18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
 A multiplicative large sieve inequality

In this unit, we convert the additive large sieve inequality from the previous unit, which concerned characters of the additive group, into a result about Dirichlet characters.

1 Review of the additive large sieve

The additive large sieve inequality from last time stated the following.
Theorem 1. Fix $\delta \in(0,1 / 2]$. Let $S \subset \mathbb{R}$ be a δ-spaced set (necessarily finite). Then for any $a_{n} \in \mathbb{C}$ for $M<n \leq M+N$,

$$
\sum_{\alpha \in S}\left|\sum_{M<n \leq M+N} a_{n} \exp (2 \pi i \alpha n)\right|^{2} \leq\left(\delta^{-1}+N-1\right) \sum_{M<n \leq M+N}\left|a_{n}\right|^{2}
$$

We will need in particular the special case

$$
S=\{a / q: 1 \leq q \leq Q, 0 \leq a<q, \operatorname{gcd}(a, q)=1\} .
$$

Note that if $a / q, a^{\prime} / q^{\prime} \in S$ are distinct and $m \in \mathbb{Z}$, then

$$
\left|\frac{a}{q}-\frac{a^{\prime}}{q^{\prime}}-n\right|=\left|\frac{*}{q q^{\prime}}\right| \geq Q^{-2}
$$

That is, S is δ-spaced for $\delta=Q^{-2}$. We thus obtain the following from the large sieve inequality.

Theorem 2. Let N be a positive integer, and choose $a_{n} \in \mathbb{C}$ for $M<n \leq M+N$. Then

$$
\sum_{1 \leq q \leq Q} \sum_{a \in(\mathbb{Z} / q \mathbb{Z})^{*}}\left|\sum_{M<n \leq M+N} a_{n} \exp (2 \pi i a n / q)\right|^{2} \leq\left(Q^{2}+N-1\right) \sum_{M<n \leq M+N}\left|a_{n}\right|^{2}
$$

2 The Bombieri-Davenport inequality

We now ask the question: what if we replace the exponentials in the large sieve by the primitive Dirichlet characters of all moduli $q \leq Q$?

Theorem 3 (Bombieri-Davenport). Fix positive integers Q, N. For any $a_{n} \in \mathbb{C}$ for $M<$ $n \leq M+N$, we have

$$
\begin{equation*}
\sum_{1 \leq q \leq Q} \frac{q}{\phi(q)} \sum_{\chi}\left|\sum_{M<n \leq M+N} a_{n} \chi(n)\right|^{2} \leq\left(Q^{2}+N-1\right) \sum_{M<n \leq M+N}\left|a_{n}\right|^{2} \tag{1}
\end{equation*}
$$

One can prove a stronger inequality in which you allow also some terms corresponding to imprimitive characters, but I won't need this.

Proof. As in the proof of the functional equation for Dirichlet L-functions, we use the expansion of primitive Dirichlet characters in terms of Gauss sums:

$$
\chi(n)=\tau(\bar{\chi})^{-1} \sum_{a \in \mathbb{Z} / q \mathbb{Z}} \bar{\chi}(a) \exp (2 \pi i a n / q),
$$

where

$$
\tau(\chi)=\sum_{b \in \mathbb{Z} / q \mathbb{Z}} \chi(b) \exp (2 \pi i b / q)
$$

has the property that

$$
|\tau(\chi)|=\sqrt{q}
$$

If we put

$$
S(\alpha)=\sum_{M<n \leq M+N} a_{n} \exp (2 \pi i \alpha n)
$$

we can then write

$$
\left.\left.\frac{q}{\phi(q)}\right|_{M<n \leq M+N} a_{n} \chi(n)\right|^{2}=\frac{1}{\phi(q)}\left|\sum_{a \in \mathbb{Z} / q \mathbb{Z}} \bar{\chi}(a) S(a / q)\right|^{2}
$$

Summing over $1 \leq q \leq Q$ and χ primitive gives the left side of (1). I can get an upper bound by summing over $1 \leq q \leq Q$ and all χ, primitive or not. By orthogonality of characters for the group $(\mathbb{Z} / q \mathbb{Z})^{*}$, this yields

$$
\sum_{1 \leq q \leq Q} \sum_{a \in(\mathbb{Z} / q \mathbb{Z})^{*}}|S(a / q)|^{2}=\sum_{1 \leq q \leq Q} \sum_{a \in(\mathbb{Z} / q \mathbb{Z})^{*}}\left|\sum_{M<m \leq M+N} a_{n} \exp (2 \pi i a n / q)\right|^{2}
$$

as an upper bound for the left side of (1). Applying Theorem 2 gives the right side of (1), completing the proof.

