
18.786: Topics in Algebraic Number Theory (spring 2006)
Problem Set 8, due Thursday, April 20

This problem set uses heavily the fact that if K is the fraction field of a discrete valuation
ring, then the absolute value on K extends uniquely to any finite extension of K; I should
get to this by the end of class on the 13th.

I marked a number of things “Optional” on here; to make up for it, please make sure
to do at least one “Optional” part. (That is, the parts are all optional individually but not
collectively.)

1. Let Ui be the group of x ∈ Zp with x ≡ 1 (mod pi). Prove that if p 6= 2 and i ≥ 1, or
p = 2 and i ≥ 2, then Ui is torsion-free. (Hint: use exp and log.)

2. Determine the radius of convergence of the Taylor series for sin x over Qp.

3. Prove that a formal power series
∑∞

n=0 anx
n and its formal derivative

∑∞
n=1 nanx

n−1

have the same radius of convergence over Qp.

4. (a) Prove that the infinite extension Qp(p, p
1/p, p1/p2

, . . . ) of Qp is not complete (under
the unique extension of the p-adic absolute value).

(b) Prove that the maximal unramified extension of Qp is not complete either.

(c) Optional: prove that any infinite algebraic extension of Qp is not complete.

5. (Optional, possibly tricky) Let Cp be the completion of an algebraic closure of Qp for
the unique extension of the p-adic absolute value. Prove that Cp is again algebraically
closed; the field Cp is loosely analogous to the usual complex numbers in ordinary
analysis.

6. In this exercise, you will check some of the basic properties of Newton polygons I
outlined in class. Let K be the fraction field of a DVR R. For P (x) = anx

n + · · ·+a0 ∈
K[x] with an, a0 6= 0, consider the set of points {(−i, v(ai)) : i = 0, . . . , n} in R2. Their
lower convex hull is the Newton polygon of P ; I’ll think of this polygon as consisting
of n separate segments of horizontal width 1.

(a) Let r1, . . . , rn be the roots of P in some finite extension K ′ of K. Assume that v
extends uniquely to K ′ (we’ll prove this in class; note that v is normalized with
respect to K, not K ′). Prove that the slopes of the Newton polygon are precisely
v(r1), . . . , v(rn). (Hint: sort the ri so that v(r1) ≤ · · · ≤ v(rn). Then check
v(an−i/an) ≥ v(r1)+ · · ·+v(ri). Then check that equality holds if v(ri) < v(ri+1),
or if i = n.)

(b) Prove that the Newton polygon of PQ is obtained by “merging” the Newton
polygons of P and Q: that is, the number of segments of the Newton polygon
of PQ of any given slope is the sum of the corresponding numbers for P and Q.
(Hint: this can be done directly, but use (a) instead.)
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(c) As an example, compute the p-adic absolute values of the roots of x5 − 2x2 + 16
in an algebraic closure of Q2. (I suspect SAGE can verify this by approximating
the roots numerically.)

7. (a) Let K be a finite unramified extension of Qp. Prove that there is a unique auto-
morphism of K over Qp lifting the p-power Frobenius map on the residue field.
(Optional: state and prove a generalization to an arbitrary finite unramified ex-
tension between the fraction fields of two complete DVRs.)

(b) (Optional) Exhibit examples to show that neither the existence nor the uniqueness
in (a) need hold if K is ramified. (Hint: for the non-existence you must use a
non-Galois extension.)

8. Let R be a discrete valuation ring with fraction field K, and let |·| be a nonarchimedean
absolute value on K with valuation ring R. Prove that for any extension L of K, not
necessarily finite, there exists an extension of | · | to a nonarchimedean absolute value
of L. (Hint: use Zorn’s lemma to reduce to considering a single algebraic extension,
which we treated in class, and a single purely transcendental extension.)

9. Here is a surprising application of the p-adic absolute value due to Paul Monsky. It is
to prove that in Euclidean geometry, you cannot dissect a square into an odd number
of triangles of equal area!

(a) Apply the previous exercise to show that there exists a nonarchimedean absolute
value | · |2 on R for which |2|2 < 1.

(b) Define the following subsets of R2:

A = {(x, y) ∈ R2 : |x|2 < 1, |y|2 < 1}
B = {(x, y) ∈ R2 : |x|2 ≥ 1, |x|2 ≥ |y|2}
C = {(x, y) ∈ R2 : |y|2 ≥ 1, |y|2 > |x|2}.

Verify that A, B, C form a partition of R2.

(c) Prove that no line in R2 meets all of A, B, C. (Hint: note that A, B, C are all
stable under translation by A, then reduce to the case where the line passes
through the origin.)

(d) Let R be the interior of a convex polygon of the plane, dissected into finitely
many triangles. Suppose that the number of edges of R which ahave one vertex
in A and one in B is odd. Prove that there is a triangle in the dissection with
one vertex in each of A, B, C. (Hint: once you incorporate (c), this is a purely
combinatorial parity argument.)

(e) Prove that if T is a triangle with one vertex in each of A, B, C, and T has area
K, then |K|2 > 1. (Hint: see (c).)

(f) Deduce Monsky’s theorem by applying (d) to an appropriate unit square and then
using (e).
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