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Preface

1. About the book

This book is an outgrowth of a course taught by the author at MIT during fall 2007,
on the subject of p-adic ordinary differential equations. The target audience was graduate
students with some prior background in algebraic number theory, including exposure to the
p-adic numbers, but not necessarily any background in p-adic analytic geometry (of either
the Tate or Berkovich flavors).

Some use was made of the book of Dwork, Gerotto, and Sullivan [DGS94], particularly
in the early parts of the course. We also drew upon the book of Christol [Chr83]; as a
result, references to both books litter the text. However, we depart from these by adopting
some novel strategies, including the following.

• We limit our use of cyclic vectors. This requires an initial investment in the study
of matrix inequalities (Chapter 3), but pays off in significantly stronger results.

• We introduce the notion of a Frobenius descendant (Chapter 9). This complements
the older construction of Frobenius antecedents, particularly in dealing with certain
“boundary cases” where the antecedent method does not apply.

As a result, we end up with some improvements of existing results, including the following.

• We refine the Frobenius antecedent theorem of Christol-Dwork (Theorem 9.4.2).
• We extend some results of Christol-Dwork, on the variation of the generic radius of

convergence, to subsidiary radii (Theorem 10.3.2).
• We extend Young’s geometric interpretation of subsidiary generic radii of conver-

gence beyond the range of applicability of Newton polygons (Theorem 10.10.2).
• We give quantitative versions of the Christol-Mebkhout decomposition theorem

for differential modules on an annulus which are solvable at a boundary (Theo-
rems 11.2.2 and 11.3.1).

• We improve the bound in the transfer theorem to a disc containing a regular singu-
larity with exponents in Zp (Theorem 12.7.1).

• We give improvements on the Christol-Dwork-Robba effective bounds for solutions
of p-adic differential equations, in the case of nilpotent regular singularities (The-
orem 16.2.4), and in the presence of a Frobenius structure (Theorem 16.3.3). The
latter implies a result about logarithmic growth of solutions of differential equations
with Frobenius structure (Theorem 16.4.6).

• We state a relative version of the p-adic local monodromy theorem, a/k/a Crew’s
conjecture (Theorem 18.1.8), and describe in detail how it may be derived either
from the p-adic index theory of Christol-Mebkhout or from the slope theory for
Frobenius modules of Kedlaya.
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Some of the new results are expected to be relevant in theory (in the study of higher-
dimensional p-adic differential equations in the context of the “semistable reduction problem”
for overconvergent F -isocrystals) or in practice (in the explicit computation of solutions of
p-adic differential equations, e.g., for finding zeta functions of explicit varieties).

2. Structure of the book

Within each chapter, we have attempted (not completely successfully) to enforce a uni-
form basic structure. Each chapter begins with a very brief introduction explaining what is
to be discussed. After the main body of material, we typically include a section of afternotes,
in which we include detailed references for results in that chapter, fill in historical details,
and add additional comments. (This practice is modeled on [Ful98].) Note that we have
a habit of attributing to various authors slightly stronger versions of their theorems than
the ones they originally stated; to avoid complicating the discussion in the text, we resolve
these misattributions in the afternotes instead. After the afternotes, we typically include
a few exercises; while some of these include the proofs of some results which will be used
later, all such results are also stated explicitly in the text, so as to avoid cross-referencing
into exercises.

The chapters themselves are grouped into several parts, which we now describe briefly.
(Chapter 0, being introductory, does not fit into this grouping.)

Part 1 is preliminary, collecting some basic tools of p-adic analysis. However, it also
includes some facts of matrix analysis (the study of the variation of numerical invariants
attached to matrices, as a function of the matrix entries) which may not be so familiar.

Part 2 introduces some formalism of differential algebra, such as differential rings and
modules, twisted polynomials, and cyclic vectors, and applies these to fields equipped with
a nonarchimedean norm.

Part 3 begins the study of p-adic differential equations in earnest, developing some basic
theory for differential modules on rings and annuli, including the Christol-Dwork theory of
variation of the generic radius of convergence, and the Christol-Mebkhout decomposition
theory. We also include a discussion of p-adic exponents, culminating in the statement
(without proof) of the Christol-Mebkhout structure theorem for p-adic differential modules
on an annulus with intrinsic generic radius of convergence everywhere equal to 1.

Part 4 introduces the concept of a Frobenius structure on a p-adic differential module, to
the point of stating the p-adic local monodromy theorem (Crew’s conjecture, now a theorem
of André, Kedlaya, and Mebkhout) and sketching briefly the proof techniques using either
p-adic exponents or Frobenius slope filtrations. We also discuss effective convergence bounds
for solutions of p-adic differential equations.

Part 5 consists of a series of brief discussions of several areas of application of the theory
of p-adic differential equations. These are somewhat more didactic, and much less formal,
than in the other parts; they are meant primarily as suggestions for further reading.

3. Acknowledgments

Thanks to the participants of the MIT course 18.787 (Topics in Number Theory, fall
2007) for numerous comments on the lecture notes which ultimately became this book.
Particular thanks are due to Ben Brubaker and David Speyer for giving guest lectures, and
to Chris Davis, Hansheng Diao, David Harvey, Raju Krishnamoorthy, Ruochuan Liu, and
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especially Liang Xiao for providing feedback. Additional feedback was provided by Francesco
Baldassarri and Bruno Chiarellotto.

During the preparation of the course and of this book, the author was supported by
a National Science Foundation CAREER grant (DMS-0545904) and by a Sloan Research
Fellowship.
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CHAPTER 0

Introductory remarks

In this chapter, we start with some introductory remarks justifying the study of p-adic
differential equations. We then give a summary of one of Dwork’s original examples in which
the p-adic behavior of a classical differential equation, namely a hypergeometric equation,
relates to a manifestly number-theoretic question (the number of points on an elliptic curve
over a finite field).

Since this chapter is meant as an introduction only, it is rather full of statements for
which we give references instead of proofs (if that). Please be assured that this practice is
not typical of the rest of the book, at least not until the later chapters.

1. Why p-adic differential equations?

Although the very existence of a highly-developed theory of p-adic ordinary differential
equations is not entirely well-known even within number theory, the subject is actually
almost fifty years old. Here are some circumstances, past and present, in which it arises;
some of these will be taken up again in Part 5.

Variation of zeta functions. The original circumstance in which p-adic differential equa-
tions appeared in number theory was Dwork’s work on the variation of zeta functions of
algebraic varieties over finite fields. Roughly speaking, solving certain p-adic differential
equations can give rise to explicit formulas for number of points on varieties over finite
fields.

In contrast to methods involving étale cohomology, methods for studying zeta functions
based on p-adic analysis (including also the next item) lend themselves well to numerical
computation. Interest in computing zeta functions for varieties where straightforward point-
counting is not an option (e.g., curves over tremendously large prime fields) has been driven
by applications in computer science, the principal example being cryptography based on
elliptic or hyperelliptic curves.

p-adic cohomology. Dwork’s work suggested, but did not immediately lead to, a proper
analogue of étale cohomology based on p-adic analytic techniques. Such an analogue was
eventually developed by Berthelot (based on work of Monsky and Washnitzer, and also
ideas of Grothendieck); it is called rigid cohomology (see the notes for the origin of the word
“rigid”). It is not yet a fully functional analogue of étale cohomology, particularly because
there are still open problems related to the construction of a good category of coefficients.
These problems are rather closely related to questions concerning p-adic differential equa-
tions, and in fact some of the results presented in this course have been (or will be) used for
this purpose.

p-adic Hodge theory. The subject of p-adic Hodge theory aims to do for the cohomol-
ogy of varieties over p-adic fields what ordinary Hodge theory does for the cohomology of
varieties over C, namely abstract away the variety and enable a better understanding of the
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cohomology of the variety as an object in its own right. In the p-adic case, the cohomology
in question is often étale cohomology, which carries the structure of a Galois representation.

The study of such representations, as pioneered by Fontaine, involves a number of exotic
auxiliary rings (rings of p-adic periods) which serve their intended purposes but are otherwise
a bit mysterious. More recently, the work of Berger has connected much of the theory to
the study of p-adic differential equations; notably, a key result that was originally intended
for use in p-adic cohomology (the p-adic local monodromy theorem) turned out to imply
an important conjecture about Galois representations (Fontaine’s conjecture on potential
semistability).

Ramification theory. There are some interesting analogies between properties of differ-
ential equations over C with meromorphic singularities, and wildly ramified Galois repre-
sentations of p-adic fields. At some level, this is suggested by the parallel formulation of
the Langlands conjectures in the number field and function field cases. One can use p-adic
differential equations to interpolate between the two situations, by associating differential
equations to Galois representations (as in the previous item) and then using differential
invariants (irregularity) to recover Galois invariants (Artin and Swan conductor).

For representations of the étale fundamental group of a variety over a field of positive
characteristic of dimension greater than 1, it is quite a tough problem to construct mean-
ingful numerical invariants from the Galois point of view. Recent work of Abbes and Saito
[AS02, AS03] attempts to do this, but the resulting quantities are quite difficult to calcu-
late. One can alternatively use p-adic differential equations to define invariants which are
somewhat easier to deal with for some purposes; for instance, one can define a differential
Swan conductor which is guaranteed to be an integer [Ked07a], whereas this is not clear
for the Abbes-Saito conductor. One can then equate the two conductors, deducing integral-
ity for the Abbes-Saito conductor; this has been carried out by Chiarellotto and Pulita for
one-dimensional representations, and by L. Xiao in the general case.

2. Zeta functions of varieties

Definition 0.2.1. For λ in some field K, let Eλ be the elliptic curve over K defined by
the equation

Eλ : y2 = x(x− 1)(x− λ)

in the projective plane. Remember that there is one point O = [0 : 1 : 0] at infinity, and
that there is a natural group law on Eλ(K) under which O is the origin, and three points
add to zero if and only if they are collinear (or better, if they are the three intersections of
Eλ with some line; this correctly allows for degenerate cases).

Theorem 0.2.2 (Hasse). Suppose λ belongs to a finite field Fq. Then #Eλ(Fq) = q +
1 − aq(λ) where |aq(λ)| ≤ 2

√
q.

Proof. See [Sil91, Theorem V.1.1]. �

Hasse’s theorem was later vastly generalized as follows, originally as a set of conjectures
by Weil. (Despite no longer being conjectural, these are still commonly referred to as the
Weil conjectures.)
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Definition 0.2.3. For X an algebraic variety over Fq, the zeta function of X is defined
as the formal power series

ζX(T ) = exp

(
∞∑

n=1

T n

n
#X(Fqn)

)
;

another way to write it, which makes it look more like zeta functions you’ve seen before, is

ζX(T ) =
∏

x

(1 − T deg(x))−1,

where x runs over Galois orbits of X(Fq), and deg is the size of the orbit. (If you prefer
algebro-geometric terminology: x runs over closed points of X, and deg is the degree over
Fq.)

Example 0.2.4. For X = Eλ, one checks (exercise) that

ζX(T ) =
1 − aq(λ)T + qT 2

(1 − T )(1 − qT )
.

Theorem 0.2.5 (Dwork, Grothendieck, Deligne, et al). Let X be an algebraic variety
over Fq. Then ζX(T ) represents a rational function of T . Moreover, if X is smooth and
proper of dimension d, we can write

ζX(T ) =
P1(T ) · · ·P2d−1(T )

P0(T ) · · ·P2d(T )
,

where each Pi(T ) has integer coefficients, satisfies Pi(0) = 1, and has all roots in C on the
circle |T | = q−i/2.

Proof. The proof of this theorem is a sufficiently massive undertaking that even a
reference is not reasonable here; instead, we give [Har77, Appendix C] as a metareference.

�

Remark 0.2.6. It is worth pointing out that the first complete proof of Theorem 0.2.5
used the fact that you can interpret

#X(Fqn) =
∑

i

(−1)i Trace(F n, H i
et(X,Qℓ)),

where for any prime ℓ 6= p, H i
et(X,Qℓ) is the i-th étale cohomology group of X with coeffi-

cients in Qℓ.

3. Zeta functions and p-adic differential equations

Remark 0.3.1. the interpretation of Theorem 0.2.5 in terms of étale cohomology (Re-
mark 0.2.6) is all well and good, but there are several downsides. One important one is
that étale cohomology is not explicitly computable; for instance, it is not straightforward to
describe étale cohomology to a computer well enough that the computer can make calcula-
tions. (The main problem is that while one can write down étale cocycles, it is very hard to
tell whether or not a cocycle is a coboundary.)

Another important downside is that you don’t get extremely good information about
what happens to ζX when you vary X. This is where p-adic differential equations enter the
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picture. It was observed by Dwork that when you have a family of algebraic varieties defined
over Q, the same differential equations appear when you study variation of complex periods,
and when you study variation of zeta functions over Fp.

Here is an explicit example due to Dwork.

Definition 0.3.2. Recall that the hypergeometric series

F (a, b; c; z) =

∞∑

i=0

a(a + 1) · · · (a+ i)b(b + 1) · · · (b+ i)

c(c+ 1) · · · (c+ i)i!
zi

satisfies the hypergeometric differential equation

z(1 − z)y′′ + (c− (a + b+ 1)z)y′ − aby = 0.

Set in particular
α(z) = F (1/2, 1/2; 1; z);

over C, α is related to an elliptic integral, for instance, by the formula

α(λ) =
2

π

∫ π/2

0

dθ√
1 − λ sin2 θ

(0 < λ < 1).

(You can extend this to complex λ by being careful about branch cuts.) This elliptic integral
can be viewed as a period integral for the curve Eλ, i.e., you’re integrating some meromorphic
form on Eλ around some loop (homology class).

Let p 6= 2 be an odd prime. We now try to interpret α(z) as a function of a p-adic
variable rather than a complex variable. Beware that this means z can take any value in a
field with a norm extending the p-adic norm on Q, not just Qp itself. (For the moment, you
can imagine z running over a completed algebraic closure of Qp.)

