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A multiplicative large sieve inequality

In this unit, we convert the additive large sieve inequality from the previous unit, which
concerned characters of the additive group, into a result about Dirichlet characters.

1 Review of the additive large sieve

The additive large sieve inequality from last time stated the following.

Theorem 1. Fix δ ∈ (0, 1/2]. Let S ⊂ R be a δ-spaced set (necessarily finite). Then for
any an ∈ C for M < n ≤ M + N ,
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We will need in particular the special case

S = {a/q : 1 ≤ q ≤ Q, 0 ≤ a < q, gcd(a, q) = 1}.

Note that if a/q, a′/q′ ∈ S are distinct and m ∈ Z, then
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That is, S is δ-spaced for δ = Q−2. We thus obtain the following from the large sieve
inequality.

Theorem 2. Let N be a positive integer, and choose an ∈ C for M < n ≤ M + N . Then
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2 The Bombieri-Davenport inequality

We now ask the question: what if we replace the exponentials in the large sieve by the
primitive Dirichlet characters of all moduli q ≤ Q?

Theorem 3 (Bombieri-Davenport). Fix positive integers Q, N . For any an ∈ C for M <
n ≤ M + N , we have
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One can prove a stronger inequality in which you allow also some terms corresponding
to imprimitive characters, but I won’t need this.

Proof. As in the proof of the functional equation for Dirichlet L-functions, we use the ex-
pansion of primitive Dirichlet characters in terms of Gauss sums:

χ(n) = τ(χ)−1
∑

a∈Z/qZ

χ(a) exp(2πian/q),

where
τ(χ) =

∑

b∈Z/qZ

χ(b) exp(2πib/q)

has the property that
|τ(χ)| =

√
q.

If we put

S(α) =
∑

M<n≤M+N

an exp(2πiαn),

we can then write
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Summing over 1 ≤ q ≤ Q and χ primitive gives the left side of (1). I can get an upper bound
by summing over 1 ≤ q ≤ Q and all χ, primitive or not. By orthogonality of characters for
the group (Z/qZ)∗, this yields
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as an upper bound for the left side of (1). Applying Theorem 2 gives the right side of (1),
completing the proof.

3 An application of the large sieve

We will use the large sieve crucially in the Bombieri-Vinogradov theorem, but first let us
illustrate its use with one of its original applications, due to Linnik.

The setup here is as in the sieve of Eratosthenes: I have a sequence of complex numbers
an with finite support, a set of primes P , and for each p ∈ P , I wish to exclude a set of
residue classes Ωp of size ω(p). That is, I wish to compute Z, the sum of an over thoes n
which do not reduce to a class in Ωp for any p ∈ P . However, I’m not going to require ω(p)
to be as small as I did before; that’s what makes this a “large sieve”.
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Theorem 4. Suppose the support of an belongs to an interval of length N , and that ω(p) < p
for all p ∈ P . Let h be the multiplicative function with h(q) = 0 for q not squarefree and

h(p) =
ω(p)

p − ω(p)
.

Then for any Q ≥ 1,

|Z|2 ≤ N + Q2

H

∑

n

|an|2,

where H is the sum of h(q) over q ≤ Q squarefree. In particular, if an ∈ {0, 1} for all n,
then

Z ≤ N + Q2

H
.

The proof will be immediate from Theorem 3 plus the following lemma (summed over q).

Lemma 5. Put S(α) =
∑

n an exp(2πiαn). For any positive squarefree integer q,
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Proof. We first reduce to the case where q is prime. Suppose q = q1q2 and we know the
desired result for both q1 and q2. By the Chinese remainder theorem,
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It remains to prove the case where q is prime; we leave this case as an exercise.

Here is Linnik’s application of the large sieve. For p prime, let q(p) be the least positive
integer which is not a quadratic residue modulo p. It is conjectured that q(p) = O(pε) for
any ε > 0, but unconditionally this is only known for ε > e−1/2/4 ∼= 0.152. On the other
hand, under GRH, one can do much better: one proves q(p) = O(log2 p).

Theorem 6 (Linnik). For any fixed ε > 0, there exists c = c(ε) such that for any N , there
are at most c primes p ≤ N such that q(p) > N ε.

Proof. For convenience, we will prove instead that for some c = c(ε), for any N there are
at most c primes p ≤

√
N with q(p) > N ε. Let P be the set of primes p ≤

√
N such that

(

n
p

)

= 1 for all n ≤ N ε, and let Ωp be the classes of quadratic nonresidues mod p. (This is
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indeed a large sieve, because ω(p) = (p − 1)/2, so h(p) = (p − 1)/(p + 1) ∼ 1/2 as p → ∞,
whereas in our earlier examples ω(p) was bounded.)

We will now sieve on the set {1, . . . , N}, i.e., take an = 1 for 1 ≤ n ≤ N and an = 0
otherwise. The resulting sifted set includes all n ≤ N with no prime divisors greater than
N ε; if we let Zε be the number of these, then Theorem 4 applied with Q =

√
N yields

Zε ≤ 2NH−1.

On the other hand, if we let Xε be the number of primes p ≤
√

N with q(p) > N ε, then
because h(p) ≥ 1/3 for all p,

1

3
Xε ≤

∑

p≤
√

N,q(p)≥Nε

h(p) ≤ H.

Hence XεZε ≤ 6N .
To conclude, we need to show that Zε ≥ cN for some c > 0. In fact it can be shown

that Zε ∼ cN for some N , but as we don’t care about the particular constant, it will suffice
to exhibit a special class of numbers being counted by Zε which are sufficiently numerous.
Namely, take n = mp1 · pk ≤ N with N ε−ε2 < pj < N ε for j = 1, . . . , k = ε−1; then

Zε ≥
∑

p1,...,pk

⌊

N

p1 · · · pk

⌋

≥ cN,

completing the proof.

Exercises

1. Prove the following multivariate version of the additive large sieve inequality (but
without optimizing the constant). Fix δ > 0 and d ≥ 1, and let αi = (αi,1, . . . , αi,d) ∈
Rd/Zd be points which are δ-spaced, in the sense that the distance from each αi,k−αj,k

to the nearest integer is at least δ (whenever i 6= j and 1 ≤ k ≤ d). Prove that there
exists c = c(d) (independent of δ and the αi) such that for any an ∈ C with n running
over {1, . . . , N}d,
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2. Prove directly (by expanding the squares) that if we take take all characters, not just
the primitive ones, of a single modulus q, then the large sieve inequality holds with the
constant q + N . (This is not very useful in practice.)

3. Prove Lemma 5 in the case that q is prime. (Hint: there is no loss of generality in
assuming that there is at most one n in each residue class modulo p, and none in the
classes in Ωp, such that an 6= 0. Then use orthogonality of characters on Z/qZ.)
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