1 Review of notation

Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an arithmetic function, and suppose we want to estimate the sum of f over primes. More precisely, let P be a set of primes, and put

$$
P(z)=\prod_{p \leq z, p \in P} p
$$

If we define

$$
\begin{aligned}
S(x, z) & =\sum_{n \leq x,(n, P(z))=1} f(n) \\
A_{d}(x) & =\sum_{n \leq x, n \equiv 0} f(n)
\end{aligned}
$$

(with the dependence on P and f suppressed from the notation), we have

$$
S(x, z)=\sum_{d \mid P(z)} \mu(d) A_{d}(x) .
$$

Let $g(d)$ be a multiplicative function with

$$
\begin{array}{cc}
g(p) \in[0,1) & (p \in P) \\
g(p)=0 & (p \notin P)
\end{array}
$$

and write

$$
A_{d}(x)=g(d) x+r_{d}(x)
$$

Then

$$
\begin{aligned}
S(x, z) & =V(z) x+R(x, z) \\
V(z) & =\prod_{p \mid P(z)}(1-g(p)) \\
R(x, z) & =\sum_{d \mid P(z)} r_{d}(x) .
\end{aligned}
$$

2 The Selberg upper bound sieve

In the previous unit, we used the combinatorial sieve to construct an arithmetic function $\lambda^{+}: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\lambda^{+}(1) & =1 \\
\sum_{d \mid n} \lambda^{+}(d) & \geq 0 \quad(n>1)
\end{aligned}
$$

By setting

$$
\begin{aligned}
V^{+}(z) & =\sum_{d \mid P(z)} \lambda^{+}(d) g(d) \\
R^{+}(x, z) & =\sum_{d \mid P(z)} \lambda^{+}(d) r_{d}(x),
\end{aligned}
$$

we were able to obtain the bound

$$
\begin{equation*}
V^{-}(z) x+R^{-}(x, z) \leq S(x, z) \leq V^{+}(z) x+R^{+}(x, z), \tag{1}
\end{equation*}
$$

but controlling V^{+}and R^{+}was rather painful.
Selberg proposed instead to construct an arithmetic function $\rho: \mathbb{N} \rightarrow \mathbb{R}$ with $\rho(1)=1$ and

$$
\sum_{d \mid n} \lambda^{+}(n)=\left(\sum_{d \mid n} \rho(d)\right)^{2}
$$

In other words, let ρ be any arithmetic function with $\rho(1)=1$, and put

$$
\lambda^{+}(n)=\sum_{d_{1}, d_{2}: \operatorname{lcm}\left(d_{1}, d_{2}\right)=n} \rho\left(d_{1}\right) \rho\left(d_{2}\right) .
$$

We will typically want $\lambda^{+}(d)=0$ for $d \geq y$, for some prespecified number y; to enforce this, we may insist that $\rho(n)=0$ for $n \geq \sqrt{y}$. We call the resulting λ^{+}an L^{2}-sieve of level y, or more commonly a Selberg (upper bound) sieve of level y.

Let us drop x from consideration by agreeing to only consider functions f with finite support. (That is, we replace f by the function vanishing above x.) If we again set

$$
\begin{aligned}
S(z) & =\sum_{(n, P(z))=1} f(n) \\
V^{+}(z) & =\sum_{d \mid P(z)} \lambda^{+}(d) g(d) \\
& =\sum_{d_{1}, d_{2} \mid P(z)} \rho\left(d_{1}\right) \rho\left(d_{2}\right) g\left(\operatorname{lcm}\left(d_{1}, d_{2}\right)\right) \\
R^{+}(z) & =\sum_{d \mid P(z)} \lambda^{+}(d) r_{d}(x) \\
& =\sum_{d_{1}, d_{2} \mid P(z)} \rho\left(d_{1}\right) \rho\left(d_{2}\right) r_{\operatorname{lcm}\left(d_{1}, d_{2}\right)}(x),
\end{aligned}
$$

we again have

$$
\begin{equation*}
S(z) \leq V^{+}(z) x+R^{+}(z) \tag{2}
\end{equation*}
$$

Ignoring the error term $R^{+}(z)$ for the moment, one can ask about optimizing the main term $V^{+}(z) x$ in the bound (2). This amounts to viewing $V^{+}(z)$ as a quadratic form and then minimizing it.