Lemma 0.3.3. The series α(z) converges p-adically for |z| < 1.

Proof. Straightforward. �

Dwork discovered that a closely related function admits “analytic continuation”.

Definition 0.3.4. Define the Igusa polynomial

H(z) =

(p−1)/2∑

i=0

(
(p− 1)/2

i

)2

zi.

Modulo p, the roots of H(z) are the values of λ ∈ Fp (which actually all belong to Fp2, for
reasons we will not discuss) for which Eλ is a supersingular elliptic curve, i.e., aq(λ) ≡ 0
(mod p).

Dwork’s analytic continuation result is the following.

Theorem 0.3.5 (Dwork). There exists a series ξ(z) =
∑

j Pi(z)/H(z)i converging uni-

formly for |z| ≤ 1 and |H(z)| = 1, with each Pi(z) ∈ Qp[z], such that

ξ(z) = (−1)(p−1)/2 α(z)

α(zp)
(|z| < 1).
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Proof. See [vdP86, §7]. �

Note that ξ itself satisfies a differential equation, which I won’t write out just yet. We
will see it again later.

Definition 0.3.6. For λ ∈ Fq, let Zq be the unramified extension of Zp with residue
field Fq. Let [λ] be the unique q-th root of 1 in Zq congruent to λ mod p (the Teichmüller
lift of λ).

Theorem 0.3.7 (Dwork). If q = pa and λ ∈ Fq is not a root of H(z), then

T 2 − aq(λ)T + q = (T − u)(T − q/u),

where

u = ξ([λ])ξ([λ]p) · · · ξ([λ]p
a−1

).

That is, the quantity u is the “unit root” of the polynomial T 2 − aq(λ)T + q occurring
(up to reversal) in the zeta function.

Proof. See [vdP86, §7]. �

4. A word of caution

Remark 0.4.1. Before we embark on the study of p-adic ordinary differential equations,
a cautionary note is in order, concerning the rather innocuous-looking differential equation
y′ = y. Over R or C, this equation is nonsingular everywhere, and its solutions y = cex are
defined everywhere.

Over a p-adic field, things are quite different. As a power series around x = 0, we have

y = c

∞∑

n=0

xn

n!

and the denominators hurt us rather than helping. In fact, the series only converges for
|x| < p−1/(p−1) (assuming that we are normalizing |p| = p−1). For comparison, note that the
logarithm series

log
1

1 − x
=

∞∑

n=1

xn

n

converges for |x| < 1.

The conclusion to be taken away is that there is no fundamental theorem of ordinary
differential equations over the p-adics! In fact, the hypergeometric differential equation
in the previous example was somewhat special; the fact that it had a solution in a disc
where it had no singularities was not a foregone conclusion. One of Dwork’s discoveries
is that this typically happens for differential equations that “come from geometry”, such
as the Picard-Fuchs equations that arise from integrals of algebraic functions (e.g., elliptic
integrals). Another is that one can quantify rather well the obstruction to solving a p-adic
differential equation in a nonsingular disc, using similar techniques to those used to study
obstructions to solving complex differential equations in singular discs.
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Notes

The standard reference for properties of elliptic curves is the book of Silverman [Sil91].
I alluded above to the notion of an analytic function, defined as a uniform limit of rational

functions with poles prescribed to certain regions. To keep down the background required
for the course, I will stick throughout to this approach of defining everything in terms of
rings, and not making any attempt to introduce analytic geometry over a nonarchimedean
field. However, it must be noted that it is much better in the long run to build this theory in
terms of nonarchimedean analytic geometry; for example, it is pretty hopeless to deal with
partial differential equations without doing so.

That said, there are several ways to develop a theory of analytic spaces over a nonar-
chimedean field. The traditional method is Tate’s theory of rigid analytic spaces, so-called
because one develops everything “rigidly” by imitating the theory of schemes in algebraic
geometry, but using rings of convergent power series instead of polynomials. The canoni-
cal foundational reference for rigid geometry is the book of Bosch, Güntzer, and Remmert
[BGR84], but novices may find the text of Fresnel and van der Put [FvdP04] or the lecture
notes of Bosch [Bos05] more approachable. A more recent method, which in some ways
is more robust, is Berkovich’s theory of nonarchimedean analytic spaces (commonly called
Berkovich spaces), as introduced in [Brk90] and further developed in [Brk93]. For both
points of view, see also the lecture notes of Conrad [Con07].

Dwork’s original analysis of the Legendre family of elliptic curves via the associated
hypergeometric equation appears in [Dwo69, §8]. The treatment in [vdP86] is more overtly
related to p-adic cohomology.

Exercises

(1) Explain why Theorem 0.2.5 implies Hasse’s theorem; this includes verifying the
formula for the zeta function of Eλ.

(2) Check that the usual formula

lim inf
n→∞

|an|−1/n

for the radius of convergence of the Taylor series
∑∞

n=0 anx
n still works over a

nonarchimedean field. (That is, the series converges inside that radius, and diverges
outside.)

(3) Check that the exponential series has radius of convergence p−1/(p−1).
(4) Show that a power series which converges for |x| ≤ 1 may have an integral which

only converges for |x| < 1, but that its derivative still converges for |x| ≤ 1. This is
backwards from the archimedean situation.
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Part 1

Tools of p-adic analysis





CHAPTER 1

Absolute values

In this chapter, we recall some basic facts about absolute values, primarily of the nonar-
chimedean sort; the treatment is not at all comprehensive, as it is only meant as a review.
See [Rob00] for a fuller treatment.

Beware that a couple of proofs will forward reference the chapter on Newton polygons.

1. Absolute values on abelian groups

Let us start by recalling some basic definitions from analysis, without yet specializing to
the nonarchimedean case.

Definition 1.1.1. Let G be an abelian group. An semiabsolute value (or seminorm) on
G is a function | · | : G→ [0,+∞) satisfying the following conditions.

(a) We have |0| = 0.
(b) For f, g ∈ G, |f + g| ≤ |f | + |g|.

We say the seminorm | · | is an absolute value (or norm) if the following additional condition
holds.

(a’) For g ∈ G, |g| = 0 if and only if g = 0.

We also express this by saying that G is separated under | · |. A seminorm on an abelian
group G induces a metric topology on G, in which the basic open subsets are the open balls,
i.e., sets of the form {g ∈ G : |f − g| < r} for some f ∈ G and some r > 0.

Definition 1.1.2. Let G,G′ be abelian groups equipped with seminorms | · |, | · |′,
respectively, and let φ : G → G′ be a homomorphism. Note that φ is continuous for the
metric topologies on G,G′ if and only if there exists a function h : (0,+∞) → (0,+∞) such
that for all r > 0,

{g ∈ G : |g| < h(r)} ⊆ {g ∈ G : |φ(g)| < r}.
We say that φ is submetric if |φ(g)|′ ≤ |g| for all g ∈ G, and isometric if |φ(g)|′ = |g| for all
g ∈ G. We say two seminorms | · |1, | · |2 on G are topologically equivalent if they induce the
same metric topology, i.e., the identity morphism on G is continuous in both directions.

Definition 1.1.3. Let G be an abelian group equipped with a seminorm. A Cauchy
sequence in G under | · | is a sequence {xn}∞n=0 such that for any ǫ > 0, there exists an
integer N such that for all integers m,n ≥ N , |xm−xn| < ǫ. We say the sequence {xn}∞n=0 is
convergent if there exists x ∈ G such that for any ǫ > 0, there exists an integer N such that
for all integers n ≥ N , |x− xn| < ǫ; in this case, the sequence is automatically Cauchy, and
we say that x is a limit of the sequence; if G is separated under | · |, then limits are unique
when they exist. We say G is complete under | · | if every Cauchy sequence has a unique
limit.
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Theorem 1.1.4. Let G be an abelian group equipped with an absolute value | · |. Then
there exists an abelian group G′ equipped with an absolute value |·|′ under which it is complete,
and an isometric homomorphism φ : G→ G′ with dense image.

This is standard, so we only sketch the proof.

Proof. Take the set of Cauchy sequences inG, and declare two sequences {xn}∞n=0, {yn}∞n=0

to be equivalent if the sequence x0, y0, x1, y1, . . . is also Cauchy. This is easily shown to be
an equivalence relation; let G′ be the set of equivalence classes. It is then straightforward
to construct the group operation (termwise addition) and the norm on G′ (the limit of the
norms of the terms of the sequence); the map φ takes g ∈ G to the constant sequence
{g, g, . . .}. �

Definition 1.1.5. With notation as in Theorem 1.1.4, we call G′ the completion of G;
it (or rather, the group G′ equipped with the absolute value | · |′ and the homomorphism φ)
is functorial in G (and in particular, is unique up to unique isomorphism).

Definition 1.1.6. If R is a ring and | · | is a seminorm on its additive group, we say that
|·| is submultiplicative indexsubmultiplicative (seminorm)—textbf if the following additional
condition holds.

(c) For f, g ∈ R, |fg| ≤ |f ||g|.
We say that | · | is multiplicative indexmultiplicative (seminorm)—textbf if the following
additional condition holds.

(c’) For f, g ∈ R, |fg| = |f ||g|.
The completion of a ring R equipped with a submultiplicative seminorm admits a natural
ring structure, because the termwise product of two Cauchy sequences is again Cauchy.

Lemma 1.1.7. Let F be a field equipped with a multiplicative norm. Then the completion
of F is also a field.

Proof. Note that if {fn}∞n=0 is a Cauchy sequence in F , then {|fn|}∞n=0 is a Cauchy
sequence in R by the triangle inequality, and so has a limit since R is complete. Since F
is equipped with a true norm, if {fn}∞n=0 does not converge to 0, then {|fn|}∞n=0 must also
not converge to 0. In particular, |fn|∞n=0 is bounded below, from which it follows easily
that {f−1

n }∞n=0 is also a Cauchy sequence. This proves that every nonzero element of the
completion of F has a multiplicative inverse, as desired. �

Proposition 1.1.8. Two multiplicative norms | · |, | · |′ on a field F are topologically
equivalent if and only if there exists c > 0 such that |x|′ = |x|c for all x ∈ F .

Proof. See [DGS94, Lemma I.1.2]. �

2. Valuations and nonarchimedean absolute values

Definition 1.2.1. A real semivaluation on an abelian group G is a function v : G →
R ∪ {+∞} with the following properties.

(a) We have v(0) = +∞.
(b) For f, g ∈ G, v(f + g) ≥ min{v(f), v(g)}.

We say v is a real valuation if the following additional condition holds.
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(a’) For g ∈ G, v(g) = +∞ if and only if g = 0.

If v is a real (semi)valuation on G, then the function | · | = e−v(·) is a seminorm on G which
is nonarchimedean, i.e., it satisfies the strong triangle inequality

(b’) For f, g ∈ G, |f + g| ≤ max{|f |, |g|}.
Conversely, for any nonarchimedean (semi)norm | · |, v(·) = − log | · | is a real valuation.
We will apply various definitions made for seminorms to semivaluations in this manner; for
instance, if R is a ring and v is a real (semi)valuation on its additive group, we say that v is
(sub)multiplicative if the corresponding nonarchimedean (semi)norm is.

Definition 1.2.2. We say a group is nonarchimedean if it is equipped with a nonar-
chimedean norm; we say a ring or field is nonarchimedean if it is equipped with a multi-
plicative nonarchimedean norm. The adjective ultrametric is also used, referring to a metric
satisfying the strong triangle inequality.

Definition 1.2.3. Let F be a nonarchimedean field. The multiplicative value group of
a nonarchimedean field F is the image of F× under | · |, viewed as a subgroup of R+; we will
often denote it simply as |F×|. The additive value group of F is the set of negative logarithms
of the multiplicative value group. If these groups are discrete, we say F is discretely valued.
Define also

oF = {f ∈ F : v(f) ≥ 0}
mF = {f ∈ F : v(f) > 0}
κF = oF/mF .

Note that oF is a local ring (the valuation ring of F ), mF is the maximal ideal of oF , and
κF is a field (the residue field of F ).

It is worth noting that there are comparatively few archimedean (not nonarchimedean)
absolute values on fields.

Theorem 1.2.4 (Ostrowski). Let F be a field equipped with an absolute value | · |. Then
| · | fails to be nonarchimedean if and only if the sequence |1|, |2|, |3|, . . . is unbounded. In
that case, F is isomorphic to a subfield of C with the induced absolute value.

Proof. Exercise, or see [Rob00, §2.1.6] and [Rob00, §2.2.4], respectively. �

3. Norms on modules

Definition 1.3.1. Let R be a commutative ring equipped with a multiplicative seminorm
|·|, and let M be an R-module equipped with a seminorm |·|M . We say that |·|M is compatible
with | · | (or with R) if the following conditions hold.

(a) For f ∈ R, x ∈ M , |fx|M = |f ||x|M .
(b) If | · | is nonarchimedean, then so is | · |M .

Note that (b) is not superfluous; see exercises. Note also that if R is a nonarchimedean field,
then two norms | · |M , | · |′M are topologically equivalent if and only if there exist c1, c2 > 0
such that

|x|M ≤ c1|x|′M , |x|′M ≤ c2|x|M (x ∈M).
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Definition 1.3.2. Let R be a ring equipped with a multiplicative seminorm | · |, and let
M be a free R-module. For B a basis of M , define the supremum norm of M with respect
to B by setting ∣∣∣∣∣

∑

b∈B

cbb

∣∣∣∣∣ = sup
b∈B

{|cb|} (cb ∈ R).

Theorem 1.3.3. Let F be a field complete for a norm |·|, and let V be a finite dimensional
vector space over F . Then any two norms on V compatible with F are equivalent.

