18.786: Topics in Algebraic Number Theory (spring 2006) Problem Set 2, due Thursday, March 2

Reminder: no class on February 21 or 23! That's why this set is on the long side.

1. Put $R=\mathbb{Z}[\sqrt{5}]$. Exhibit:
(a) a failure of unique factorization of ideals in R;
(b) a failure of a local ring of R to be a DVR.
2. These are not actually related; they were run together by mistake on the original version, and to preserve the numbering I have left them together here.
(a) Let R be an integrally closed domain. Prove that $R[x]$ is also integrally closed.
(b) Let R be a noetherian local domain with maximal ideal \mathfrak{m}. Prove that R is a DVR if and only if $\mathfrak{m} / \mathfrak{m}^{2}$, when viewed as a vector space over R / \mathfrak{m}, is one-dimensional. (The space $\mathfrak{m} / \mathfrak{m}^{2}$ is called the cotangent space of R, because that's what it is in the case where R is the local ring of a point on a smooth manifold.)
3. Determine the integral closure of \mathbb{Z} in $\mathbb{Q}[x] /\left(x^{3}-2\right)$ and in $\mathbb{Q}[x] /\left(x^{3}-x-4\right)$. (Remember: this means you have to first state the answer, then prove that nothing else in the field is integral!)
4. Let $P \in \mathbb{C}[x, y]$ be an irreducible polynomial such that P is nonsingular in the affine plane, that is, $P, \frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}$ generate the unit ideal. Prove that $\mathbb{C}[x, y] /(P)$ is a Dedekind domain; among other things, this will reveal the origin of the term "uniformizer" as an abbreviation for "uniformizing parameter". (Hint: by the Nullstellensatz, the maximal ideals of $\mathbb{C}[x, y]$ correspond to points in \mathbb{C}^{2}, and the maximal ideals of $\mathbb{C}[x, y] /(P)$ correspond to points where P vanishes. Now use condition 2 from Theorem I.3.16.)
5. Demonstrate an example to show that in the previous problem, the nonsingularity condition cannot be omitted. (Hint: the simplest example is a node, where analytically two branches of the zero locus appear to cross.)
6. Prove the following converse of the unique factorization theorem: let R be an integral domain in which every nonzero ideal has a unique factorization into prime ideals. Prove that R is a Dedekind domain. (Hint: suppose that R has a maximal ideal \mathfrak{m} of height greater than 1 , and then construct a \mathfrak{m}-primary ideal which is not a power of \mathfrak{m}.)
7. Let R be a Dedekind domain, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be nonzero prime ideals of R, and let S be the multiplicative subset $R-\left(\mathfrak{p}_{1} \cup \cdots \cup \mathfrak{p}_{n}\right)$. Prove that R_{S} is a PID. (Hint: prove that R_{S} has only the "obvious" prime ideals.)
8. Exercise I. 1 (page 13).
9. (a) Do Exercise I. 4 (page 19).
(b) Prove that if S is the multiplicative set generated by a single element f, the kernel of the map $\mathbf{C}(R) \rightarrow \mathbf{C}\left(R_{S}\right)$ is generated by the classes of the prime ideals in the prime factorization of (f).
(c) Deduce that if $\mathbf{C}(R)$ is finite, then there exists a nonzero $f \in R$ such that R_{f} is a PID.
(c) Exhibit an explicit example where the map $\mathbf{C}(R) \rightarrow \mathbf{C}\left(R_{S}\right)$ fails to be injective.
10. Here is a variant of the concept of a PID which is sometimes useful. A Bézout ring is a ring in which every finitely generated ideal is principal. That is, a Bézout ring is like a PID except it may not be noetherian, e.g., the ring $\cup_{n=1}^{\infty} \mathbb{C} \llbracket x^{1 / n} \rrbracket$ from lecture.
(a) Prove that every finitely generated torsion-free module over a Bézout domain is free, by imitating the proof in the PID case. (Optional: generalize other results to the Bézout case, e.g., the fact that a finitely presented projective module over a Bézout domain is free.)
(b) Let R be the integral closure of \mathbb{Z} in \mathbb{C}. Prove that the localization of R at any maximal ideal is a Bézout ring which is not noetherian.
(c) For $0<r<1$, let R_{r} be the ring of complex analytic functions on the annulus $r<|z|<1$. Prove that $R=\cup_{r} R_{r}$ is a Bézout domain which is not noetherian. (Hint: recall that the zeroes of an analytic function have no accumulation point in the region of definition.)
(d) Optional: prove that the ring R in (b) is itself a Bézout ring. For this, you may use results from Janusz that we have not yet covered in class, e.g., the fact that the integral closure of \mathbb{Z} in a finite extension of \mathbb{Q} is a Dedekind ring, or the finiteness of the class group of said ring.
11. Find out how to use SAGE built-in functions to compute the class group of the ring of integers in a quadratic number field. Then write a program to compute the sizes of the class groups of $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{-d})$ for $d \leq 1000$, and tell me what you notice. Pay particular attention to factors of 2. (Optional: repeat with some cubic number fields and pay attention to the factors of 3.)
12. (Not to be turned in) Read the proof of Theorem I.3.16, particularly any parts I skipped in class.
13. (Optional, not to be turned in) Read the beginning of Silverman's The Arithmetic of Elliptic Curves to find out why the class group of $\mathbb{C}[x, y] /\left(y^{2}-x^{3}-A x-B\right)$, where $A, B \in \mathbb{C}$ are such that $x^{3}-A x-B$ has no repeated roots, is isomorphic to a complex torus (i.e., \mathbb{C} modulo a lattice), and so in particular is infinite.
