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The Selberg sieve

1 Review of notation

Let f : N → C be an arithmetic function, and suppose we want to estimate the sum of f
over primes. More precisely, let P be a set of primes, and put

P (z) =
∏

p≤z,p∈P

p.

If we define

S(x, z) =
∑

n≤x,(n,P (z))=1

f(n),

Ad(x) =
∑

n≤x,n≡0 (mod d)

f(n)

(with the dependence on P and f suppressed from the notation), we have

S(x, z) =
∑

d|P (z)

µ(d)Ad(x).

Let g(d) be a multiplicative function with

g(p) ∈ [0, 1) (p ∈ P );

g(p) = 0 (p /∈ P ),

and write
Ad(x) = g(d)x + rd(x).

Then

S(x, z) = V (z)x + R(x, z)

V (z) =
∏

p|P (z)

(1 − g(p))

R(x, z) =
∑

d|P (z)

rd(x).

2 The Selberg upper bound sieve

In the previous unit, we used the combinatorial sieve to construct an arithmetic function
λ+ : N → R such that

λ+(1) = 1
∑

d|n
λ+(d) ≥ 0 (n > 1).
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By setting

V +(z) =
∑

d|P (z)

λ+(d)g(d)

R+(x, z) =
∑

d|P (z)

λ+(d)rd(x),

we were able to obtain the bound

V −(z)x + R−(x, z) ≤ S(x, z) ≤ V +(z)x + R+(x, z), (1)

but controlling V + and R+ was rather painful.
Selberg proposed instead to construct an arithmetic function ρ : N → R with ρ(1) = 1

and

∑

d|n
λ+(n) =





∑

d|n
ρ(d)





2

.

In other words, let ρ be any arithmetic function with ρ(1) = 1, and put

λ+(n) =
∑

d1,d2:lcm(d1,d2)=n

ρ(d1)ρ(d2).

We will typically want λ+(d) = 0 for d ≥ y, for some prespecified number y; to enforce this,
we may insist that ρ(n) = 0 for n ≥ √

y. We call the resulting λ+ an L2-sieve of level y, or
more commonly a Selberg (upper bound) sieve of level y.

Let us drop x from consideration by agreeing to only consider functions f with finite
support. (That is, we replace f by the function vanishing above x.) If we again set

S(z) =
∑

(n,P (z))=1

f(n)

V +(z) =
∑

d|P (z)

λ+(d)g(d)

=
∑

d1,d2|P (z)

ρ(d1)ρ(d2)g(lcm(d1, d2))

R+(z) =
∑

d|P (z)

λ+(d)rd(x)

=
∑

d1,d2|P (z)

ρ(d1)ρ(d2)rlcm(d1,d2)(x),

we again have
S(z) ≤ V +(z)x + R+(z). (2)
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Ignoring the error term R+(z) for the moment, one can ask about optimizing the main term
V +(z)x in the bound (2). This amounts to viewing V +(z) as a quadratic form and then
minimizing it.

For simplicity, we will assume that g(p) ∈ (0, 1) for p ∈ P , and g(p) = 0 for p /∈ P .
(Before we only wanted g(p) ∈ [0, 1) for p ∈ P , but there is no harm in adding to P those
primes p for which g(p) = 0 into P .) Let h be a multiplicative function with

h(p) =
g(p)

1 − g(p)
.

We can then diagonalize the quadratic form as follows: first, put c = gcd(d1, d2), a = d1/c,
b = d2/c to obtain

V +(z) =
∑

a,b,c:abc|P (z)

ρ(ac)ρ(bc)g(abc)

=
∑

c|P (z)

g(c)−1
∑

a,b:abc|P (z)

(g(ac)ρ(ac))(g(bc)ρ(bc)).

Note that since P (z) is squarefree, the condition abc|P (z) forces gcd(a, b) = 1. We now
perform inclusion-exclusion on gcd(a, b) to obtain

V +(z) =
∑

c|P (z)

g(c)−1
∑

d|P (z)/c

µ(d)





∑

m|P (z)/(cd)

g(cdm)ρ(cdm)





2

=
∑

c|P (z)

g(c)−1
∑

d|P (z)/c

µ(d)





∑

m|P (z):m≡0 (cd)

g(m)ρ(m)





2

.

We next substitute e, f/e in for c, d, and reorder the sum:

V +(z) =
∑

f |P (z)

∑

e|f
µ(f/e)g(e)−1





∑

m|P (z):m≡0 (f)

g(m)ρ(m)





2

=
∑

f |P (z)

h(f)−1





∑

m|P (z):m≡0 (f)

g(m)ρ(m)





2

.