Proof. In the nonarchimedean case, see [DGS94, Theorem I.3.2]. Otherwise, apply
Theorem 1.2.4 to deduce that F = R or F = C, then use compactness of the unit ball. �

Definition 1.3.4. For F a nonarchimedean field, a Banach space over F is a vector
space over F equipped with a norm compatible with F , under which it is complete. For an
introduction to nonarchimedean Banach spaces, see [Sch02].

4. Examples of nonarchimedean absolute values

Example 1.4.1. For any field F , there is a trivial absolute value of F defined by

|f |triv =

{
1 f 6= 0

0 f = 0.

This absolute value is nonarchimedean, and F is complete under it. The trivial case will
always be allowed unless explicitly excluded; it is often a useful input into a highly nontrivial
construction, as in the next few examples.

Example 1.4.2. Let F be any field, and let F ((t)) denote the field of formal Laurent
series. The t-adic valuation vt on F is defined as follows: for f =

∑
i cit

i ∈ F ((t)), vt(f) is
the least i for which ci 6= 0. This exponentiates to give a t-adic absolute value, under which
F ((t)) is complete and discretely valued.

Example 1.4.3. For F a nonarchimedean field and ρ > 0, the ρ-Gauss norm (or the
(t, ρ)-Gauss norm, in case we need to specify t explicitly) on the rational function field F (t)
is defined as follows: for f = P/Q with P,Q ∈ F [t], write P =

∑
i Pit

i and Q =
∑

j Qjt
j ,

and put

|f |ρ = max
i

{|Pi|ρi}/max
j

{|Qj|ρj}.

Note that F (t) is discretely valued under the ρ-Gauss norm if and only if either:

(a) F carries the trivial absolute value, in which case the norm is equivalent to the
t-adic absolute value no matter what ρ is; or

(b) F carries a nontrivial absolute value, and ρ belongs to the divisible closure of the
value group of F .

So far we have not mentioned the principal examples from number theory; let us do so
now.
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Example 1.4.4. For p a prime number, the p-adic absolute value | · |p on Q is defined as
follows: given f = r/s with r, s ∈ Z, write r = pam and s = pbn with m,n not divisible by
p, then put

|f |p = p−a+b.

In particular, we have normalized so that |p| = p−1; this convention is usually taken so
as to make the product formula hold. Namely, for any f ∈ Q, if | · |∞ denotes the usual
archimedean absolute value, then

|f |∞
∏

p

|f |p = 1.

Completing Q under | · |p gives the field of p-adic numbers Qp; it is discretely valued. Its
valuation subring is denoted Zp and called the ring of p-adic integers.

Theorem 1.4.5 (Ostrowski). Any nontrivial nonarchimedean absolute value on Q is
equivalent to the p-adic absolute value for some prime p.

Proof. See [Rob00, §2.2.4]. �

To equip extensions of Qp with absolute values, we use the following result.

Theorem 1.4.6. Let F be a complete nonarchimedean field. Then any finite extension
E of F admits a unique extension of | · | to an absolute value on E.

Proof. We only prove uniqueness now; existence will be established in Section 3. Let
| · |1 and | · |2 be two extensions of | · | to absolute values on E. Then these in particular
give norms on E viewed as an F -vector space; by Theorem 1.3.3, these norms are equivalent.
That is, there exist c1, c2 > 0 such that

|x|1 ≤ c1|x|2, |x|2 ≤ c2|x|1 (x ∈ E).

We now use the extra information that | · |1 and | · |2 are multiplicative, because they
really are norms on E as a field in its own right. That is, for any positive integer n, we may
substitute xn in place of x in the previous inequalities, then take n-th roots, to obtain

|x|1 ≤ c
1/n
1 |x|2, |x|2 ≤ c

1/n
2 |x|1 (x ∈ E).

Letting n→ ∞ gives |x|1 = |x|2, as desired. �

Remark 1.4.7. Don’t forget that the completeness of F is crucial. For instance, the
5-adic absolute value on Q extends in two different ways to the Gaussian rational numbers
Q(i), depending on whether you want |2 + i| = 5−1, |2 − i| = 1 or vice versa.

Because of the uniqueness in Theorem 1.4.6, it also follows that any algebraic extension
E of F , finite or not, inherits a unique extension of | · |. However, if [E : F ] = ∞, then E
is not complete, so we may prefer to use its completion instead. For instance, if F = Qp,
we define Cp to be the completion of an algebraic closure of Qp. You might worry that this
may launch us into an endless cycle of completion and algebraic closure, but fortunately this
does not occur.

Theorem 1.4.8. Let F be an algebraically closed nonarchimedean field. Then the com-
pletion of F is also algebraically closed.

For the proof, see section 3.
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5. Unramified extensions

We will again need one forward reference into the next chapter.

Lemma 1.5.1. Let F be a complete nonarchimedean field, and let E be a finite extension
of F . Then [E : F ] ≥ [κE : κF ].

Proof. Pick any basis of κE over κF , and lift it to oE. The result is a linearly indepen-
dent set over F . �

Definition 1.5.2. Let F be a complete nonarchimedean field. A finite extension E of
F is unramified if κE is separable over κF and [E : F ] = [κE : κF ].

Lemma 1.5.3. Let F be a complete nonarchimedean field, and let U be a finite extension
of F . Then for any subextension E of U over F , U is unramified over F if and only if U is
unramified over E and E is unramified over F .

Proof. Since κE sits between κU and κF , having κU separable over κF is equivalent to
having both κU separable over κE and κE separable over κF . By Lemma 1.5.1,

[U : F ] ≥ [κU : κF ], [U : E] ≥ [κU : κE ], [E : F ] ≥ [κE : κF ];

since [U : F ] = [U : E][E : F ] and [κU : κF ] = [κU : κE][κE : κF ], the first of the three
inequalities is an equality if and only if the other two are. �

Proposition 1.5.4. Let F be a complete nonarchimedean field, and let E be a finite
extension of E. Then for any separable subextension λ of κF over κE, there exists a unique
unramified extension U of F contained in E with κU

∼= λ; moreover, U is separable over F .

Proof. By the primitive element theorem, one can always write λ ∼= κF [x]/(P (x)) for
some monic irreducible separable polynomial P [x] ∈ κF [x]. Choose t ∈ oE whose image in
κE corresponds to x in κF [x]/(P (x)); then the reduction of P (x + t) into κE [x] is divisible
by x but not by x2. We may thus apply the slope factorization theorem from the next
chapter (Theorem 2.2.1) to deduce that P (x+ t) has a root in oE . This proves existence and
separability of U over F .

To prove uniqueness, let U ′ be another such extension. Then the previous argument
applied to U ′ in place of E shows that oU ′ contains a root of P (x+ t) congruent to 0 modulo
oE. However, there can only be one such root in E because P is a separable polynomial, so
in fact U ⊆ U ′. Again by comparing degrees, we have U = U ′. �

Corollary 1.5.5. For each finite separable extension λ of κF , there exists a unique
unramified extension E of F with κE

∼= λ.

Proof. Choose P (x) as in the proof of Proposition 1.5.4. Then E = F [x]/(P (x)) is an
unramified extension of F with residue field λ. The proof of Proposition 1.5.4 shows that
any other unramified extension with residue field λ must contain E; by comparing degrees,
we see that this contain must be an equality. �

Lemma 1.5.6. Let F be a complete nonarchimedean field, and let E be a finite extension
of F . Let U1, U2 be unramified subextensions of E over F . Then the compositum U = U1U2

is also unramified over F , and κU = κU1κU2 inside κE.
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Proof. Put U3 = U1 ∩ U2 inside E; by Lemma 1.5.3, U3 is unramified over F . By
Proposition 1.5.4, inside κE , κU1 ∩ κU2 = κU3 . Consequently,

[κU : κU2] ≤ [U : U2] (by Lemma 1.5.1)

= [U1 : U3]

= [κU1 : κU3 ] (because U1 is unramified over U3)

= [κU1κU2 : κU2]

≤ [κU : κU2 ] (because κU1κU2 ⊆ κU).

We deduce first that κU = κU1κU2 , and second that [U : U2] = [κU : κU2 ]. Hence U is
unramified over U2. Since U2 is unramified over F by Lemma 1.5.3, U is unramified over F
by Lemma 1.5.3 again. �

Definition 1.5.7. Let F be a complete nonarchimedean field, and let E be a finite
extension of E. By Lemma 1.5.6, there is a maximal unramified subextension U of E over
F ; by Proposition 1.5.4, κU is the maximal separable subextension of κE over κF . (We will
also say that oU is the “maximal unramified subextension” of oE over oF .) We say E is
totally ramified over F if U = F .

Lemma 1.5.8. Let F be a complete nonarchimedean field, let E be a finite extension of F ,
and let E ′ be a subextension of E over F . Let U,U ′ be the maximal unramified subextensions
of E,E ′ over F . Then U ′ = U ∩ E ′, and UE ′ is the maximal unramified subextension of E
over E ′.

Proof. We have U ′ = U ∩E ′ by Proposition 1.5.4. In particular, κU contains κU ′ and is
the maximal separable subextension of κE over κE′. Consequently, κU is contained in κUκE′,
so there cannot be a proper unramified extension of UE ′ contained in E (since there is no
room in the residue field extension). That is, UE ′ is the maximal unramified subextension
of E over E ′. �

Remark 1.5.9. All of the above carries over to the case where F is not complete, but is
henselian. The henselian condition (in one of its many equivalent formulations; see [Nag62,
43.2]) is that for any monic polynomial P (x) ∈ oF [x] and any simple root r ∈ κF of P ∈ κF [x],
there exists a unique root r ∈ oF of P lifting r.

6. Tamely ramified extensions

Definition 1.6.1. Let F be a complete nonarchimedean field, let E be a finite exten-
sion of F , and let U be the maximal unramified subextension of E over F . We say E
is tamely ramified over F if the degree [E : U ] (the tame degree) is not divisible by the
residue characteristic of κF (this is automatic if κF is of characteristic 0), and wildly ramified
otherwise.

Lemma 1.6.2. Let F be a complete nonarchimedean field, let E be a finite extension of
F , and let E ′ be a subextension of E over F . Then E is tamely ramified over F if and only
if E is tamely ramified over E ′ and E ′ is tamely ramified over F .
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Proof. We may assume the characteristic of κF is p > 0, otherwise there is nothing to
check. Let U,U ′ be the maximal unramified subextensions of E,E ′ over F . By Lemma 1.5.8,
U ′ = U ∩E ′, and UE ′ is the maximal unramified subextension of E over E ′. We now write

[E : U ] = [E : E ′U ][E ′U : U ] = [E : UE ′][E ′ : U ′],

and deduce that [E : U ] is coprime to p if and only if [E : UE ′] and [E ′ : U ′] both are. �

Lemma 1.6.3. Let F be a complete nonarchimedean field, let E be a finite extension of F ,
and let T1, T2 be tamely ramified subextensions of E over F . Then T = T1T2 is also tamely
ramified over F .

Proof. We may assume the characteristic of κF is p > 0. Let U,U1, U2, U3 be the
maximal unramified subextensions of T, T1, T2, T3 over F . By Lemma 1.6.2, T1 is tamely
ramified over T3 = T1 ∩ T2. By Lemma 1.5.8, T3U2 is the maximal unramified subextension
of T2 over T3, so [T2 : T3U2] is not divisible by p. Since [T : U1U2] divides [T2 : T3U2]; it is
also not divisible by p. Since U1U2 ⊆ U , [T : U ] divides [T : U1U2] and so is also not divisible
by p. Hence T is tamely ramified over F . �

Definition 1.6.4. Let F be a complete nonarchimedean field, and let E be a finite
extension of E. By Lemma 1.6.3, there is a maximal tamely ramified subextension T of E
over F . We say E is totally wildly ramified over F if T = F .

Remark 1.6.5. In the case of a discrete valuation, we will resume the discussion of
ramification theory in Section 3. In the general case, the theory is somewhat subtler; see for
instance [Rib99] (especially Chapter 6).

7. Spherical completeness

For nonarchimedean fields, there is an important distinction between two different notions
of completeness, which does not appear in the archimedean case.

Definition 1.7.1. A metric space is complete if any decreasing sequence of closed balls
with radii tending to 0 has nonempty intersection. (For an abelian group equipped with a
norm, this reproduces our earlier definition.) A metric space is spherically complete if any
decreasing sequence of closed balls, regardless of radii, has nonempty intersection. (For a
topological vector space, the term linearly compact is also used.)

Example 1.7.2. The fields R and C with their usual absolute value are spherically
complete. Also, any complete nonarchimedean field which is discretely valued, e.g., Qp

or C((t)), is spherically complete. However, any infinite algebraic extension of Qp is not
spherically complete.

Theorem 1.7.3 (Kaplansky-Krull). Any nonarchimedean field embeds isometrically into
a spherically complete nonarchimedean field. (However, the construction is not functorial.)

Proof. Since completion is functorial, we may assume we are starting with a complete
nonarchimedean field. It was originally shown by Krull [Kru32, Theorem 24] that any
complete nonarchimedean field admits an extension which is maximally complete, in the
sense of not admitting any extensions preserving both the value group and the residue field.
(In fact, this is not difficult to prove using Zorn’s lemma.) The equivalence of this condition
with spherical completeness was then proved by Kaplansky [Kap42, Theorem 4].
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One can also prove the result more directly; for instance, the case of Qp is explained in
detail in [Rob00, §3]. �

Notes

The condition of spherical completeness is quite important in nonarchimedean functional
analysis, as it is needed for the Hahn-Banach theorem to hold. (By contrast, the nonar-
chimedean version of the open mapping theorem requires only completeness of the field.)
For expansion of this remark, we recommend [Sch02]; an older reference is [vR78].

Although the construction of the spherical completion of a nonarchimedean field is not
functorial, it is possible to make a canonical construction using generalized power series
(Mal’cev-Neumann series); this was described by Poonen [Poo93].