3 An application of the large sieve

We will use the large sieve crucially in the Bombieri-Vinogradov theorem, but first let us illustrate its use with one of its original applications, due to Linnik.

The setup here is as in the sieve of Eratosthenes: I have a sequence of complex numbers a_{n} with finite support, a set of primes P, and for each $p \in P$, I wish to exclude a set of residue classes Ω_{p} of size $\omega(p)$. That is, I wish to compute Z, the sum of a_{n} over thoes n which do not reduce to a class in Ω_{p} for any $p \in P$. However, I'm not going to require $\omega(p)$ to be as small as I did before; that's what makes this a "large sieve".

Theorem 4. Suppose the support of a_{n} belongs to an interval of length N, and that $\omega(p)<p$ for all $p \in P$. Let h be the multiplicative function with $h(q)=0$ for q not squarefree and

$$
h(p)=\frac{\omega(p)}{p-\omega(p)} .
$$

Then for any $Q \geq 1$,

$$
|Z|^{2} \leq \frac{N+Q^{2}}{H} \sum_{n}\left|a_{n}\right|^{2}
$$

where H is the sum of $h(q)$ over $q \leq Q$ squarefree. In particular, if $a_{n} \in\{0,1\}$ for all n, then

$$
Z \leq \frac{N+Q^{2}}{H}
$$

The proof will be immediate from Theorem 3 plus the following lemma (summed over q).
Lemma 5. Put $S(\alpha)=\sum_{n} a_{n} \exp (2 \pi i \alpha n)$. For any positive squarefree integer q,

$$
h(q)|S(0)|^{2} \leq \sum_{a \in(\mathbb{Z} / q \mathbb{Z})^{*}}\left|S\left(\frac{a}{q}\right)\right|^{2}
$$

Proof. We first reduce to the case where q is prime. Suppose $q=q_{1} q_{2}$ and we know the desired result for both q_{1} and q_{2}. By the Chinese remainder theorem,

$$
\begin{aligned}
\sum_{a \in(\mathbb{Z} / q \mathbb{Z})^{*}}\left|S\left(\frac{a}{q}\right)\right|^{2} & =\sum_{a_{1} \in\left(\mathbb{Z} / q_{1} \mathbb{Z}\right)^{*}} \sum_{a_{2} \in\left(\mathbb{Z} / q_{2} \mathbb{Z}\right)^{*}}\left|S\left(\frac{a_{1}}{q_{1}+\frac{a_{2}}{q_{2}}}\right)\right|^{2} \\
& \geq h\left(q_{2}\right) \sum_{a_{1} \in\left(\mathbb{Z} / q_{1} \mathbb{Z}\right)^{*}}\left|S\left(\frac{a_{1}}{q_{1}}\right)\right|^{2} \\
& \geq h\left(q_{1}\right) h\left(q_{2}\right)|S(0)|^{2}=h(q)|S(0)|^{2} .
\end{aligned}
$$

It remains to prove the case where q is prime; we leave this case as an exercise.
Here is Linnik's application of the large sieve. For p prime, let $q(p)$ be the least positive integer which is not a quadratic residue modulo p. It is conjectured that $q(p)=O\left(p^{\epsilon}\right)$ for any $\epsilon>0$, but unconditionally this is only known for $\epsilon>e^{-1 / 2} / 4 \cong 0.152$. On the other hand, under GRH, one can do much better: one proves $q(p)=O\left(\log ^{2} p\right)$.

