18.786: Topics in Algebraic Number Theory (spring 2006) Problem Set 5, due Thursday, March 23

- 1. Janusz p. 58, exercise 5.
- 2. Janusz p. 62, exercise 3.
- 3. Let K be an abelian extension of \mathbb{Q} whose Galois group is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^n$ for some n, and which is unramified over all rational primes $p \neq 2$. Prove that $K \subseteq \mathbb{Q}(\sqrt{-1}, \sqrt{2})$ (so that in particular $n \leq 2$).
- 4. (a) Prove that for each prime p and each positive integer n, there exists an abelian extension of \mathbb{Q} whose Galois group is cyclic of order p^n , and which is only ramified above p. (Hint: find it inside a cyclotomic field. The case p = 2 is a little bit special.)
 - (b) For p = 3, 5 and n = 1, find an explicit polynomial P(x) such that the extension in (a) is isomorphic to $\mathbb{Q}[x]/(P(x))$.
- 5. Let p, q be distinct primes which are both congruent to 1 modulo 4.
 - (a) Prove that the class group $\mathbb{Q}(\sqrt{pq})$ contains a nontrivial element of order 2.
 - (b) Prove that $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is everywhere unramified over $\mathbb{Q}(\sqrt{pq})$.

(The relationship between these two statements will be explained later in terms of class field theory.)

- 6. Janusz p. 73, exercise 1 (this is related to the previous problem).
- 7. Let *E* be the elliptic curve $y^2 = x^3 + x + 1$ over \mathbb{Q} . On a previous problem set, I explained how the $\overline{\mathbb{Q}}$ -points of *E* form an abelian group.
 - (a) Find the polynomial whose roots are the x-coordinates of the nontrivial 3-torsion points of E. (Hint: equate 2P with -P.)
 - (b) Check your answer for (a) using SAGE. (Hint: you computed a "division polynomial".)
 - (c) Use SAGE to compute the Galois group of the number field generated by the roots of the polynomial you computed in (a).
 - (d) (Optional) Repeat (a) and (c) for the 5-torsion (the degree of the polynomial should be 12), then note that the answer is not S_{12} (its order is too small). How could you have predicted this before doing the calculation? (Hint: the action of the Galois group commutes with the addition law.)
 - (e) (Optional) The discriminant of the polynomial $x^3 + x + 1$ turns out to be -31. Why does that imply (without further calculation) that the number field you considered in (c) is unramified above all primes $p \notin \{3, 31\}$? (Hint: for such p, the computation of the division polynomial commutes with reduction modulo p.)