For a direct proof of Theorem 1.4.8 in the case of the completed algebraic closure of Qp,
see [Rob00, §3.3.3].

Exercises

(1) Prove Ostrowski’s theorem (Theorem 1.2.4).
(2) Exhibit an example to show that even for a finite-dimensional vector space V over

a complete nonarchimedean field F , the requirement that a norm on | · |V must
satisfy the strong triangle inequality is not superfluous. (That is, a function | · |V :
V → [0,∞) can satisfy the ordinary triangle inequality plus conditions (a) and (c)
without satisfying the strong triangle inequality.)

(3) Prove that the valuation ring oF of a nonarchimedean field is noetherian if and only
if F is discretely valued.

(4) Use Theorem 1.4.6 to prove that for any field F , any nonarchimedean absolute value
| · | on F , and any extension of E, there exists at least one extension of | · | to an
absolute value on E. (Hint: reduce to the cases where E is a finite extension, and
where E is a purely transcendental extension.)

(5) Here is a more exotic variation of the t-adic valuation. Choose α1, . . . , αn ∈ R.
(a) Prove that on the rational function field F (t1, . . . , tn), there is a valuation vα

such that v(f) = 0 for all f ∈ F ∗ and v(ti) = αi for i = 1, . . . , n.
(b) Prove that if α1, . . . , αn are linearly independent over Q, the valuation vα is

uniquely determined by (a).
(c) Prove that if α1, . . . , αn are not linearly independent over Q, the valuation vα

is not uniquely determined by (a).
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CHAPTER 2

Newton polygons

In this chapter, we recall the traditional theory of Newton polygons for polynomials over
a nonarchimedean field. In the process, we introduce a general framework which will allow
us to consider Newton polygons in a wider range of circumstances.

1. Gauss norms and Newton polygons

Definition 2.1.1. Let R be a commutative ring equipped with a nonarchimedean sub-
multiplicative (semi)norm | · |. For ρ > 0, define the ρ-Gauss (semi)norm | · |ρ on R[T ]
by ∣∣∣∣∣

∑

i

PiT
i

∣∣∣∣∣
ρ

= max
i

{|Pi|ρi};

it is clearly submultiplicative. Moreover, it is also multiplicative if |·| is; see Proposition 2.1.3
below. For r ∈ R, we define the r-Gauss (semi)valuation vr as the (semi)valuation associated
to the e−r-Gauss (semi)norm.

Definition 2.1.2. Let R be a commutative ring equipped with a nonarchimedean sub-
multiplicative (semi)norm | · |. For ρ > 0 and P =

∑
i PiT

i ∈ R[T ], define the width of
P under | · |ρ as the difference between the maximum and minimum values of i achieving
maxi{|Pi|ρi}.

Proposition 2.1.3. Let R be a commutative ring equipped with a nonarchimedean mul-
tiplicative seminorm | · |. For ρ > 0 and P,Q ∈ R[T ], the following results hold.

(a) We have |PQ|ρ = |P |ρ|Q|ρ. That is, | · |ρ is multiplicative.
(b) The width of PQ under | · |ρ equals the sum of the widths of P and Q under | · |ρ.

Proof. For ∗ ∈ {P,Q}, let j∗, k∗ be the minimum and maximum values of i achieving
maxi{| ∗i |ρi}. Write

PQ =
∑

i

(PQ)iT
i =

∑

i

(∑

g+h=i

PgQh

)
T i.

In the sum (PQ)i =
∑

g+h=i PgQh, each summand has norm at most |P |ρ|Q|ρρ−i, with

equality if and only if |Pg| = |P |ρρ−g and |Qh| = |Q|ρρ−h. This cannot occur for i < jP + jQ,
and for i = jP + jQ it can only occur for g = jP , h = jQ. Hence

|(PQ)i| < |P |ρ|Q|ρρ−i (i < jP + jQ)

|(PQ)i| = |P |ρ|Q|ρρ−i (i = jP + jQ).
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Similarly,

|(PQ)i| < |P |ρ|Q|ρρ−i (i > kP + kQ)

|(PQ)i| = |P |ρ|Q|ρρ−i (i = kP + kQ).

This proves both claims. �

Definition 2.1.4. Let R be a commutative ring equipped with a nonarchimedean sub-
multiplicative seminorm. Given a polynomial P (T ) =

∑n
i=0 PiT

i ∈ R[T ], draw the set of
points

{(−i, v(Pi)) : i = 0, . . . , n, Pi 6= 0} ⊂ R2,

then form the lower convex hull of these points, i.e., take the intersection of every closed
halfplane lying above some nonvertical line containing all the points. The boundary of this
region is called the Newton polygon of P . The slopes of P are the slopes of this polygon,
viewed as a multiset with the slope r counting with multiplicity equal to the horizontal width
of the segment of the Newton polygon of slope r (or 0 if there is no such segment); the latter
can also be interpreted as the width of P under | · |e−r . (In case this multiset has cardinality
less than deg(P ), we include +∞ with sufficient multiplicity to make up the shortfall.)

Proposition 2.1.5. Let R be a nonarchimedean commutative ring, and suppose P (T ) =
(T − λ1) · · · (T − λn). Then the slope multiset of P consists of − log |λ1|, . . . ,− log |λn|.

Proof. This is immediate from the multiplicativity of | · |e−r . �

2. Slope factorizations and a master factorization theorem

Theorem 2.2.1. Let F be a complete nonarchimedean field. Suppose S ∈ F [T ], r ∈ R,
and m ∈ Z≥0 satisfy

vr(S − Tm) > vr(T
m).

Then there exists a unique factorization S = PQ satisfying the following conditions.

(a) The polynomal P ∈ F [T ] has degree deg(S) −m, and its slopes are all less than r.
(b) The polynomial Q ∈ F [T ] is monic of degree m, and its slopes are all greater than

r.
(c) We have vr(P − 1) > 0 and vr(Q− Tm) > vr(T

m).

Moreover, for this factorization,

min{vr(P − 1), vr(Q− Tm) − vr(T
m)} ≥ vr(S − Tm) − vr(T

m).

It is not so difficult to prove this theorem directly. However, we will be stating a number
of similar results as we go along, so rather than giving individual proofs each time, we state a
master factorization theorem from which we can deduce Theorem 2.2.1 and all of its variants.
It, and the proof given here, are due to Christol [Chr83, Proposition 1.5.1].

Theorem 2.2.2 (Christol). Let R be a nonarchimedean ring (not necessarily commu-
tative). Suppose the nonzero elements a, b, c ∈ R and the additive subgroups U, V,W ⊆ R
satisfy the following conditions.

(a) The spaces U, V are complete under the norm, and UV ⊆W .
(b) The map f(u, v) = av + ub is a surjection of U × V onto W .
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(c) There exists λ > 0 such that

|f(u, v)| ≥ λmax{|a||v|, |b||u|} (u ∈ U, v ∈ V ).

(d) We have ab− c ∈W and

|ab− c| < λ2|c|.
Then there exists a unique pair x ∈ U, y ∈ V such that

c = (a+ x)(b+ y), |x| < λ|a|, |y| < λ|b|.
For this x, y, we also have

|x| ≤ λ−1|ab− c||b|−1, |y| ≤ λ−1|ab− c||a|−1.

Before proving this, let us see how it implies Theorem 2.2.1.

Proof of Theorem 2.2.1. We apply Theorem 2.2.2 with the following parameters:

R = F [T ]

| · | = | · |e−r

U = {P ∈ F [T ] : deg(P ) ≤ deg(S) −m− 1}
V = {P ∈ F [T ] : deg(P ) ≤ m− 1}
W = {P ∈ F [T ] : deg(P ) ≤ deg(S) − 1}
a = 1

b = Tm

c = S

λ = 1,

then put P = a+ x and Q = b+ y. �

With this motivation in mind, we now proof Theorem 2.2.2.

Proof of Theorem 2.2.2. We define a norm on U × V by setting

|(u, v)| = max{|a||v|, |b||u|}.
so that (c) implies

λ|(u, v)| ≤ |f(u, v)| ≤ |(u, v)|.
In particular, λ ≤ 1, so |ab− c| < |ab| = |c|.

Since a, b are nonzero, (c) implies that f is injective. By (b), f is in fact a bijective group
homomorphism between U × V and W . It follows that for all w ∈W ,

|f−1(w)| ≤ λ−1|w|.
By (d), we may choose µ ∈ (0, λ) with |ab− c| ≤ λµ|c|. Define

Bµ = {(u, v) ∈ U × V : |(u, v)| ≤ µ|c|}.
For (u, v) ∈ Bµ, we have

|a||v| ≤ |(u, v)| ≤ µ|c| = µ|a||b|,
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so |v| ≤ µ|b|. Similarly |u| ≤ µ|a|. As a result,

|f−1(c− ab− uv)| ≤ λ−1|c− ab− uv|
≤ λ−1 max{|c− ab|, |uv|}
≤ λ−1 max{λµ|c|, µ2|a||b|}
= µ|c|.

Consequently, the map g(u, v) = f−1(c− ab− uv) carries Bµ into itself.
We next show that g is contractive. For (u, v), (t, s) ∈ Bµ,

|g(u, v)− g(t, s)| ≤ |f−1(ts− uv)|
≤ λ−1|ts− uv|
≤ λ−1|t(s− v) + (t− u)v|
≤ λ−1 max{µ|a||s− v|, µ|t− u||b|}
≤ λ−1µ|(u− t, v − s)|
= λ−1µ|(u− t) − (v − s)|,

which has the desired effect because λ−1µ < 1.
Since g is contractive on Bµ, and U × V is complete, there is a unique (x, y) ∈ U × V

fixed by g. That is,

ay + xb = f(x, y) = f(g(x, y)) = c− ab− xy

and so

c = (a + x)(b+ y).

Moreover, there is a unique such (x, y) in the union of all of the Bµ, and that element belongs
to the intersection of all of the Bµ. �

Remark 2.2.3. One can also use Theorem 2.2.2 to recover other instances of Hensel’s
lemma. For instance, if F is a complete nonarchimedean field, P (x) ∈ oF [x], and the
reduction of P (x) into κF [x] factors as QR with Q,R coprime, then there exists a unique
factorization P = QR in oF [x] with Q,R lifting Q,R.

3. Applications to nonarchimedean field theory

We now go back and apply Theorem 2.2.1 to prove some facts about extensions of nonar-
chimedean fields which were omitted in the previous chapter.

We first complete the proof of Theorem 1.4.6. For this, we need the following lemma.

Lemma 2.3.1. Let F be a complete nonarchimedean field. Let P (T ) ∈ F [T ] be a poly-
nomial whose slopes are all equal to r. Let S(T ) ∈ F [T ] be any polynomial, and write
S = PQ+R with deg(R) < deg(P ). Then

vr(S) = min{vr(P ) + vr(Q), vr(R)}.

Proof. Exercise. �
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Proof of Theorem 1.4.6 (continued). It remains to show that if F is a complete
nonarchimedean field, then any finite extension E of F admits an extension of | · | to an
absolute value on E. If E ′ is a field intermediate between F and E, we may first extend
the absolute value to E ′ and then to E. Consequently, it suffices to check the case where
E = F (α) for some α ∈ E, that is, E ∼= F [T ]/(P (T )) for some monic irreducible polynomial
P ∈ F [T ] (the minimal polynomial of α). Apply Theorem 2.2.1; since P (T ) cannot factor
nontrivially, we deduce that P must have a single slope r.

We now define an absolute value on E as follows: for β = c0 + c1α+ · · ·+ cn−1α
n−1, with

n = deg(P ) = [E : F ], put
|β|E = max

i
{|ci|e−ri}.

That is, take |β|E to be the e−r-Gauss norm of the polynomial c0 + c1T + · · · + cn−1T
n−1.

The multiplicativity of | · |E is then a consequence of Lemma 2.3.1. �

We next give the proof of Theorem 1.4.8. For this, we need a crude version of the principle
that “the roots of a polynomial over a complete algebraically closed nonarchimedean field
vary continuously in the coefficients.”

Lemma 2.3.2. Let F be an algebraically closed nonarchimedean field with completion E,
and suppose P ∈ E[T ] is monic of degree d. Then for any ǫ > 0, we can find z ∈ F such
that |z| ≤ |P (0)|1/d and |P (z)| < ǫ.

Proof. If P (0) = 0 we may pick z = 0, so assume P (0) 6= 0. Put P = T d +
∑d−1

i=0 PiT
i.

For any δ > 0, we can pick a polynomial Q = T d +
∑d−1

i=0 Qid
i ∈ F [T ] with |Qi − Pi| < δ for

i = 0, . . . , d− 1.
Now assume δ < min{|P0|, ǫ, ǫ/|P0|}, so that |Q0| = |P0|. By Proposition 2.1.5, we can

find a root z ∈ F of Q0 with |z| ≤ |Q0|1/d = |P0|1/d. We now have

|P (z)| = |(P −Q)(z)| ≤ δmax{1, |z|}d ≤ δmax{1, |P (0)|} < ǫ,

as desired. �

Proof of Theorem 1.4.8. We must check that the completion E of an algebraically
closed nonarchimedean field F is itself algebraically closed. Let P (T ) ∈ E[T ] be a monic
polynomial of degree d. Define a sequence of polynomials P0, P1, . . . as follows. Put P0 = P .
Given Pi, apply Lemma 2.3.2 to construct zi with |zi| ≤ |Pi(0)|1/d and |Pi(zi)| < 2−i, then
set Pi+1(T ) = Pi(T + zi) so that Pi+1(0) = Pi(zi). If some Pi satisfies Pi(0) = 0, then
z0 + · · · + zi−1 is a root of P . Otherwise, we get an infinite sequence z0, z1, . . . such that
z0 + z1 + · · · converges to a root of P . �

Exercises

(1) Prove Lemma 2.3.1.
(2) State and prove a precise version of the assertion that “the roots of a polynomial

over a complete algebraically closed nonarchimedean field vary continuously in the
coefficients.”
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CHAPTER 3

Matrix analysis

In this chapter, we study metric properties of matrices, and matrix invariants, over a field
equipped with an absolute value. Although the archimedean and nonarchimedean settings
must be handled differently, they exhibit strong similarities, so we present them in parallel,
starting with the archimedean case.

