Here are some suggestions about how to apply the Selberg sieve; this should help with some of the exercises on the previous handout (the bound on twin primes, and the BrunTitchmarsh inequality).

1 Review of the setup

Recall the setup.
Theorem 1 (Selberg). Let $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ be an arithmetic function with finite support. Let P be a set of primes, and put $P(z)=\prod_{p \leq z, p \in P} p$. For $d \mid P(z)$, write

$$
A_{d}=\sum_{n \equiv 0(d)} f(n)=g(d) X+r_{d}(z)
$$

for $X>0$ and g a multiplicative function with $0<g(p)<1$ for all $p \in P$. Let $h(d)$ be a multiplicative function with $h(p)=g(p)(1-g(p))^{-1}$ for all $p \in P$, and put

$$
H=\sum_{d<\sqrt{y}, d \mid P(z)} h(d)
$$

for some $y>1$. Then

$$
\begin{equation*}
S(z)=\sum_{(n, P(z))=1} f(n) \leq X H^{-1}+\sum_{d \mid P(z)} \lambda^{+}(d) r_{d}(z) \tag{1}
\end{equation*}
$$

for

$$
\begin{aligned}
\lambda^{+}(n) & =\sum_{d_{1}, d_{2}: \operatorname{lcm}\left(d_{1}, d_{2}\right)=n} \rho\left(d_{1}\right) \rho\left(d_{2}\right) \\
\rho(d) & =\mu(d) \frac{h(d)}{g(d)} H^{-1} \sum_{n<\sqrt{y} / d: \operatorname{gcd}(d, n)=1} h(n) .
\end{aligned}
$$

Also recall that we could bound $\lambda^{+}(d)$ by $\tau_{3}(d)$, the number of ways to write d as a product of 3 positive integers.

2 Interlude: bounding sums of multiplicative functions

Let f be a multiplicative function, for which we want to bound $\sum_{n \leq x} f(n)$. Here is an argument that does this for us (due to Wirsing), assuming some control over the values of f at prime powers.

To be specific, let e be the arithmetic function defined by the following identity of formal Dirichlet series:

$$
\sum_{n=1}^{\infty} e(n) n^{-s}=-\frac{d}{d s} \log \sum_{n=1}^{\infty} f(n) n^{-s}
$$

We will impose the condition that for some $\kappa>0$,

$$
\begin{equation*}
\sum_{n \leq x} e(n)=\kappa \log x+O(1) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leq x}|f(n)|=O\left(\log ^{|\kappa|} x\right) \tag{3}
\end{equation*}
$$

(The superfluous absolute value in (3) is included because it actually suffices to take $\kappa>$ $-1 / 2$, but we won't use this.)

Define

$$
M_{f}(x)=\sum_{n \leq x} f(n),
$$

which is what we want to estimate. We first obtain

$$
\begin{equation*}
(\kappa+1) \sum_{n \leq x} f(n) \log n=\kappa M_{f}(x) \log x+O\left(\log ^{\kappa} x\right) \tag{4}
\end{equation*}
$$

(exercise). Since

$$
\sum_{n \leq x} f(n) \log (x / n)=\int_{1}^{x} M_{f}(y) y^{-1} d y
$$

we obtain

$$
\Delta(x)=M_{f}(x) \log x-(\kappa+1) \int_{2}^{x} M_{f}(y) y^{-1} d y=O\left(\log ^{\kappa} x\right)
$$

We next derive the following identity:

$$
\begin{equation*}
M_{f}(x)=\log ^{\kappa} x \int_{2}^{x}-\Delta(y) d(\log y)^{-\kappa-1}+\Delta(x) \log ^{-1} x \tag{5}
\end{equation*}
$$

(exercise). This implies

$$
M_{f}(x)=c_{f} \log ^{\kappa} x+O\left(\log ^{\kappa-1} x\right)
$$

for

$$
c_{f}=-\int_{2}^{\infty} \Delta(y) d(\log y)^{-\kappa-1}
$$

but it would be nice to be able to describe c_{f} more explicitly. Fortunately this is possible: we have

$$
\begin{equation*}
c_{f}=\frac{1}{\Gamma(\kappa+1)} \prod_{p}\left(1-p^{-1}\right)^{\kappa}\left(1+f(p)+f\left(p^{2}\right)+\cdots\right) \tag{6}
\end{equation*}
$$

(exercise).

3 Bounding the main term

To get an upper bound on the main term $X H^{-1}$, we need a lower bound on H. A simple example occurs when $g(d)=d^{-1}$; see exercises.

A more generic example occurs when we have

$$
\sum_{p \leq x} g(p) \log p=\kappa \log x+O(1)
$$

for some $\kappa>0$, and

$$
\sum_{p} g(p)^{2} \log p<\infty
$$

For instance, this holds if $g(p)=c / p$. By Wirsing's bound, we get

$$
\begin{aligned}
H & =c \log ^{\kappa} \sqrt{y}\left(1+O\left(\log ^{-1} y\right)\right) \\
c & =\frac{1}{\Gamma(\kappa+1)} \prod_{p}(1-g(p))^{-1}\left(1-p^{-1}\right)^{\kappa} .
\end{aligned}
$$

This can be more usefully written as

$$
\begin{equation*}
H^{-1}=2^{\kappa} \Gamma(\kappa+1) H_{g} \log ^{-\kappa} y\left(1+O\left(\log ^{-1} y\right)\right) \tag{7}
\end{equation*}
$$

where

$$
H_{g}=\prod_{p}(1-g(p))\left(1-p^{-1}\right)^{-\kappa}
$$

4 Bounding the error term

Suppose our function g satisfies the conditions

$$
\begin{equation*}
g(d) d \geq 1 \quad(d \mid P(z)) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{y \leq p \leq x} g(p) \log p=O(\log (2 x / y)) . \tag{9}
\end{equation*}
$$

Suppose also that the individual error terms r_{d} are not too large:

$$
\begin{equation*}
\left|r_{d}(z)\right| \leq g(d) d \quad(d \mid P(z)) \tag{10}
\end{equation*}
$$

Then it is straightforward to derive the bound

$$
\begin{equation*}
\left|\sum_{d \mid P(z)} \lambda^{+}(d) r_{d}(z)\right| \leq y \log ^{-2} y \tag{11}
\end{equation*}
$$

(exercise).

Exercises

1. In the Selberg sieve, prove that

$$
H>\log \sqrt{y}
$$

Moreover, if we instead take $g(d)=d^{-1}$ and P to be the set of all primes, then

$$
H>(\log \sqrt{y}) \prod_{p \mid q}(1-g(p)) .
$$

2. Prove (4).
3. Prove (5).
4. Prove (6). (Hint: write $\sum_{n=1}^{\infty} f(n) n^{-s}$ in terms of c_{f} by partial summation, then multiply by $\zeta(s+1)^{\kappa}$ and compare to the Euler product.)
5. Prove (11). (Hint: first bound the sum on the left by

$$
\left(\sum_{d<\sqrt{y}}\left|\rho_{d}\right| g(d) d\right)^{2} \leq\left(\frac{1}{H} \sum_{n<\sqrt{y}} h(n) \sigma(n)\right)^{2}
$$

where σ is the usual sum-of-divisors function. Then apply the prime number theorem plus partial summation to control this.)