Theorem 6 (Linnik). For any fixed $\epsilon>0$, there exists $c=c(\epsilon)$ such that for any N, there are at most c primes $p \leq N$ such that $q(p)>N^{\epsilon}$.

Proof. For convenience, we will prove instead that for some $c=c(\epsilon)$, for any N there are at most c primes $p \leq \sqrt{N}$ with $q(p)>N^{\epsilon}$. Let P be the set of primes $p \leq \sqrt{N}$ such that $\left(\frac{n}{p}\right)=1$ for all $n \leq N^{\epsilon}$, and let Ω_{p} be the classes of quadratic nonresidues $\bmod p$. (This is
indeed a large sieve, because $\omega(p)=(p-1) / 2$, so $h(p)=(p-1) /(p+1) \sim 1 / 2$ as $p \rightarrow \infty$, whereas in our earlier examples $\omega(p)$ was bounded.)

We will now sieve on the set $\{1, \ldots, N\}$, i.e., take $a_{n}=1$ for $1 \leq n \leq N$ and $a_{n}=0$ otherwise. The resulting sifted set includes all $n \leq N$ with no prime divisors greater than N^{ϵ}; if we let Z_{ϵ} be the number of these, then Theorem 4 applied with $Q=\sqrt{N}$ yields

$$
Z_{\epsilon} \leq 2 N H^{-1}
$$

On the other hand, if we let X_{ϵ} be the number of primes $p \leq \sqrt{N}$ with $q(p)>N^{\epsilon}$, then because $h(p) \geq 1 / 3$ for all p,

$$
\frac{1}{3} X_{\epsilon} \leq \sum_{p \leq \sqrt{N}, q(p) \geq N^{\epsilon}} h(p) \leq H .
$$

Hence $X_{\epsilon} Z_{\epsilon} \leq 6 N$.
To conclude, we need to show that $Z_{\epsilon} \geq c N$ for some $c>0$. In fact it can be shown that $Z_{\epsilon} \sim c N$ for some N, but as we don't care about the particular constant, it will suffice to exhibit a special class of numbers being counted by Z_{ϵ} which are sufficiently numerous. Namely, take $n=m p_{1} \cdot p_{k} \leq N$ with $N^{\epsilon-\epsilon^{2}}<p_{j}<N^{\epsilon}$ for $j=1, \ldots, k=\epsilon^{-1}$; then

$$
Z_{\epsilon} \geq \sum_{p_{1}, \ldots, p_{k}}\left\lfloor\frac{N}{p_{1} \cdots p_{k}}\right\rfloor \geq c N
$$

completing the proof.

Exercises

1. Prove the following multivariate version of the additive large sieve inequality (but without optimizing the constant). Fix $\delta>0$ and $d \geq 1$, and let $\alpha_{i}=\left(\alpha_{i, 1}, \ldots, \alpha_{i, d}\right) \in$ $\mathbb{R}^{d} / \mathbb{Z}^{d}$ be points which are δ-spaced, in the sense that the distance from each $\alpha_{i, k}-\alpha_{j, k}$ to the nearest integer is at least δ (whenever $i \neq j$ and $1 \leq k \leq d$). Prove that there exists $c=c(d)$ (independent of δ and the α_{i}) such that for any $a_{n} \in \mathbb{C}$ with n running over $\{1, \ldots, N\}^{d}$,

$$
\sum_{i}\left|\sum_{n} a_{n} \exp \left(2 \pi i\left(n \cdot \alpha_{i}\right)\right)\right|^{2} \leq c\left(\delta^{-d}+N^{d}\right) \sum_{n}\left|a_{n}\right|^{2}
$$

2. Prove directly (by expanding the squares) that if we take take all characters, not just the primitive ones, of a single modulus q, then the large sieve inequality holds with the constant $q+N$. (This is not very useful in practice.)
3. Prove Lemma 5 in the case that q is prime. (Hint: there is no loss of generality in assuming that there is at most one n in each residue class modulo p, and none in the classes in Ω_{p}, such that $a_{n} \neq 0$. Then use orthogonality of characters on $\mathbb{Z} / q \mathbb{Z}$.)