Notation 3.0.1. Let Diag(σ1, . . . , σn) denote the n×n diagonal matrix D with Dii = σi

for i = 1, . . . , n.

1. Singular values and eigenvalues (archimedean case)

Hypothesis 3.1.1. In this section and the next, let A be an n× n matrix over C.

We are interested in two sets of numerical invariants of A. One of these is the familiar
set of eigenvalues.

Definition 3.1.2. Let λ1, . . . , λn be the list of eigenvalues of A, which we sort so that
|λ1| ≥ · · · ≥ |λn|.

A second set of numerical invariants of A, which is in many ways better behaved from
the point of view of numerical analysis, is the singular values.

Definition 3.1.3. Let A∗ denote the conjugate transpose (or Hermitian transpose) of A.
The matrix A∗A is Hermitian and nonnegative definite, so has nonnegative real eigenvalues.
The square roots of these eigenvalues comprise the singular values of A; we denote them
σ1, . . . , σn with σ1 ≥ · · · ≥ σn. These are not invariant under conjugation, but they are
invariant under multiplying A on either side by a unitary matrix.

Theorem 3.1.4 (Singular value decomposition). There exist unitary n×n matrices U, V
such that UAV = Diag(σ1, . . . , σn).

Proof. This is equivalent to showing that there is an orthonormal basis of Cn which
remains orthogonal upon applying A. To construct it, start with a vector v ∈ Cn maximizing
|Av|/|v|, then show that for any w ∈ Cn orthogonal to v, Aw is also orthogonal to Av. For
further details, see references in the notes. �

Corollary 3.1.5. The singular values of A−1 are σ−1
n , . . . , σ−1

1 .

From the singular value decomposition, we may infer a convenient interpretation of σi.

Corollary 3.1.6. The number σi is the smallest value of λ for which the following holds:
for any i-dimensional subspace V of Cn, there exists v ∈ V nonzero such that |Av| ≤ λ|v|.
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Proof. Theorem 3.1.4 provides an orthonormal basis v1, . . . , vn of V such that Av1, . . . , Avn

is again orthogonal, and |Avi| = σi|vi| for i = 1, . . . , n. Let W be the span of vi, . . . , vn; then
for any i-dimensional subspace V of Cn, V ∩W is nonempty, and any v ∈ V ∩W satisfies
|Av| ≤ σi|v|. On the other hand, if we take V to be the span of v1, . . . , vi, then we have
|Av| ≥ σi|v| for all v ∈ V . This proves the claim. �

The relationship between the singular values and the eigenvalues is controlled by the
following inequality of Weyl [Wey49]. For a vast generalization, see Theorem 3.5.1.

Theorem 3.1.7 (Weyl). We have

σ1 · · ·σi ≥ |λ1 · · ·λi| (i = 1, . . . , n),

with equality for i = n.

Proof. The equality for i = n holds because det(A∗A) = | det(A)|2. We check the
inequality first for i = 1. Note that if we equip Cn with the L2 norm, i.e.,

|(z1, . . . , zn)| = (|z1|2 + · · ·+ |zn|2)1/2,

then σ1 is the operator norm of A, that is,

σ1 = sup
v∈Cn−{0}

{|Av|/|v|}.

Since there exists v ∈ Cn − {0} with Av = λ1v, we deduce that σ1 ≥ |λ1|.
For the general case, we pass from Cn to its i-th exterior power ∧iCn, on which A also

acts. The maximum norm of an eigenvalue of this action is |λ1 · · ·λi|, and the operator norm
is σ1 · · ·σi. Thus the previous inequality gives what we want. �

We mention in passing the following converse of Theorem 3.1.7, due to Horn [Hor54,
Theorem 4].

Theorem 3.1.8. For λ1, . . . , λn ∈ C and σ1, . . . , σn ∈ R≥0 satisfying

σ1 · · ·σi ≥ |λ1 · · ·λi| (i = 1, . . . , n),

with equality for i = n, there exist an n× n matrix A over C with singular values σ1, . . . , σn

and eigenvalues λ1, . . . , λn.

Equality in Weyl’s theorem at an intermediate stage has a structural meaning.

Theorem 3.1.9. Suppose that for some i ∈ {1, . . . , n− 1} we have

σi > σi+1, |λi| > |λi+1|,
σ1 · · ·σi = |λ1 · · ·λi|.

Then there exists a unitary matrix U such that U−1AU is block diagonal, with the first block
accounting for the first i singular values and eigenvalues, and the second block accounting
for the others.

Proof. Let v1, . . . , vn be a basis of Cn such that v1, . . . , vi span the generalized eigenspaces
with eigenvalues λ1, . . . , λi. and vi+1, . . . , vn span the generalized eigenspaces with eigenval-
ues λi+1, . . . , λn. Apply the singular value decomposition to construct an orthonormal basis
w1, . . . , wn such that Aw1, . . . , Awn are also orthogonal and |Awi| = σi|wi|.
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Since σi > σi+1, the only vectors v ∈ ∧iCn for which |Av|/|v| achieves its maximum value
σ1 · · ·σi are the nonzero multiples of w1 ∧ · · ·∧wi. However, this is also true for v1 ∧ · · ·∧ vi.
We conclude that w1, . . . , wi span V ; this implies that the orthogonal complement of V is
spanned by wi+1, . . . , wn, and so is also preserved by A. This yields the desired result. �

Theorem 3.1.10. The following are equivalent.

(a) There exists a unitary matrix U such that U−1AU is diagonal.
(b) The matrix A is normal, i.e., A∗A = AA∗.
(c) The eigenvalues λ1, . . . , λn and singular values σ1, . . . , σn of A satisfy |λi| = σi for

i = 1, . . . , n.

Proof. It is clear that (a) implies both (b) and (c). Given (b), we can perform a joint
eigenspace decomposition for A and A∗. On any common generalized eigenspace, A has some
eigenvalue λ, A∗ has eigenvalue λ, and so A∗A has eigenvalue |λ|2. This implies (c).

Given (c), Theorem 3.1.9 implies that A can be conjugated by a unitary matrix into a
block diagonal matrix in which each block has a single eigenvalue and a single singular value,
which coincide. Let B be such a block, with eigenvalue λ, corresponding to a subspace V of
Cn. If the common singular value is 0, then B = 0. Otherwise, λ 6= 0 and λ−1B is unitary.
Hence given orthogonal eigenvectors v1, . . . , vi ∈ V of B, the orthogonal complement in V
of their span is preserved by B, so is either zero or contains another eigenvector vi+1. This
shows that B is diagonalizable, and thus is itself a scalar matrix. (One can also argue this
last step using compactness of the unitary group.) �

In general, we can conjugate any matrix into an almost normal matrix; the “almost” only
intervenes when the matrix is not semisimple.

Lemma 3.1.11. For any η > 1, we can choose U ∈ GLn(C) such that for i = 1, . . . , n,
the i-th singular value of U−1AU is at most η|λi|. If A is semisimple (i.e., diagonalizable),
we can also take η = 1.

Proof. Put A in Jordan normal form, then rescale so that for each eigenvalue λ, the
superdiagonal terms have absolute value at most (|η|−1)|λ|, and all other terms are zero. �

2. Perturbations (archimedean case)

Another inequality of Weyl [Wey12] shows that the singular values do not change much
under a small (additive) perturbation.

Theorem 3.2.1 (Weyl). Let B be an n × n matrix, and let σ′
1, . . . , σ

′
n be the singular

values of A+B. Then

|σ′
i − σi| ≤ |B| (i = 1, . . . , n).

It is more complicated to describe what happens to the eigenvalues under a small addi-
tive perturbation, but it is not so difficult to quantify what happens to the characteristic
polynomial, at least in a crude fashion.

Theorem 3.2.2. Let B be an n× n matrix such that |B| < σj for some j ∈ {1, . . . , n}.
Let P (T ) = T n +

∑n−1
i=0 PiT

i and Q(T ) = T n +
∑n−1

i=0 QiT
i be the characteristic polynomials
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of A and A+B. Then

|Pn−i −Qn−i| ≤
∣∣∣∣2i

(
n

i

)∣∣∣∣ σ1 · · ·σi−1|B| (i = 1, . . . , j).

The superfluous enclosure of the integer 2i
(

n
i

)
in absolute value signs is quite deliberate;

it will be relevant in the nonarchimedean setting.

Proof. Note that Qn−i is the sum of the
(

n
i

)
principal i × i minors of A + B. Each of

these principal minors can be written as a sum of 2i terms, each of which is the product of
a sign, a k × k minor of A, and an (i− k) × (i− k) minor of B. One of these terms is Pn−i

itself; the others all have k < i, and so have norm bounded by

σ1 · · ·σk|B|i−k ≤ σ1 · · ·σi−1|B|
since |B| < σj . This proves the claim. �

We also need to consider multiplicative perturbations.

Proposition 3.2.3. Let B ∈ GLn(C) satisfy |B| ≤ η. Let σ′
1, . . . , σ

′
n be the singular

values of AB. Then

σ′
i ≤ ησi (i = 1, . . . , n).

(The analogous result holds with BA replaced by AB, since transposal does not change sin-
gular values.)

Proof. We use the interpretation of singular values given by Corollary 3.1.6. Choose an
i-dimensional subspace V of Cn such that |BAv| ≥ σ′

i|v| for all v ∈ V . Then choose v ∈ V
nonzero such that |Av| ≤ σi|v|. We have

σ′
i|v| ≤ |BAv| ≤ |B||Av| ≤ σi|B||v|,

proving the claim. �

Proposition 3.2.4. Let σk,1, . . . , σk,n be the singular values of Ak. Then

lim
k→∞

σ
1/k
k,i = |λi| (i = 1, . . . , n).

Proof. Pick η > 1, and choose U as in Lemma 3.1.11; that is, U is upper-triangular,
and each block of eigenvalue λ has some scalar c of norm at most (|η| − 1)|λ|. Let U be the
matrix effecting the resulting conjugation.

In a block with eigenvalue λ, the singular values of the k-th power are bounded below
by |λ|k and above by ηk|λ|k. Consequently, we may apply Proposition 3.2.3 to deduce that

|λi|k|U ||U−1| ≤ σk,i ≤ ηk|λi|k|U ||U−1|.
Taking k-th roots and then taking k → ∞, we deduce

|λi| ≤ lim inf
k→∞

σ
1/k
k,i , lim sup

k→∞
σ

1/k
k,i ≤ η|λi|.

Since η > 1 was arbitrary, we deduce the desired result. �
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3. Singular values and eigenvalues (nonarchimedean case)

We now pass to nonarchimedean analogues.

Hypothesis 3.3.1. Throughout this section and the next, let F be a nonarchimedean
field, and let A be an n× n matrix over F .

Definition 3.3.2. Given a sequence s1, . . . , sn, we define the associated polygon for this
sequence to be the polygonal line joining the points

(−n+ i, s1 + · · ·+ si) (i = 0, . . . , n).

This polygon is the graph of a convex function on [−n, 0] if and only if s1 ≤ · · · ≤ sn.

Definition 3.3.3. Let s1, . . . , sn be the sequence with the property that for i = 1, . . . , n,
s1 + · · ·+ si is the minimum valuation of an i× i minor of A; that is, si are the elementary
divisors (or invariant factors) of A. The associated polygon is called the Hodge polygon of
A (see the notes for an explanation of the terminology). Define the singular values of A
as σ1, . . . , σn = e−s1, . . . , e−sn; these are invariant under multiplication on either side by a
matrix in GLn(oF ). One has the relation

σ1 = |A|,
but this time taking the operator norm defined by the supremum norm on F n.

We also have an analogue of the singular value decomposition.

Theorem 3.3.4 (Smith normal form). There exist U, V ∈ GLn(oF ) such that UAV is a
diagonal matrix whose entries have norms σ1, . . . , σn.

Proof. It is equivalent to prove that starting with A, one can perform elementary row
and column operations defined over oF so as to produce a diagonal matrix. To do this, find
the largest entry of A, permute rows and columns to put this entry at the top left, then use
it to clear the remainder of the first row and column. Repeat with the matrix obtained by
removing the first row and column, and so on. �

Corollary 3.3.5. The slopes s1, . . . , sn of the Hodge polygon satisfy s1 ≤ · · · ≤ sn.

Proof. The i-th slope si is evidently the i-th smallest valuation of a diagonal entry of
the Smith normal form. �

Corollary 3.3.6. The number σi is the largest value of λ for which the following holds:
for any i-dimensional subspace V of F n, there exists v ∈ V nonzero such that |Av| ≤ λ|v|.

Definition 3.3.7. Let λ1, . . . , λn be the eigenvalues of A in some algebraic extension of
F equipped with an extension of | · |, sorted with |λ1| ≥ · · · ≥ |λn|. The associated polygon
is the Newton polygon of A; this is invariant under conjugation by any element of GLn(F ).

The nonarchimedean analogue of Weyl’s inequality is the following.

Theorem 3.3.8 (Newton above Hodge). We have

σ1 · · ·σi ≥ |λ1 · · ·λi| (i = 1, . . . , n),

with equality for i = n. In other words, the Hodge and Newton polygons have the same
endpoints, and the Newton polygon is everywhere on or above the Hodge polygon.
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Proof. Again, the case i = 1 is clear because σ1 is the operator norm of A, and the
general case follows by considering exterior powers. �

Like its archimedean analogue, Theorem 3.3.8 also has a converse, but in this case we
can write the construction down quite explicitly.

