ; there is a fun trick to pick up the extra −1 (see exercises).

By duality, we may reduce to showing that for any zα ∈ C,

∑

M<n≤M+N

∣

∣

∣

∣

∣

∑

α∈S

zα exp(2πinα)

∣

∣

∣

∣

∣

2

≤ (δ−1 + N)
∑

α∈S

|zα|
2.

When we expand the square on the left side, the diagonal terms contribute N
∑

α |zα|
2. The

off-diagonal terms give

∑

α6=β

zαzβ exp(2πiK(α − β))
sin πN(α − β)

sin π(α − β)

for K = M + (N + 1)/2. By Corollary 4, this is bounded by δ−1
∑

α |zα|
2.

Exercises

1. Find the optimal constant in the large sieve inequality (1) when the vectors in V are
taken to be unit vectors forming the corners of a regular simplex in Rn with center
at the origin. (Hint: it may simply matters to view the situation inside an (n + 1)-
dimensional space.)

2. Prove Lemma 2. (Hint: by Cauchy-Schwarz, it is enough to prove

n
∑

i=1

∣

∣

∣

∣

∣

∑

j 6=i

zj

λi − λj

∣

∣

∣

∣

∣

2

≤
π2

δ2

n
∑

i=1

|zi|
2.

Do this by extremizing an appropriate Hermitian (quadratic) form, and noting that
the extremal vector must be an eigenvector.)
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3. Prove Lemma 5.

4. (Cohen) Prove Theorem 1 as stated, assuming the version in which the factor δ−1+N−1
is replaced by δ−1+N . (Hint: apply the weak version to the δK-spaced points (α+k)/K
for α running over S and k running over {1, . . . , K}, and the values bm being related
to the original an via

∑

m

bm exp(2πiαm) =
∑

n

an exp(2πiKαn).

Then take the limit as K → ∞.)
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