Let’s put

ξ(d) = µ(d)
∑

m|P (z):m≡0 (d)

g(m)ρ(m),

so that we have
V +(z) =

∑

d|P (z)

h(d)−1ξ(d)2.
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Before we can minimize this quadratic form, we must first reexpress in terms of ξ the con-
ditions we imposed on ρ. Namely, by Möbius inversion,

ρ(n) =
µ(n)

g(n)

∑

d|P (z):d≡0 (n)

ξ(d),

so the condition ρ(1) = 1 is equivalent to

∑

d|P (z)

ξ(d) = 1,

and the condition ρ(d) = 0 for d ≥ √
y is equivalent to

ξ(d) = 0 (d ≥ √
y).

That is, ξ is restricted to a hyperplane.
Here’s where the L2 part comes in. By the Cauchy-Schwartz inequality,

V +(z) ≥ H−1, H =
∑

d<
√

y,d|P (z)

h(d)

and equality holds for
ξ(d) = h(d)H−1 (d <

√
y).

Backing up, we get

ρ(d) = µ(d)
h(d)

g(d)
H−1

∑

n<
√

y/d:gcd(d,n)=1

h(n).

Putting this together, we obtain the following.

Theorem 1 (Selberg). Let f : N → R≥0 be an arithmetic function with finite support. Let
P be a set of primes, and put P (z) =

∏

p≤z,p∈P p. For d|P (z), write

Ad =
∑

n≡0 (d)

f(n) = g(d)X + rd(z)

for X > 0 and g a multiplicative function with 0 < g(p) < 1 for all p ∈ P . Let h(d) be a
multiplicative function with h(p) = g(p)(1 − g(p))−1 for all p ∈ P , and put

H =
∑

d<
√

y,d|P (z)

h(d)

for some y > 1. Then

S(z) =
∑

(n,P (z))=1

f(n) ≤ XH−1 +
∑

d|P (z)

λ+(d)rd(z), (3)
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for

λ+(n) =
∑

d1,d2:lcm(d1 ,d2)=n

ρ(d1)ρ(d2)

ρ(d) = µ(d)
h(d)

g(d)
H−1

∑

n<
√

y/d:gcd(d,n)=1

h(n).

As a somewhat miraculous corollary (due to van Lint and Richert), we obtain

0 ≤ µ(d)ρ(d) ≤ 1 (4)

(exercise); this makes it easy to estimate the error term in (3), e.g., by

|λ+(d)| ≤ d(log 3)/(log 2) (5)

(exercise).

Exercises

1. Prove (4). (Hint: group terms in the definition of H according to the common divisor
of d with some fixed number e.)

2. Deduce (5) from (4), by proving that |λ+(d)| ≤ 3ν(d), for ν(d) equal to the number of
prime factors of d.

3. In the Selberg sieve, prove that if we extend g to a completely multiplicative function,
then

H ≥
∑

n<
√

y

g(n).

4. Prove that for some c > 0,

∑

n≤x

2ν(n)

n
≥ c log2 x (x ≥ 1).

(Hint: an elementary proof is possible, but one can also use analytic arguments on the
Dirichlet series ζ2(s)/ζ(2s) =

∑∞
n=1 2ν(n)n−s.)

5. Let d(n) denote the number of divisors of the positive integer n. Prove that

∑

n≤x

d(n) ∼ x log x.

(This is needed for the next problem.)
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6. Use the Selberg sieve to prove that the number of twin primes p ≤ x is O(x/ log2 x).
(Hint: put f(n) = 1 if n = m(m + 2) for some m and f(n) = 0 otherwise, then apply
the Selberg sieve with z = x1/4. You may need some of the earlier exercises as well.)

7. (Brun-Titchmarsh theorem) Prove that for any ε > 0, there exists x0 = x0(ε) with
the following property: for any positive integers m, N with gcd(m, N) = 1, and any
x ≥ max{N, x0(ε)}, the number of primes p ≤ x with p ≡ m (mod N) is at most

(2 + ε)x

φ(N) log(2x/N)
.

This is one of several problems in which the Selberg sieve applies to give you a result
which is off by a factor of 2 from the expected best result.

8. Prove that
∑

n≤x

n

φ(n)
= O(x),

then deduce by partial summation that

∑

n≤x

1

φ(n)
= O(logx),

(Hint: first prove that the sum
∑

n 1/(nγ(n)) converges, where γ(n) =
∏

p|n p.)

9. Use the previous two exercises to deduce that

∑

p≤x

d(p − 1) = O(x),

where d(n) denotes the number of divisors of n.
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