Definition 3.3.9. For P = T n +
∑n−1

i=0 PiT
i a monic polynomial of degree n over a ring

R, the companion matrix of P is defined as the matrix



0 · · · 0 −P0

1 · · · 0 −P1
...

. . .
...

0 · · · 1 −Pn−1




with 1’s on the subdiagonal, the negated coefficients of P in the right column, and 0’s
elsewhere. The companion matrix is constructed to have characteristic polynomial equal to
P .

Proposition 3.3.10. Choose λ1, . . . , λn ∈ F alg such that |λ1| ≥ · · · ≥ |λn|, and the

polynomial P (T ) = (T − λ1) · · · (T − λn) = T n +
∑n−1

i=0 PiT
i has coefficients in F . Choose

c1, . . . , cn ∈ F with σi = |ci|, such that σ1 ≥ · · · ≥ σn, and

σ1 · · ·σi ≥ |λ1 · · ·λi| (i = 1, . . . , n),

with equality for i = n. Then the matrix



0 · · · 0 −c−1
1 · · · c−1

n−1P0

cn−1 · · · 0 −c−1
1 · · · c−1

n−2P1
...

. . .
...

0 · · · c1 −Pn−1




has singular values σ1, . . . , σn and eigenvalues λ1, . . . , λn.

Proof. The given matrix is conjugate to the companion matrix of P , so its eigenvalues
are also λ1, . . . , λn. To compute the singular values, we note that for i = 1, . . . , n− 1,

| − c−1
1 · · · c−1

n−i−1Pi| = σ−1
1 · · ·σ−1

n−i−1|Pi|
≤ σ−1

1 · · ·σ−1
n−i−1|λ1 · · ·λn−i|

≤ σn−i.

Thus we can perform column operations over oF to clear everything in the right column
except −c−1

1 · · · c−1
n−1P0. By permuting the rows and columns, we obtain a diagonal matrix

with entries of norms σ1, . . . , σn. This proves the claim. �

Again, equality has a structural meaning, but the proof requires a bit more work than
in the archimedean case, since we no longer have access to orthogonality.

Theorem 3.3.11 (Hodge-Newton decomposition). Suppose that for some i ∈ {1, . . . , n−
1} we have

|λi| > |λi+1|, σ1 · · ·σi = |λ1 · · ·λi|.
(That is, the Newton polygon has a vertex with x-coordinate −n + i, and this vertex also
lies on the Hodge polygon.) Then there exists U ∈ GLn(oF ) such that U−1AU is block upper
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triangular, with the top left block accounting for the first i singular values and eigenvalues,
and the bottom right block accounting for the others. Moreover, if σi > σi+1, we can ensure
that U−1AU is block diagonal.

Proof. Let v1, . . . , vn be a basis of F n such that v1, . . . , vi span the generalized eigenspaces
with eigenvalues λ1, . . . , λi, and vi+1, . . . , vn span the generalized eigenspaces with eigenvalues
λi+1, . . . , λn. (This can be constructed because by Theorem 2.2.1 applied to the character-
istic polynomial of A, P (T ) = (T − λ1) · · · (T − λi) and Q(T ) = (T − λi+1) · · · (T − λn)
have coefficients in F ; we can thus write 1 = PB + QC for some B,C ∈ F [T ], and then
P (A)B(A) and Q(A)C(A) give projectors for a direct sum decomposition separating the
first i generalized eigenspaces from the others.) Choose a basis w1, . . . , wn of on

F such that
w1, . . . , wi is a basis of on

F ∩ (Fv1 + · · · + Fvi). Let e1, . . . , en be the standard basis of F n,
and define U ∈ GLn(oF ) by wj =

∑
i Uijei. Then

U−1AU =

(
B C
0 D

)

is block upper triangular. By Cramer’s rule, each entry of B−1C is an i × i minor of A
divided by the determinant of B. Since | det(B)| = σ1 · · ·σi, B

−1C must thus have entries
in oF . Writing

U−1AU =

(
B 0
0 D

)(
Ii B−1C
0 In−i

)
,

we see that the singular values of B and D together must comprise σ1, . . . , σn. The only way
for this to happen, given the constraint that the product of the singular values of B equals
σ1 · · ·σi, is to have B accounting for σ1, · · · , σi and D accounting for the rest.

This proves the first claim; we may thus assume now that σi > σi+1. In that case,
conjugating by the matrix (

Ii −B−1C
0 In−i

)

gives a new matrix (
B C1

0 D

)

with C1 = B−1CD. Since

|C1| ≤ |B−1||C||D| = σ−1
i |C|σi+1 < |C|,

by repeating this process, we converge to a change of basis over oF which converts A into
the block diagonal matrix (

B 0
0 D

)

which has the desired form. �

Note that the slopes of the Hodge polygon are forced to be in the additive value group
of F , whereas the slopes of the Newton polygon need only lie in the divisible closure of the
additive value group. Consequently, it is possible for a matrix to have no conjugates over
GLn(F ) for which the Hodge and Newton polygons coincide. However, the following is true;
see also Corollary 3.4.8 below.

Lemma 3.3.12. Suppose that one of the following holds.
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(a) The value group of |F×| is dense in R>0, and η > 1.
(b) We have |λi| ∈ |F×| for i = 1, . . . , n (so in particular λi 6= 0), and η ≥ 1.

Then there exists U ∈ GLn(F ) such that the i-th singular value of U−1AU is at most η|λi|
(with equality in case (b)).

Proof. Case (a) will follow from Corollary 3.4.8 below. Case (b) is directly analogous
to Lemma 3.1.11. �

One also has the following variant.

Lemma 3.3.13. Suppose that |F×| is discrete. Then there exists U ∈ GLn(F ) such that
for each positive integer m, |U−1AmU | is the least element of |F×| greater than or equal to
|λm

1 |.
Proof. It suffices to check the case where A acts irreducibly on F n. In this case, choose

v ∈ F n nonzero; then v is a cyclic vector under A. If P (T ) = T n +
∑n−1

i=0 PiT
i is the

characteristic polynomial of A, then Anv = −
∑n−1

i=0 PiA
iv by the Cayley-Hamilton theorem.

By Theorem 2.2.1, the Newton polygon of P consists of some single slope r = − log |λ1|.
Choose c1, . . . , cn ∈ F such that for i = 1, . . . , n, |c1 · · · ci| is the least element of |F×|

greater than or equal to |λ1|i. Choose U so that U−1AU is the companion matrix in Propo-
sition 3.3.10; one checks that this gives the desired property for m = 1, . . . , n. In particular,
U−1AnU has all its Hodge and Newton slopes equal, so the desired conclusion for m implies
the desired conclusion for m+ n. �

4. Perturbations (nonarchimedean case)

Again, we can ask about the effect of perturbations. The analogue of Weyl’s second
inequality is more or less trivial.

Proposition 3.4.1. If B is a matrix with |B| < σi, then the first i singular values of
A+B are σ1, . . . , σi.

Proof. Exercise. �

We next consider the effect on the characteristic polynomial.

Theorem 3.4.2. Let B be an n× n matrix such that |B| < σj for some j ∈ {1, . . . , n}.
Let P (T ) = T n +

∑n−1
i=0 PiT

i and Q(T ) = T n +
∑n−1

i=0 QiT
i be the characteristic polynomials

of A and A+B. Then

|Pn−i −Qn−i| ≤ σ1 · · ·σi−1|B| (i = 1, . . . , j).

Proof. The proof is as for Theorem 3.2.2, except now the factor |2n
(

n
i

)2| is dominated
by 1. �

Question 3.4.3. Is Theorem 3.4.2 best possible?

We may also consider multiplicative perturbations.

Proposition 3.4.4. Let B ∈ GLn(F ) satisfy |B| ≤ η. Let σ′
1, . . . , σ

′
n be the singular

values of AB. Then
σ′

i ≤ ησi (i = 1, . . . , n).
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Proof. As for Proposition 3.2.3, but using the Smith normal form instead of the singular
value decomposition. �

Corollary 3.4.5. Suppose that the Newton and Hodge slopes of A coincide, and that
U ∈ GLn(F ) satisfies |U | · |U−1| ≤ η. Then each Newton slope of U−1AU is at most log η
more than the corresponding Hodge slope.

Here is a weak converse to Corollary 3.4.5. (We leave the archimedean analogue to the
reader’s imagination.)

Proposition 3.4.6. Suppose that the Newton slopes of A are nonnegative and that σ1 ≥
1. Then there exists U ∈ GLn(F ) such that

|U−1AU | ≤ 1, |U−1| ≤ 1, |U | ≤ σn−1
1 .

Proof. Let e1, . . . , en denote the standard basis vectors. Let M be the smallest oF -
submodule of F n containing e1, . . . , en and stable under A. For each i, if j = j(i) is the least

integer such that ei, Aei, . . . , A
jei are linearly dependent, then we have Ajei =

∑j−1
h=0 chA

hei

for some ch ∈ F ; the polynomial T j −
∑j−1

h=0 chT
h has roots which are eigenvalues of F , so

the nonnegativity of the Newton slopes forces |ch| ≤ 1. Hence M is finitely generated, and
thus free, over oF .

Let v1, . . . , vn be a basis ofM , and let U be the change-of-basis matrix vj =
∑

i Uijei; then
|U−1AU | ≤ 1 because M is stable under A, and |U−1| ≤ 1 because M contains e1, . . . , en.
The desired bound on U will follow from the fact that for any x = c1e1 + · · · + cnen ∈ M ,
we have

(3.4.6.1) max
i

{|ci|} ≤ σn−1
1 .

It suffices to check (3.4.6.1) for x = Ahei for i = 1, . . . , n and h = 0, . . . , j(i) − 1, as these
generate M over oF . But it is evident that |Ahe1| ≤ σh

1 |e1| = σh
1 , so we are done. �

Example 3.4.7. The example

A =




1 c 0
0 1 c
0 0 1




with |c| > 1 shows that this bound of Proposition 3.4.6 is sharp; in particular, the bound
|U | ≤ σn−1

1 cannot be improved to |U | ≤ σ1, as one might initially expect. However, one
should be able to get a more precise bound (which agrees with the given bound in this
example) by accounting for the other singular values; see Problem 3.4.6.

Corollary 3.4.8. There exists a continuous function

fn(σ1, . . . , σn, σ
′
1, . . . , σ

′
n) : (0,∞)2n → (0,∞)

(independent of F ) with the following properties.

(a) If σi = σ′
i for i = 1, . . . , n, then f = 1.

(b) If A has singular values σ1, . . . , σn and eigenvalues λ1, . . . , λn, none equal to 0, and
σ′

1, . . . , σ
′
n ∈ |F×| satisfy

σ1 · · ·σi ≥ σ′
1 · · ·σ′

i ≥ |λ1 · · ·λi| (i = 1, . . . , n),
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then there exists U ∈ GLn(F ) such that

|U−1| ≤ 1, |U | ≤ fn(σ1, . . . , σn, σ
′
1, . . . , σ

′
n)

for which U−1AU has singular values σ′
1, . . . , σ

′
n.

Proof. This follows by induction on n, using Proposition 3.4.6 (after appropriate rescal-
ing), Proposition 3.4.4, and Theorem 3.3.11. �

For the purposes of this book, it is immaterial what the function fn is, as long as it
is continuous. However, for numerical applications, it may be quite important to identify
a good function f ; here is a conjectural best possible result. (One can also formulate an
archimedean analogue.)

Conjecture 3.4.9. In Corollary 3.4.8, we may take

fn(σ1, . . . , σn, σ
′
1, . . . , σ

′
n) = max

i
{(σ1 · · ·σi)/(σ

′
1 · · ·σ′

i)}.

By imitating the proof of Proposition 3.2.4, we obtain the following.

Proposition 3.4.10. Let σk,1, . . . , σk,n be the singular values of Ak. Then

lim
k→∞

σ
1/k
k,i = |λi| (i = 1, . . . , n).

5. Horn’s inequalities

Although they will not be needed in this course, it is quite natural to mention here some
stronger versions of the perturbation inequalities in the archimedean and nonarchimedean
cases, introduced by Horn [Hor62] in the archimedean case. See the beautiful survey article
of Fulton [Ful00] for more information.

To introduce the stronger inequalities, we must set up some notation. Put

Un
r = {(I, J,K) : I, J,K ⊆ {1, . . . , n},#I = #J = #K = r,

∑

i∈I

i+
∑

j∈J

j =
∑

k∈K

k + r(r + 1)/2}.

For (I, J,K) ∈ Un
r , write I = {i1 < · · · < ir} and similarly for J,K. For r = 1, put T n

1 = Un
1 .

For r > 1, put

T n
r = {(I, J,K) ∈ Un

r : for all p < r and (F,G,H) ∈ T r
p ,∑

f∈F

if +
∑

g∈G

jg ≤
∑

h∈H

kh + p(p+ 1)/2}.

For multiplicative perturbations, we obtain the following results, which include the Weyl
inequalities (Theorem 3.1.7, Theorem 3.3.8) as well as Propositions 3.2.3 and 3.4.4. It is
important for the proofs that one can rephrase the Horn inequalities in terms of Littlewood-
Richardson numbers; see [Ful00, §3].

Theorem 3.5.1. For ∗ ∈ {A,B,C}, let σ∗,1, . . . , σ∗,n be a nonincreasing sequence of
nonnegative real numbers. Then the following are equivalent.

(a) There exist n×n matrices A,B,C over C with AB = C such that for ∗ ∈ {A,B,C},
∗ has singular values σ∗,1, . . . , σ∗,n.
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(b) We have
∏n

i=1 σA,i

∏n
j=1 σB,j =

∏n
k=1 σC,k, and for all r < n and (I, J,K) ∈ T n

r , we
have ∏

k∈K

σC,k ≤
∏

i∈I

σA,i

∏

j∈J

σB,j .