For simplicity, we will assume that $g(p) \in(0,1)$ for $p \in P$, and $g(p)=0$ for $p \notin P$. (Before we only wanted $g(p) \in[0,1)$ for $p \in P$, but there is no harm in adding to P those primes p for which $g(p)=0$ into P.) Let h be a multiplicative function with

$$
h(p)=\frac{g(p)}{1-g(p)}
$$

We can then diagonalize the quadratic form as follows: first, put $c=\operatorname{gcd}\left(d_{1}, d_{2}\right), a=d_{1} / c$, $b=d_{2} / c$ to obtain

$$
\begin{aligned}
V^{+}(z) & =\sum_{a, b, c: a b c \mid P(z)} \rho(a c) \rho(b c) g(a b c) \\
& =\sum_{c \mid P(z)} g(c)^{-1} \sum_{a, b: a b c \mid P(z)}(g(a c) \rho(a c))(g(b c) \rho(b c)) .
\end{aligned}
$$

Note that since $P(z)$ is squarefree, the condition $a b c \mid P(z)$ forces $\operatorname{gcd}(a, b)=1$. We now perform inclusion-exclusion on $\operatorname{gcd}(a, b)$ to obtain

$$
\begin{aligned}
V^{+}(z) & =\sum_{c \mid P(z)} g(c)^{-1} \sum_{d \mid P(z) / c} \mu(d)\left(\sum_{m \mid P(z) /(c d)} g(c d m) \rho(c d m)\right)^{2} \\
& =\sum_{c \mid P(z)} g(c)^{-1} \sum_{d \mid P(z) / c} \mu(d)\left(\sum_{m \mid P(z): m \equiv 0(c d)} g(m) \rho(m)\right)^{2} .
\end{aligned}
$$

We next substitute $e, f / e$ in for c, d, and reorder the sum:

$$
\begin{aligned}
V^{+}(z) & =\sum_{f \mid P(z)} \sum_{e \mid f} \mu(f / e) g(e)^{-1}\left(\sum_{m \mid P(z): m \equiv 0(f)} g(m) \rho(m)\right)^{2} \\
& =\sum_{f \mid P(z)} h(f)^{-1}\left(\sum_{m \mid P(z): m \equiv 0(f)} g(m) \rho(m)\right)^{2}
\end{aligned}
$$

Let's put

$$
\xi(d)=\mu(d) \sum_{m \mid P(z): m \equiv 0(d)} g(m) \rho(m)
$$

so that we have

$$
V^{+}(z)=\sum_{d \mid P(z)} h(d)^{-1} \xi(d)^{2} .
$$

Before we can minimize this quadratic form, we must first reexpress in terms of ξ the conditions we imposed on ρ. Namely, by Möbius inversion,

$$
\rho(n)=\frac{\mu(n)}{g(n)} \sum_{d \mid P(z): d \equiv 0(n)} \xi(d),
$$

so the condition $\rho(1)=1$ is equivalent to

$$
\sum_{d \mid P(z)} \xi(d)=1
$$

and the condition $\rho(d)=0$ for $d \geq \sqrt{y}$ is equivalent to

$$
\xi(d)=0 \quad(d \geq \sqrt{y})
$$

That is, ξ is restricted to a hyperplane.
Here's where the L^{2} part comes in. By the Cauchy-Schwartz inequality,

$$
V^{+}(z) \geq H^{-1}, \quad H=\sum_{d<\sqrt{y}, d \mid P(z)} h(d)
$$

and equality holds for

$$
\xi(d)=h(d) H^{-1} \quad(d<\sqrt{y}) .
$$

Backing up, we get

$$
\rho(d)=\mu(d) \frac{h(d)}{g(d)} H^{-1} \sum_{n<\sqrt{y} / d: \operatorname{gcd}(d, n)=1} h(n) .
$$

