### 18.786: Topics in Algebraic Number Theory (spring 2006) Problem Set 7, due Thursday, April 13

Reminder: the detached part of the midterm is also due on April 13; no extensions on that!

1. Leftover from last time: here is Kummer's original motivation for developing the theory of ideals and the like. Let $p>3$ be a rational prime which does not divide the class number of $\mathbb{Q}\left(\zeta_{p}\right)$; such a prime $p$ is said to be regular. (Optional: web search to find out more about regular and irregular primes.) Suppose that we had a counterexample $x^{p}+y^{p}+z^{p}=0$ to the Fermat conjecture with $p \nmid x y z$.
(a) Prove that for $i=0, \ldots, p-1, x+\zeta^{i} y$ is equal to a $p$-th power times a unit in $\mathbb{Z}\left[\zeta_{p}\right]$. (Hint: check that the ideals $\left(x+\zeta^{i} y\right)$ are pairwise coprime.)
(b) Prove that for some integer $m$,

$$
x \zeta_{p}^{m}+y \zeta_{p}^{m-1} \equiv x \zeta_{p}^{-m}+y \zeta_{p}^{1-m} \quad(\bmod p)
$$

(Hint: use a problem from the previous pset.)
(a) Prove that in (b), we must have $2 m \equiv 1(\bmod p)$ and deduce that $x \equiv y(\bmod p)$. Since the same argument yields $x \equiv z(\bmod p)$, this yields a contradiction.
2. Prove that the 10 -adic completion of $\mathbb{Z}$ is not a domain. Optional (not to be turned in): prove that the $N$-adic completion of $\mathbb{Z}$ is isomorphic to the product of $\mathbb{Z}_{p}$ over all $p$ dividing $N$ (in particular, it only depends on the squarefree part of $N$ ). Also optional (also not to be turned in): generalize to any Dedekind domain.
3. Prove that an element of $\mathbb{Q}_{p}$ is rational if and only if its base $p$ expansion is terminating or periodic (to the left, that is).
4. Janusz p. 99, exercise 3.
5. Janusz p. 99, exercise 7.
6. Let $P(x)$ be a polynomial with coefficients in $\mathbb{Z}_{p}$, and suppose $r \in \mathbb{Z}_{p}$ satisfies $|P(r)|<$ $\left|P^{\prime}(r)\right|^{2}$. Prove that starting from $r$, the Newton iteration $z \mapsto z-P(z) / P^{\prime}(z)$ converges to a root of $P$; deduce as a corollary that such a root exists. This leads to a proof of Hensel's Lemma, as well as a good algorithm for computing roots of $p$-adic polynomials.
7. (Optional) A DVR satisfying the conclusion of Hensel's lemma (say, in the formulation given in the previous exercise) is said to be henselian; such a DVR satisfies most of the interesting properties of complete DVRs, like the theorems about extending absolute values.
(a) Let $R$ be the integral closure of $\mathbb{Z}_{(p)}$ in $\mathbb{Z}_{p}$. Prove that $R$ is a henselian DVR which is not complete.
(b) Let $R$ be the ring of formal power series over $\mathbb{C}$ which converge on some disc around the origin. Prove that $R$ is a henselian DVR which is not complete.
8. Let $R$ be a complete DVR whose fraction field is of characteristic 0 and whose residue field $\kappa$ is perfect of characteristic $p>0$ (e.g., $R=\mathbb{Z}_{p}$ ). Prove that for each $x \in \kappa$, there exists a unique lift of $x$ into $R$ which has a $p^{n}$-th root in $R$ for all positive integers $n$. (Hint: define a sequence whose $n$-th term is obtained by choosing some lift of $x^{1 / p^{n}}$ and raising it to the $p^{n}$-th power. Show that this sequence converges.) This lift, usually denoted $[x]$, is called the Teichmüller lift of $x$.
9. (a) Prove that the field $\mathbb{Q}_{p}$ has no nontrivial automorphisms as a field, even if you don't ask for continuity. (Hint: use the previous exercise, but beware that you aren't given that the automorphism carries $\mathbb{Z}_{p}$ into itself.)
(b) Prove that for $p$ and $q$ distinct primes, the fields $\mathbb{Q}_{p}$ and $\mathbb{Q}_{q}$ are not isomorphic. (Hint: which elements of $\mathbb{Q}_{q}$ have $p$-th roots?)
10. If you postponed PS 4 problem 8, solve it now as follows. (Parts (a) and (b) are related to the hint from PS 4.) Throughout, let $R^{\prime} / R$ be a finite extension of DVRs such that the residue field extension is separable.
(a) Suppose $R$ is complete (as then is $R^{\prime}$ ). Prove that there exists a unique intermediate DVR $R^{\prime \prime}$ such that $R^{\prime \prime} / R$ is unramified and $R^{\prime} / R^{\prime \prime}$ is totally ramified. (Hint: apply the primitive element theorem to the residue field, then lift the resulting polynomial and apply Hensel's lemma to it.)
(b) In the situation of (a), prove that $R^{\prime}$ is monogenic over $R$. (Hint: add a uniformizer to an element generating the unramified subextension.) extension.)
(c) In the situation of (a), choose $x$ such that $R^{\prime}=R[x]$. Prove that there exists an integer $n$ such that if $x-y \in \mathfrak{m}_{R^{\prime}}^{n}$, then also $R^{\prime}=R[y]$. (That is, any sufficiently good approximation to a generator is again a generator.)
(d) Now let $R$ be arbitrary, and let $\widehat{R}$ and $\widehat{R}^{\prime}$ denote the respective completions. Prove that $\left[\widehat{R}^{\prime}: \widehat{R}\right]=\left[R^{\prime}: R\right]$, or equivalently, that the natural map $\widehat{R} \otimes_{R} R^{\prime} \rightarrow \widehat{R}^{\prime}$ is a bijection. (Hint: you can prove the latter by viewing the map as a morphism of $\widehat{R}$-modules and use Nakayama's lemma.)
(e) Show that $R^{\prime} / R$ is monogenic. (Hint: use (a)-(c) to produce an element $x \in R^{\prime}$ with $\widehat{R^{\prime}}=\widehat{R}[x]$. Then use (d) to show that also $R^{\prime}=R[x]$.)
11. The ring $\mathbb{Z}_{(5)}[x] /\left(x^{2}+1\right)$ is finite integral over the DVR $\mathbb{Z}_{(5)}$ but injects into the completion $\mathbb{Z}_{5}$. Why doesn't that contradict part (d) of the previous problem?

