18.786: Topics in Algebraic Number Theory (spring 2006)
 Problem Set 6, due Thursday, April 6

Reminder: this course has one in-class midterm, scheduled for Thursday, April 6, the same day as this problem set is due. The intent is for the midterm to be pretty easy: to that end, I'll allow open book and notes (but no computers), and the format will be something like "Do at least A of the following B problems now, and attach the remaining ones to the next problem set."

1. Janusz p. 78, exercise 2.
2. Janusz p. 81, exercise 5.
3. Let K be a number field, and let S be a finite set of nonzero primes in \mathfrak{o}_{K}, and write $\mathfrak{o}_{K, S}$ for the localization of \mathfrak{o}_{K} at the multiplicative set generated by S (i.e., you take elements which generate ideals whose only prime factors are elements of S).
(a) Prove that the torsion subgroups of $\mathfrak{o}_{K, S}^{*}$ and of \mathfrak{o}_{K}^{*} are equal.
(b) Prove that $\mathfrak{o}_{K, S}^{*} / \mathfrak{o}_{K}^{*}$ (which is torsion-free by (a)) is free of rank \#S. (Hint: every ideal has a power which is principal. That may not give you the entire quotient, but it's enough to prove the claim.)

You have now extended Dirichlet's units theorem to cover " S-units".
4. Use Minkowski's bound to prove that the number field $\mathbb{Q}[x] /\left(x^{3}-x^{2}-x+2\right)$ has class number 1. You may use SAGE to find the discriminant without further justification.
5. Let $P(x) \in \mathbb{Z}[x]$ be an irreducible monic polynomial whose discriminant D is squarefree. Prove that the splitting field of $P(x)$ contains and is everywhere unramified over $\mathbb{Q}(\sqrt{D})$. (This shows that Janusz, Theorem I. 13.9 becomes quite false if you replace \mathbb{Q} by a "random" quadratic number field.)
6. A CM field (for "complex multiplication") is a totally imaginary quadratic extension of a totally real number field.
(a) Let K be a totally complex number field; then for each embedding $K \hookrightarrow \mathbb{C}$, complex conjugation on \mathbb{C} induces an automorphism of K. Prove that these are all the same automorphism if and only if K is a CM field.
(b) Prove that for any odd prime $p, \mathbb{Q}\left(\zeta_{p}\right)$ is a CM field.
(c) Prove that every unit u in $\mathbb{Z}\left[\zeta_{p}\right]$ is equal to a power of ζ_{p} times a totally real element. (Hint: divide u by its conjugate.)
7. In class several lectures ago, I defined the different $\operatorname{Diff}(L / K)$ of an extension L / K of number fields as the ideal of \mathfrak{o}_{L} inverse to the fractional ideal

$$
\left\{x \in \mathfrak{o}_{L}: \operatorname{Trace}_{L / K}(x y) \in \mathfrak{o}_{K} \text { for all } y \in \mathfrak{o}_{L}\right\}
$$

and I pointed out that it's generated by $f_{\alpha}^{\prime}(\alpha)$ for all $\alpha \in \mathfrak{o}_{K}$, where f_{α} denotes the characteristic polynomial of multiplication-by- α on L as a K-vector space.
(a) Prove that $\operatorname{Disc}(L / K)=\operatorname{Norm}_{L / K}(\operatorname{Diff}(L / K))$.
(b) Let $M / L / K$ be a tower of number fields. Prove that as ideals of \mathfrak{o}_{M},

$$
\operatorname{Diff}(M / L) \operatorname{Diff}(L / K)=\operatorname{Diff}(M / K)
$$

and deduce as a corollary that

$$
\Delta(M / K)=\Delta(L / K)^{[M: L]} \operatorname{Norm}_{L / K}(\Delta(M / L)) .
$$

8. (a) Suppose K is a number field which contains and is unramified over the Gaussian rationals $\mathbb{Q}(i)$. Determine, up to sign, the absolute discriminant of K as a function of its absolute degree. (Hint: use the previous problem.)
(b) Use (a) and the Minkowski discriminant bound to prove that $\mathbb{Q}(i)$ admits no nontrivial everywhere unramified extension.
9. Go to http://www.mathpuzzle.com/, look up the 14 Mar 2006 entry, and prove "Snevetz's Last Theorem". (Hint: guess what number field is defined by this polynomial.) Unfortunately, it's too late to collect the $\$ 500 \ldots$
