18.786: Topics in Algebraic Number Theory (spring 2006) Supplement: addition on elliptic curves

Let K be a field and let \bar{K} be an algebraic closure of K. Then any homogeneous polynomial $P \in K[x, y, z]$ defines a closed subvariety $V(P)$ of the projective space $\mathbb{P}_{\bar{K}}^{3}$. Actually it's a closed subscheme, but I'll often assume that P has no repeated factors, so that I can neglect this.

I say P is nonsingular at a point $[a: b: c] \in V(P)$ (the a, b, c being homogeneous coordinates) if the partial derivatives of P do not all vanish at $(x, y, z)=(a, b, c)$. Then P has a unique tangent line at that point.

For $P, Q \in K[x, y, z]$ homogeneous polynomials with no factors in common, I define the intersection multiplicity of P, Q at a point $[a: b: c] \in V(P) \cap V(Q)$ to be the K-dimension of the local ring of the scheme $V(P) \cap V(Q)$ at $[a, b, c]$. Concretely, take $K[x, y, z] /(P, Q)$, invert any homogeneous polynomial not vanishing at $[a, b, c]$, then pull out the bit of degree zero.

If P and Q are both nonsingular, then the intersection multiplicity is 1 . If only P is nonsingular, then the intersection multiplicity is the order of vanishing of Q along the tangent line of P.

Theorem 1 (Bézout) Let $P, Q \in K[x, y, z]$ be homogeneous polynomials with no repeated factors and no factors in common. Then the intersection multiplicities of all points of $V(P) \cap$ $V(Q)$ add up to $\operatorname{deg}(P) \operatorname{deg}(Q)$.

Let $P \in K[x, y, z]$ be a polynomial with no repeated factors. Let $\operatorname{Div}(P)$ be the free abelian group generated by $V(P)$; we refer to elements of $\operatorname{Div}(P)$ as divisors on P and define the degree of a divisor as the sum of its coefficients. For any $Q \in K[x, y, z]$ with no factor in common with P, write (Q) for the divisor consisting of each point in $V(P) \cap V(Q)$ with multiplicity equal to the intersection multiplicity. By Bézout, this divisor has degree $\operatorname{deg}(P) \operatorname{deg}(Q)$.

Let $\operatorname{Div}^{0}(P)$ be the subgroup of $\operatorname{Div}(P)$ consisting of divisors of degree 0 . Define the Picard group $\operatorname{Pic}(P)$ of P (or better, of the algebraic curve $V(P)$ over \bar{K}) to be the quotient of $\operatorname{Div}^{0}(P)$ by the subgroup generated by $\left(Q_{1}\right)-\left(Q_{2}\right)$ for all homogeneous polynomials Q_{1}, Q_{2} of the same degree.

Now suppose P has degree 3 and is nonsingular everywhere, and that $O \in V(P)$ is a point with coefficients in K. The pair $(V(P), O)$ is an example of an elliptic curve. In this case, for any points $T, U \in V(P)$, you can draw a line through T and U which hits $V(P)$ in a third point S, and thus get a relation $(S)+(T)+(U)=\ell$, where ℓ is the divisor of any fixed line. Consequence: every element of $\operatorname{Pic}(P)$ can be represented by a pair $(T)-(O)$ for some $T \in V(P)$. Moreover, this T is unique: that amounts to saying that $(T)-(U)$ can never occur as the divisor of a polynomial. That's a little exercise in the theory of algebraic curves: such a divisor would give rise to an isomorphism between $V(P)$ and $\mathbb{P}_{\bar{K}}^{1}$, but the former has genus 1 and the latter has genus 0 . (Concretely: there is a rational differential form on $V(P)$ with no poles anywhere, but any rational differential on $\mathbb{P}_{\bar{K}}^{1}$ has two more poles than zeroes, when counting with multiplicity.)

In other words, there is an addition law for points on $V(P)$! Moreover, you can compute this law as follows: given two points T, U, take the third intersection S of the line through them with $V(P)$, then take the third intersection of the line through S and O with $V(P)$. In particular, K-rational points form a subgroup under addition.

Aside: the uniqueness argument doesn't work if P is degree 3 but singular, but you can still use the geometric addition law on nonsingular points, as long as O itself is nonsingular: you can prove the associativity by degeneration from the nonsingular case. (The hangup with a singular point is that a line through it always has intersection multiplicity greater than 1 with $V(P)$.) But in this case you can sometimes identify the result more simply; see exercises.

For more, see Silverman, The Arithmetic of Elliptic Curves. I may have more to say on this topic later.

Exercise (not to be turned in):

1. Let $P=x^{3}+y^{2} z$ and let $O=[0: 1: 0]$. Give an isomorphism of the group of nonsingular points of $V(P)$ with the additive group of \bar{K}.
2. Let $P=x^{3}+x^{2} z+y^{2} z$ and let $O=[0: 1: 0]$. Give an isomorphism of the group of nonsingular points of $V(P)$ with the multiplicative group of \bar{K}.