Proof. See [Ful00, Theorem 16]. Note that the first condition in (b) is omitted in the
statement given in [Ful00], but this is only a typo. �

Theorem 3.5.2. Let F be a complete nonarchimedean field with additive value group G.
For ∗ ∈ {A,B,C}, let σ∗,1, . . . , σ∗,n be a nonincreasing sequence of elements of G ∪ {0}.
Then the following are equivalent.

(a) There exist n×n matrices A,B,C over F with AB = C such that for ∗ ∈ {A,B,C},
∗ has singular values σ∗,1, . . . , σ∗,n.

(b) We have
∏n

i=1 σA,i

∏n
j=1 σB,j =

∏n
k=1 σC,k, and for all r < n and (I, J,K) ∈ T n

r , we
have ∏

k∈K

σC,k ≤
∏

i∈I

σA,i

∏

j∈J

σB,j .

Proof. See [Ful00, Theorem 7]. �

For additive perturbations, one has an analogous result in the archimedean case; see
[Ful00, Theorem 15]. I am not aware of an additive result in the nonarchimedean case.
Also, in the archimedean case one has analogous results (with slightly different statements)
in which one restricts to Hermitian matrices.

Notes

The subject of archimedean matrix inequalities is an old one, with many important
applications. A good reference for this is [Bha97]; for instance, see [Bha97, §I.2] for the
singular value decomposition, [Bha97, Theorem II.3.6] for the Weyl inequalities (in a much
stronger form known as Weyl’s majorant theorem), [Bha97, Theorem III.4.5] for a strong
form of Proposition 3.2.3 (also a consequence of the Horn inequalities), and so on. (A variant
of our Theorem 3.2.2 appears as [Bha97, Problem I.6.11].)

The strong analogy between archimedean and p-adic numerical analysis appears to be a
little-known piece of folklore. As a result, we have been unable to locate a suitable reference.

It should be pointed out that most of what we have done here is the special case for GLn

of a more general theory encompassing the other reductive algebraic groups. This point of
view can be seen in [Ful00], where GLn makes some explicit appearances for which other
groups can be substituted.

In Theorem 3.1.10, the equivalence of (a) and (b) is standard. We do not have a reference
for the equivalence with (c), although it is implicit in most proofs of the equivalence of (a)
and (b).

The reader familiar with the notions of elementary divisors or invariant factors may be
wondering why the terminology “Hodge polygon” is necessary or reasonable. The answer
is that the Hodge numbers of a variety over a p-adic field are reflected by the elementary
divisors of the action of Frobenius on crystalline cohomology. The fact that the Newton
polygon lies above the Hodge polygon then implies a relation between the characteristic
polynomial of Frobenius and the Hodge numbers of the original variety; this relationship
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was originally conjectured by Katz and proved by Mazur. See [BO78] for further discussion
of this point, and of crystalline cohomology as a whole.

Much of the work in this chapter can be carried over to the case of a transformation which
is only semilinear for some isometric endomorphism of F . This case arises in the study of
slope filtrations of Frobenius crystals (F -crystals), as in [Kat79]; in fact, the Hodge-Newton
decomposition theorem (Theorem 3.3.11) is a direct translation of Katz’s corresponding
theorem for F -crystals [Kat79, Theorem 1.6.1]. The archimedean version (Theorem 3.1.9)
is itself a translation of Theorem 3.3.11; we do not know of a reference, although we do not
make any claim of originality. Likewise, Proposition 3.4.10 is a direct translation of [Kat79,
Corollary 1.4.4]; its archimedean analogue (Proposition 3.2.4) is doubtless also known, but
we do not have a reference.

The question of how much the characteristic polynomial of a square matrix over a field
is affected by a perturbation arises in numerical applications. This is a familiar fact in the
archimedean case, but perhaps less so in the nonarchimedean case; numerical applications of
the latter include using p-adic cohomology to compute zeta functions of varieties over finite
fields. See for instance [AKR07, §1.6], [Ger07, §3].

Exercises

(1) Prove Proposition 3.4.1.
(2) With notation as in Theorem 3.3.11, suppose U, V ∈ GLn(oF ) are congruent to the

identity matrix modulo mF . Prove that the product of the i largest eigenvalues of
UAV again has norm |λ1 · · ·λi|. (Hint: use exterior powers to reduce to the case
i = 1.) This yields as a corollary [BC05, Lemma 5]: if D ∈ GLn(F ) is diagonal and
U, V ∈ GLn(oF ) are congruent to the identity matrix modulo mF , then the Newton
polygons of D and UDV coincide.

(3) State and prove an archimedean analogue of the previous problem.
(4) Prove the following improved version of Proposition 3.4.6. Suppose that the Newton

slopes of A are nonnegative. Then there exists U ∈ GLn(F ) such that

|U−1AU | ≤ 1, |U−1| ≤ 1, |U | ≤
n−1∏

i=1

max{1, σi}.

I do not know of an appropriate archimedean analogue.
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Part 2

Differential algebra





CHAPTER 4

Formalism of differential algebra

In this chapter, we introduce some basic formalism of differential algebra.

1. Differential rings and differential modules

Definition 4.1.1. A differential ring is a commutative ring R equipped with a derivation
d : R → R, i.e., an additive map satisfying the Leibniz rule

d(ab) = ad(b) + bd(a) (a, b ∈ R).

We expressly allow d = 0 unless otherwise specified; this will come in handy in some sit-
uations. A differential ring which is also a domain, field, etc., will be called a differential
domain, field, etc.

Definition 4.1.2. A differential module over a differential ring (R, d) is a module M
equipped with an additive map D : M → M satisfying

D(am) = aD(m) + d(a)m;

such a D will also be called a differential operator on M relative to d. For example, (R, d) is
a differential module over itself; any differential module isomorphic to a direct sum of copies
of (R, d) is said to be trivial. (If we refer to “the” trivial differential module, though, we
mean (R, d) itself.) A differential ideal of R is a differential submodule of R itself, i.e., an
ideal stable under d.

Definition 4.1.3. For (M,D) a differential module, define

H0(M) = ker(D), H1(M) = coker(D) = M/D(M).

The latter computes Yoneda extensions; see Lemma 4.3.3 below. Elements of H0(M) are
said to be horizontal (see notes). Note that H0(R) = ker(d) is a subring of R; if R is a field,
then ker(d) is a subfield. We call this the constant subring/subfield of R.

Remark 4.1.4. If R0 is the constant subring of R, and R′ is an R0-algebra, then there
are natural maps H i(M) ⊗R0 R

′ → H i(M ⊗R0 R
′). This map is always an isomorphism for

i = 1, and is an isomorphism for i = 0 if R′ is flat over R0.

2. Differential modules and differential systems

Definition 4.2.1. Let R be a differential ring, and let M be a finite free differential
module of rank n over R. Let e1, . . . , en be a basis of M . Then for any v ∈M , we can write
v = v1e1 + · · · + vnen for some v1, . . . , vn ∈ R, and then compute

D(v) = v1D(e1) + · · ·+ vnD(en) + d(v1)e1 + · · · + d(vn)en.
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If we define the n× n matrix N over R by the formula

D(ej) =
n∑

i=1

Nijei

(we will sometimes call this the matrix of action of D on this basis), we then have

D(v) =

n∑

i=1

(
d(vi) +

∑

j

Nijvj

)
ei.

That is, if we identify v with the column vector v = [v1, . . . , vn], then

D(v) = Nv + d(v).

Conversely, it is clear that given the underlying finite free R-module, any differential module
structure is given by such an equation.

Remark 4.2.2. In other words, differential modules are a coordinate-free version of dif-
ferential systems. If you are a geometer, you may wish to go further and think of differential
bundles, i.e., vector bundles equipped with a differential operator. A differential operator on
a vector bundle is usually called a connection.

3. Operations on differential modules

Definition 4.3.1. For R a differential ring, we regard the differential modules over R as
a category in which the morphisms (or homomorphisms) from M1 to M2 are additive maps
f : M1 →M2 satisfying D(f(m)) = f(D(m)) (we sometimes say these maps are horizontal).

The category of differential modules over a differential ring admits certain functors cor-
responding to familiar functors on the category of modules over an ordinary ring. (Beware
that in the following notations, the subscripted R on such symbols as the tensor product
will often be suppressed when it is unambiguous.)

Definition 4.3.2. Given two differential modules M1,M2, the tensor product M1⊗RM2

in the category of rings may be viewed as a differential module via the formula

D(m1 ⊗m2) = D(m1) ⊗m2 +m1 ⊗D(m2).

Similarly, the exterior power ∧n
RM may be viewed as a differential module via the formula

D(m1 ∧ · · · ∧mn) =

n∑

i=1

m1 ∧ · · · ∧mi−1 ∧D(mi) ∧mi+1 ∧ · · · ∧mn;

likewise for the symmetric power Symn
R M . The module ofR-homomorphisms HomR(M1,M2)

may be viewed as a differential module via the formula

D(f)(m) = D(f(m)) − f(D(m));

the homomorphisms from M1 to M2 as differential modules are precisely the horizontal
elements of HomR(M1,M2). If M2

∼= R is trivial, we write M∨
1 for HomR(M1, R) and call

it the dual of M1; if M1 is finite projective (which is the same as finite locally free if R is a
noetherian ring), then HomR(M1,M2) ∼= M∨

1 ⊗M2 and the natural map M1 → (M∨
1 )∨ is an

isomorphism.
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Lemma 4.3.3. Let M,N be differential modules with M finite projective. Then the group
H1(M∨ ⊗N) is canonically isomorphic to the Yoneda extension group Ext(M,N).

Proof. The group Ext(M,N) consists of equivalence classes of exact sequences 0 →
N → P → M → 0 under the relation that this sequence is equivalent to a second sequence
0 → N → P ′ →M → 0 if there is an isomorphism P ∼= P ′ that induces the identity maps on
M and N . The addition is to take two such sequences and return the Baer sum 0 → N →
(P ⊕ P ′)/∆ → M → 0, where ∆ = {(n,−n) : n ∈ N}. The identity element is the split
sequence 0 → N →M ⊕N →M → 0. The inverse of a sequence 0 → N → P →M → 0 is
the sequence 0 → N → P →M → 0 with the map N → P negated.

Given an extension 0 → N → P → M → 0, tensor with M∨ to get 0 → M∨ ⊗ N →
M∨ ⊗ P → M∨ ⊗ P → 0, and apply the connecting homomorphism H0(M∨ ⊗ M) →
H1(M∨ ⊗ N) from the snake lemma to the trace (the element of M∨ ⊗M corresponding
to the identity map in Hom(M,M)) to get an element of H1(M∨ ⊗N). This is the desired
map Ext(M,N) → H1(M∨ ⊗ N). To construct its inverse, given an element H1(M∨ ⊗ N)
represented by x ∈M∨ ⊗N , form the sequence

0 → N → M ⊕N

(m, 〈m, x〉) →M → 0

where 〈·, ·〉 represents the natural map M × (M∨ ⊗N) → N . �

4. Cyclic vectors

Definition 4.4.1. Let R be a differential ring, and let M be a finite free differen-
tial module of rank n over R. A cyclic vector for M is an element m ∈ M such that
m,D(m), . . . , Dn−1(m) form a basis of M .

Theorem 4.4.2 (Cyclic vector theorem). Let R be a differential field of characteristic
zero with nonzero derivation. Then every finite differential module over R has a cyclic vector.

For a comment on characteristic p, see the exercises.

Proof. This is a folklore result, that is, it is old enough that giving a proper attribution
is difficult. Many proofs are possible; here is the proof from [DGS94, Theorem III.4.2].

We start by normalizing the derivation. For u ∈ R×, given one differential module (M,D)
over (R, d), we get another differential module (M,uD) over (R, ud), and m is a cyclic vector
for one if and only if it is a cyclic vector for the other (because the image of m under (uD)j

is in the span of u,D(u), . . . , Dj(u)). We may thus assume (thanks to the assumption that
the derivation is nontrivial) that there exists an element x ∈ R such that d(x) = x.

Let M be a differential module of dimension n, and choose m ∈ M so that the dimension
µ of the span of m,D(m), . . . is as large as possible. We derive a contradiction under the
hypothesis µ < n.

For z ∈M and λ ∈ Q, we now have

(m+ λz) ∧D(m+ λz) ∧ · · · ∧Dµ(m+ λz) = 0

in the exterior power ∧µ+1M . If we write this expression as a polynomial in λ, it vanishes
for infinitely many values, so must be identically zero. Hence each coefficient must vanish
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separately, including the coefficient of λ1, which is

(4.4.2.1)

µ∑

i=0

m ∧ · · · ∧Di−1(m) ∧Di(z) ∧Di+1(m) ∧ · · · ∧Dµ(m).

Pick s ∈ Z, substitute xsz for z in (4.4.2.1), divide by xs, and set equal to zero. We get

(4.4.2.2)

µ∑

i=0

siΛi(m, z) = 0 (s ∈ Z)

for

Λi(m, z) =

µ−i∑

j=0

(
i+ j

i

)
m ∧ · · · ∧Di+j−1(m) ∧Dj(z) ∧Di+j+1(m) ∧ · · · ∧Dµ(m).

Again because we are in characteristic zero, we may conclude that (4.4.2.2), viewed as a
polynomial in s, has all coefficients equal to zero; that is, Λi(m, z) = 0 for all m, z ∈M .

We now take i = µ to obtain

(m ∧ · · · ∧Dµ−1(m)) ∧ z = 0 (m, z ∈M);

since µ < n, we may use this to deduce

m ∧ · · · ∧Dµ−1(m) = 0 (m ∈M).

But that means that the dimension of the span of m,D(m), . . . is always at most µ − 1,
contradicting the definition of µ. �

Remark 4.4.3. If R is not a field, then one obstruction to having a cyclic vector is that
M itself might not be a finite free R-module. But even if it is, there is no reason to expect
in general that cyclic vectors exist; this will create complications for us later.

