18.786: Topics in Algebraic Number Theory (spring 2006) Problem Set 8, due Thursday, April 20

This problem set uses heavily the fact that if K is the fraction field of a discrete valuation ring, then the absolute value on K extends uniquely to any finite extension of K; I should get to this by the end of class on the 13th.

I marked a number of things "Optional" on here; to make up for it, please make sure to do at least one "Optional" part. (That is, the parts are all optional individually but not collectively.)

- 1. Let U_i be the group of $x \in \mathbb{Z}_p$ with $x \equiv 1 \pmod{p^i}$. Prove that if $p \neq 2$ and $i \geq 1$, or p = 2 and $i \geq 2$, then U_i is torsion-free. (Hint: use exp and log.)
- 2. Determine the radius of convergence of the Taylor series for $\sin x$ over \mathbb{Q}_p .
- 3. Prove that a formal power series $\sum_{n=0}^{\infty} a_n x^n$ and its formal derivative $\sum_{n=1}^{\infty} n a_n x^{n-1}$ have the same radius of convergence over \mathbb{Q}_p .
- 4. (a) Prove that the infinite extension $\mathbb{Q}_p(p, p^{1/p}, p^{1/p^2}, ...)$ of \mathbb{Q}_p is not complete (under the unique extension of the *p*-adic absolute value).
 - (b) Prove that the maximal unramified extension of \mathbb{Q}_p is not complete either.
 - (c) Optional: prove that any infinite algebraic extension of \mathbb{Q}_p is not complete.
- 5. (Optional, possibly tricky) Let \mathbb{C}_p be the completion of an algebraic closure of \mathbb{Q}_p for the unique extension of the *p*-adic absolute value. Prove that \mathbb{C}_p is again algebraically closed; the field \mathbb{C}_p is loosely analogous to the usual complex numbers in ordinary analysis.
- 6. In this exercise, you will check some of the basic properties of Newton polygons I outlined in class. Let K be the fraction field of a DVR R. For $P(x) = a_n x^n + \cdots + a_0 \in K[x]$ with $a_n, a_0 \neq 0$, consider the set of points $\{(-i, v(a_i)) : i = 0, \ldots, n\}$ in \mathbb{R}^2 . Their lower convex hull is the Newton polygon of P; I'll think of this polygon as consisting of n separate segments of horizontal width 1.
 - (a) Let r_1, \ldots, r_n be the roots of P in some finite extension K' of K. Assume that v extends uniquely to K' (we'll prove this in class; note that v is normalized with respect to K, not K'). Prove that the slopes of the Newton polygon are precisely $v(r_1), \ldots, v(r_n)$. (Hint: sort the r_i so that $v(r_1) \leq \cdots \leq v(r_n)$. Then check $v(a_{n-i}/a_n) \geq v(r_1) + \cdots + v(r_i)$. Then check that equality holds if $v(r_i) < v(r_{i+1})$, or if i = n.)
 - (b) Prove that the Newton polygon of PQ is obtained by "merging" the Newton polygons of P and Q: that is, the number of segments of the Newton polygon of PQ of any given slope is the sum of the corresponding numbers for P and Q. (Hint: this can be done directly, but use (a) instead.)

- (c) As an example, compute the *p*-adic absolute values of the roots of $x^5 2x^2 + 16$ in an algebraic closure of \mathbb{Q}_2 . (I suspect SAGE can verify this by approximating the roots numerically.)
- (a) Let K be a finite unramified extension of Q_p. Prove that there is a unique automorphism of K over Q_p lifting the p-power Frobenius map on the residue field. (Optional: state and prove a generalization to an arbitrary finite unramified extension between the fraction fields of two complete DVRs.)
 - (b) (Optional) Exhibit examples to show that neither the existence nor the uniqueness in (a) need hold if K is ramified. (Hint: for the non-existence you must use a non-Galois extension.)
- 8. Let R be a discrete valuation ring with fraction field K, and let $|\cdot|$ be a nonarchimedean absolute value on K with valuation ring R. Prove that for any extension L of K, not necessarily finite, there exists an extension of $|\cdot|$ to a nonarchimedean absolute value of L. (Hint: use Zorn's lemma to reduce to considering a single algebraic extension, which we treated in class, and a single purely transcendental extension.)
- 9. Here is a surprising application of the *p*-adic absolute value due to Paul Monsky. It is to prove that in Euclidean geometry, you cannot dissect a square into an odd number of triangles of equal area!
 - (a) Apply the previous exercise to show that there exists a nonarchimedean absolute value $|\cdot|_2$ on \mathbb{R} for which $|2|_2 < 1$.
 - (b) Define the following subsets of \mathbb{R}^2 :

$$A = \{(x, y) \in \mathbb{R}^2 : |x|_2 < 1, |y|_2 < 1\}$$

$$B = \{(x, y) \in \mathbb{R}^2 : |x|_2 \ge 1, |x|_2 \ge |y|_2\}$$

$$C = \{(x, y) \in \mathbb{R}^2 : |y|_2 \ge 1, |y|_2 > |x|_2\}.$$

Verify that A, B, C form a partition of \mathbb{R}^2 .

- (c) Prove that no line in \mathbb{R}^2 meets all of A, B, C. (Hint: note that A, B, C are all stable under translation by A, then reduce to the case where the line passes through the origin.)
- (d) Let R be the interior of a convex polygon of the plane, dissected into finitely many triangles. Suppose that the number of edges of R which ahave one vertex in A and one in B is odd. Prove that there is a triangle in the dissection with one vertex in each of A, B, C. (Hint: once you incorporate (c), this is a purely combinatorial parity argument.)
- (e) Prove that if T is a triangle with one vertex in each of A, B, C, and T has area K, then $|K|_2 > 1$. (Hint: see (c).)
- (f) Deduce Monsky's theorem by applying (d) to an appropriate unit square and then using (e).