Putting this together, we obtain the following.
Theorem 1 (Selberg). Let $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ be an arithmetic function with finite support. Let P be a set of primes, and put $P(z)=\prod_{p \leq z, p \in P} p$. For $d \mid P(z)$, write

$$
A_{d}=\sum_{n \equiv 0(d)} f(n)=g(d) X+r_{d}(z)
$$

for $X>0$ and g a multiplicative function with $0<g(p)<1$ for all $p \in P$. Let $h(d)$ be a multiplicative function with $h(p)=g(p)(1-g(p))^{-1}$ for all $p \in P$, and put

$$
H=\sum_{d<\sqrt{y}, d \mid P(z)} h(d)
$$

for some $y>1$. Then

$$
\begin{equation*}
S(z)=\sum_{(n, P(z))=1} f(n) \leq X H^{-1}+\sum_{d \mid P(z)} \lambda^{+}(d) r_{d}(z) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\lambda^{+}(n) & =\sum_{d_{1}, d_{2}: \operatorname{lcm}\left(d_{1}, d_{2}\right)=n} \rho\left(d_{1}\right) \rho\left(d_{2}\right) \\
\rho(d) & =\mu(d) \frac{h(d)}{g(d)} H^{-1} \sum_{n<\sqrt{y} / d: \operatorname{gcd}(d, n)=1} h(n) .
\end{aligned}
$$

As a somewhat miraculous corollary (due to van Lint and Richert), we obtain

$$
\begin{equation*}
0 \leq \mu(d) \rho(d) \leq 1 \tag{4}
\end{equation*}
$$

(exercise); this makes it easy to estimate the error term in (3), e.g., by

$$
\begin{equation*}
\left|\lambda^{+}(d)\right| \leq d^{(\log 3) /(\log 2)} \tag{5}
\end{equation*}
$$

(exercise).

Exercises

1. Prove (4). (Hint: group terms in the definition of H according to the common divisor of d with some fixed number e.)
2. Deduce (5) from (4), by proving that $\left|\lambda^{+}(d)\right| \leq 3^{\nu(d)}$, for $\nu(d)$ equal to the number of prime factors of d.
3. In the Selberg sieve, prove that if we extend g to a completely multiplicative function, then

$$
H \geq \sum_{n<\sqrt{y}} g(n) .
$$

4. Prove that for some $c>0$,

$$
\sum_{n \leq x} \frac{2^{\nu(n)}}{n} \geq c \log ^{2} x \quad(x \geq 1)
$$

(Hint: an elementary proof is possible, but one can also use analytic arguments on the Dirichlet series $\zeta^{2}(s) / \zeta(2 s)=\sum_{n=1}^{\infty} 2^{\nu(n)} n^{-s}$.)

5 . Let $d(n)$ denote the number of divisors of the positive integer n. Prove that

$$
\sum_{n \leq x} d(n) \sim x \log x .
$$

(This is needed for the next problem.)
6. Use the Selberg sieve to prove that the number of twin primes $p \leq x$ is $O\left(x / \log ^{2} x\right)$. (Hint: put $f(n)=1$ if $n=m(m+2)$ for some m and $f(n)=0$ otherwise, then apply the Selberg sieve with $z=x^{1 / 4}$. You may need some of the earlier exercises as well.)
7. (Brun-Titchmarsh theorem) Prove that for any $\epsilon>0$, there exists $x_{0}=x_{0}(\epsilon)$ with the following property: for any positive integers m, N with $\operatorname{gcd}(m, N)=1$, and any $x \geq \max \left\{N, x_{0}(\epsilon)\right\}$, the number of primes $p \leq x$ with $p \equiv m(\bmod N)$ is at most

$$
\frac{(2+\epsilon) x}{\phi(N) \log (2 x / N)} .
$$

This is one of several problems in which the Selberg sieve applies to give you a result which is off by a factor of 2 from the expected best result.
8. Prove that

$$
\sum_{n \leq x} \frac{n}{\phi(n)}=O(x)
$$

then deduce by partial summation that

$$
\sum_{n \leq x} \frac{1}{\phi(n)}=O(\log x)
$$

(Hint: first prove that the sum $\sum_{n} 1 /(n \gamma(n))$ converges, where $\gamma(n)=\prod_{p \mid n} p$.)
9. Use the previous two exercises to deduce that

$$
\sum_{p \leq x} d(p-1)=O(x)
$$

where $d(n)$ denotes the number of divisors of n.

