18.786 supplement: linear disjointness

Let me try to alleviate a bit of the confusion about the concept of linear disjointness (thanks to Dani Kane for helping straighten some of this out). This corrects some assertions from the March 14 lecture.

Let L_{1}, L_{2} be finite extensions of a field K. We say that L_{1} and L_{2} are linearly disjoint if the K-algebra $L_{1} \otimes_{K} L_{2}$ is a field (note that it is enough for it to be an integral domain, since we proved in class that any integral domain which is integral over a field is also a field). If so, it is then isomorphic to the compositum $L_{1} L_{2}$ within any overfield L_{3} containing both L_{1} and L_{2} (because the multiplication map from $L_{1} \otimes_{K} L_{2}$ to L_{3} will be injective and its image will be a field containing both L_{1} and L_{2}, so $L_{1} L_{2}$ can be no larger).

It is not true in general that just knowing that $L_{1} \cap L_{2}=K$ inside some overfield L_{3} is enough to say that L_{1} and L_{2} are linearly disjoint. (For instance, look at two different copies of $\mathbb{Q}[x] /\left(x^{3}-2\right)$ inside \mathbb{C}; their compositum has degree 6 , not 9 , over \mathbb{Q}.)

However, if L_{1} and L_{2} are Galois over K, then it is true that the equality $L_{1} \cap L_{2}=K$ in any overfield implies that L_{1} and L_{2} are linearly disjoint. Proof: we first check that the compositum of two Galois extensions is Galois (without any extra hypothesis). Let L_{3} be the compositum in some overfield. Since L_{1} / K is separable, it is generated by a root of a separable polynomial; that root also generates L_{3} over L_{2}, so L_{3} / L_{2} is separable. Since L_{3} / L_{2} and L_{2} / K are separable, so is L_{3} / K. Since L_{1} and L_{2} are Galois, they are normal: they are splitting fields for some polynomials P_{1} and P_{2} over K. Then L_{3} is a splitting field for $P_{1} P_{2}$, so it is also normal over K. Since L_{3} / K is normal and separable, it is Galois (but this, or more precisely the fact that normal plus separable implies that the automorphism group is as big as the extension degree, is nontrivial Galois theory!).

Put $G_{i}=\operatorname{Gal}\left(L_{i} / K\right)$; then G_{3} surjects onto G_{1} and G_{2} via the Galois correspondence. Let H_{i} be the kernel of $G_{3} \rightarrow G_{i}$ for $i=1,2$; then $H_{1} \cap H_{2}$ fixes both L_{1} and L_{2}, and since L_{3} is the compositum of those, $H_{1} \cap H_{2}$ must fix L_{3}. Hence $H_{1} \cap H_{2}=\{e\}$.

Finally, the hypothesis $L_{1} \cap L_{2}=K$ implies, via the Galois correspondence, that there is no normal subgroup of G_{3} containing both H_{1} and H_{2}; that is, $H_{1} H_{2}=G_{3}$. We have maps $G_{3} \rightarrow G_{1}$ and $G_{3} \rightarrow G_{2}$ giving a map $G_{3} \rightarrow G_{1} \times G_{2}$; by elementary group theory, this map must now be an isomorphism. In particular, $\left[L_{3}: K\right]=\left[L_{1}: K\right]\left[L_{2}: K\right]$, so the surjection $L_{1} \otimes_{K} L_{2} \rightarrow L_{3}$ must be an isomorphism.