5. Differential polynomials

Definition 4.5.1. Let (R, d) be a differential ring. The ring of twisted polynomials R{T}
over R in the variable T is the additive group

R⊕ (R · T ) ⊕ (R · T 2) ⊕ · · · ,
with noncommuting multiplication given by the formula

(
∞∑

i=0

aiT
i

)(
∞∑

j=0

bjT
j

)
=

∞∑

i,j=0

j∑

h=0

(
j

h

)
aid

h(bj)T
i+j−h.

In other words, you impose the relation

Ta = aT + d(a) (a ∈ R)

and check that you get a sensible (but not necessarily commutative) ring. We define the
degree of a twisted polynomial in the usual way, as the exponent of the largest power of
T with a nonzero coefficient; the degree of the zero polynomial may be taken to be any
particular negative value.
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Proposition 4.5.2 (Ore). For R a differential field, the ring R{T} admits a left division
algorithm. That is, if f, g ∈ R{T} and g 6= 0, then there exist unique q, r ∈ R{T} with
deg(r) < deg(g) and f = gq + r. (There is also a right division algorithm.)

Proof. Exercise. �

Using the Euclidean algorithm, this yields the following consequence as in the untwisted
case.

Theorem 4.5.3 (Ore). Let R be a differential field. Then R{T} is both left principal and
right principal; that is, any left ideal (resp. right ideal) has the form R{T}f (resp. fR{T})
for some f ∈ R{T}.

Definition 4.5.4. Note that the opposite ring to R{T}, i.e., the ring with left and right
reversed, is again a twisted polynomial ring, but for the derivation −d. Given f ∈ R{T}, we
define the formal adjoint of f as the element f in the opposite ring. This operation looks
a bit less formal if you also push the coefficients over to the other side, giving what we will
call the adjoint form of f . For instance, the adjoint form of T 3 + aT 2 + bT + c is

T 3 + T 2a+ T (b− 2d(a)) + d(d(a)) − d(b) + c.

Remark 4.5.5. The twisted polynomial ring is rigged up precisely so that for any dif-
ferential module M over R, we get an action of R{T} on M under which T acts like D. In
particular, R{T} acts on R itself with T acting like d. In fact, the category of differential
modules over R is equivalent to the category of left R{T}-modules. Moreover, if M is a differ-
ential module, any cyclic vector m ∈M corresponds to an isomorphism M ∼= R{T}/R{T}P
for some monic twisted polynomial P , where the isomorphism carries m to the class of 1.
(You might want to think of f as a sort of “characteristic polynomial” for M , except that
it depends strongly on the choice of the cyclic vector.) Under such an isomorphism, a fac-
torization P = P1P2 corresponds to a short exact sequence 0 → M1 → M → M2 → 0
with

M1
∼= R{T}P2/R{T}P ∼= R{T}/R{T}P1, M2

∼= R{T}/R{T}P2.

6. Differential equations

You may have been wondering when differential equations will appear, those supposedly
being the objects of study of this book. If so, your wait is over.

Definition 4.6.1. A differential equation of order n over the differential ring (R, d) is
an equation of the form

(and
n + · · · + a1d+ a0)y = b,

with a0, . . . , an, b ∈ R, and y indeterminate. We say the equation is homogeneous if b = 0
and inhomogeneous otherwise.

Using our setup, we may write this equation as f(d)y = b for some f ∈ R{T}. Similarly,
we may view systems of differential equations as being equations of the form f(D)y = b
where b lives in some differential module (M,D). By the usual method (of introducing
extra variables corresponding to derivatives of y), we can convert any differential system
into a first-order system Dy = b. We can also convert an inhomogeneous system into a
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homogeneous one by adding an extra variable, with the understanding that we would like
the value of that last variable to be 1 in order to get back a solution of the original equation.

Here is a more explicit relationship between adjoint polynomials and solving differential
equations. Say you start with the cyclic differential module M ∼= R{T}/R{T}f and you
want to find a horizontal element. That means that you want to find some g ∈ R{T} such
that Tg ∈ R{T}f ; we may as well assume that deg(g) < deg(f). Then by comparing degrees,
we see that in fact Tg = rf for some r ∈ R. Write f in adjoint form as f0 + Tf1 + · · ·+ T n;
then

rf ≡ rf0 − d(r)f1 + d2(r)f2 − · · · ± dn(f) mod TR{T}.

In this manner, finding a horizontal element becomes equivalent to solving a differential
equation.

7. Cyclic vectors: a mixed blessing

The reader may at this point be wondering why so many points of view are necessary,
since the cyclic vector theorem can be used to transform any differential module into a
differential equation, and ultimately differential equations are the things one writes down
and wants to solve. Permit me to interject here a countervailing opinion.

In ordinary linear algebra (or in other words, when considering differential modules for
the trivial derivation), one can pass freely between linear transformations on a vector space
and square matrices if one is willing to choose a basis. The merits of doing this depend
on the situation, so it is valuable to have both the matricial and coordinate-free viewpoints
well in hand. One can then pass to the characteristic polynomial, but not all information is
retained (one loses information about nilpotency), and even information that in principle is
retained is sometimes not so conveniently accessed. In short, no one would seriously argue
that one can dispense with studying matrices because of the existence of the characteristic
polynomial.

The situation is not so different in the differential case. The difference between a differen-
tial module and a differential system is merely the choice of a basis, and again it is valuable
to have both points of view in mind. However, the cyclic vector theorem may seduce one into
thinking that collapsing a differential system into a differential polynomial is an operation
without drawbacks, and this is far from the case. For instance, determining whether two
differential polynomials correspond to the same differential system is not straightforward.

More seriously for our purposes, the cyclic vector theorem only applies over a differential
field. Many differential modules are more naturally defined over some ring which is not a
field, e.g., those coming from geometry which should be defined over some sort of ring of
functions on some sort of geometric space. Working with differential modules instead of
differential polynomials has a tremendously clarifying effect over rings.

We find it unfortunate that much of the literature on complex ordinary differential equa-
tions, and nearly all of the literature on p-adic ordinary differential equations, is mired in
the language of differential polynomials. By instead switching between differential modules
and differential polynomials as appropriate, we will be able to demonstrate strategies that
lead to a more systematic development of the p-adic theory.
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8. Taylor series

Definition 4.8.1. Let R be a topological differential ring, i.e., a ring equipped with a
topology and a derivation such that all operations are continuous. Assume also that R is
a Q-algebra. Let M be a topological differential module over R, i.e., a differential module
such that all operations are continuous. For r ∈ R and m ∈ M , we define the Taylor series
T (r,m) as the infinite sum

∞∑

i=0

ri

i!
Di(m)

whenever the sum converges absolutely (i.e., all rearrangements converge to the same value).

The map T (r,m) is de facto additive in m: if m1, m2 ∈M , then

T (r,m1) + T (r,m2) = T (r,m1 +m2)

whenever all three terms make sense. Also, the map T (r, ·) : R → R is de facto a ring
homomorphism: if s1, s2 ∈ R, then (by the Leibniz rule)

T (r, s1)T (r, s2) = T (r, s1s2)

whenever all three terms make sense. (Key example: if R is a completion of a rational
function field F (t) and d = d/dt, then this ring homomorphism is the substitution t 7→ t+ r.
Note that this can only make sense if |r| ≤ 1.) More generally, the map T (r, ·) on M is de
facto semilinear for the ring homomorphism T (r, ·) on R: if s ∈ R, m ∈ M , then

T (r, s)T (r,m) = T (r, sm)

whenever all three terms make sense.
Another use for Taylor series is to construct horizontal sections. Note that

D(T (r,m)) =
∞∑

i=1

d(r)
ri−1

(i− 1)!
Di(m) +

∞∑

i=0

ri

i!
Di+1(m)

= (1 + d(r))T (r,m)

if everything converges absolutely. In particular, if d(r) = −1, then T (r,m) is horizontal.

Notes

The subject of differential algebra is rather well-developed; a classic treatment, though
possibly too dry to be relevant, is the book of Ritt [Rit50]. As in abstract algebra in general,
development of differential algebra was partly driven by differential Galois theory, i.e., the
study of when solutions of differential equations can be expressed in terms of solutions to
ostensibly simpler differential equations. A relatively lively introduction to the latter is
[SvdP03].

Calling an element of a differential module horizontal when it is killed by the derivation
makes sense if you consider connections in differential geometry. In that setting, the differ-
ential operator is measuring the extent to which a section of a vector bundle deviates from
some prescribed “horizontal” direction identifying points on one fibre with points on nearby
fibres.

Twisted polynomials were introduced by Ore [Ore33]. They are actually somewhat
more general than we have discussed; for instance, one can also twist by an endomorphism
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τ : R → R by imposing the relation Ta = τ(a)T . (This enters the realm of the analogue
of differential algebra called difference algebra, which we will treat in Part 4.) Moreover,
one can twist by both an endomorphism and a derivation if they are compatible in an
appropriate way, and one can even study differential/difference Galois theory in this setting.
A unifying framework for doing so, which is also suitable for considering multiple derivations
and automorphisms, is given by André [And01].

Differential algebra in positive characteristic has a rather different flavor than in charac-
teristic 0; for instance, the p-th power of the derivation d/dt on Fp(t) is the zero map. A
brief discussion of the characteristic p situation is given in [DGS94, §III.1].

Exercises

(1) Prove that if M is a locally free differential module over R of rank 1, then M∨ ⊗M
is trivial (as a differential module).

(2) Check that in characteristic p > 0, the cyclic vector theorem holds for modules of
rank less than p, but may fail for modules of rank p.

(3) Give a counterexample to the cyclic vector theorem for a differential field of char-
acteristic zero with trivial derivation.

(4) Verify that R{T} is indeed a ring; the content in this is to check associativity of
multiplication.

(5) Prove the division algorithm (Proposition 4.5.2).
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CHAPTER 5

Metric properties of differential modules

In this chapter, we study the metric properties of differential modules over nonarchimedean
differential rings.

1. Spectral norms of linear operators

To illustrate what we have in mind, let us review first the difference between the operator
norm and spectral norm of a linear operator.

Definition 5.1.1. Let F be a field equipped with a norm | · |, let V be a vector space
over F equipped with a compatible norm | · |V , and let T : V → V be a bounded linear
transformation. The operator norm of T is defined as

|T |V = sup
v∈V,v 6=0

{|T (v)|V /|v|V };

the fact that this is finite is precisely the condition that T be bounded.

The operator norm depends strongly on the norm on V (although the property of being
bounded only depends on the equivalence class of the norm). The spectral norm is somewhat
less delicate.

Definition 5.1.2. With notation as above, the spectral norm of V is defined as

|T |sp,V = lim
s→∞

|T s|1/s
V ;

the existence of the limit follows from the fact |Tm+n|V ≤ |Tm|V |T n|V and the following
lemma.

Lemma 5.1.3 (Fekete). Let {an}∞n=1 be a sequence of real numbers such that am+n ≥
am + an for all m,n. Then the sequence {an/n}∞n=1 either converges to its supremum or
diverges to +∞.

Proof. Exercise. �

Proposition 5.1.4. With notation as above, the spectral norm of T depends on the norm
| · |V only up to equivalence.

Proof. Suppose | · |′V is an equivalent norm. We can then choose c > 0 such that
|v|′V ≤ c|v|V and |v|V ≤ c|v|′V for all v ∈ V . We then have |T (v)|V /|v|V ≤ c2|T (v)|′V /|v|′V for
all v ∈ V − {0}. Applying this with T replaced by T s, this gives |T s|V ≤ c2|T s|′V , so

|T s|sp,V ≤ lim
s→∞

c2/s(|T s|′sp,V )1/s.

Since c2/s → 1 as s → ∞, this gives |T s|sp,V ≤ |T s|′sp,V . The reverse inequality holds by
reversing the roles of the norms. �
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Remark 5.1.5. Suppose that V is finite dimensional. Pick a basis for V , and equip V
with either the L2 norm or the supremum norm defined by this basis, according as whether
F is archimedean or nonarchimedean. Let A be the matrix via which T acts on this basis.
Then |T |V equals the largest singular value of A, whereas |T |sp,V equals the largest norm of
an eigenvalue of A.

2. Spectral norms of differential operators

Definition 5.2.1. By a nonarchimedean differential ring/field, we mean a nonarchimedean
ring equipped with a bounded derivation. For F a nonarchimedean differential field, we can
define the operator norm |d|F and the spectral norm |d|sp,F ; by hypothesis the former is
finite, so the latter is too.

Definition 5.2.2. Let F be a nonarchimedean differential field. By a normed differential
module over F , we mean a vector space V over F equipped with a norm | · |V compatible
with | · |F , and a derivation D with respect to d which is bounded as an operator on V . Since
D is linear over the constant subfield of F , we may consider the operator norm |D|V and the
spectral norm |D|sp,V .

Remark 5.2.3. If V is finite dimensional over F and F is complete, then the spectral
norm does not depend on the norm on V , since by Theorem 1.3.3 any two norms on V
compatible with the norm on F are equivalent.

Lemma 5.2.4. Let F be a nonarchimedean differential field and let V be a normed dif-
ferential module over F . Then

|D|sp,V ≥ |d|sp,F .

Proof. (This proof was suggested by Liang Xiao.) For a ∈ F and v ∈ V nonzero, the
Leibniz rule gives

Ds−i(aDi(v)) = ds−i(a)Di(v) +
s−i∑

j=0

(
s− i

j

)
ds−i−j(a)Di+j(v) (0 ≤ i ≤ s).

Inverting this system of equations gives an identity of the form

ds(a)v =
s∑

i=0

cs,iD
s−i(aDi(v))

for certain universal constants cs,i ∈ Z. Consequently,

(5.2.4.1) |ds(a)v|V ≤ max
0≤i≤s

{|Ds−i(aDi(v))|}.

Given ǫ > 0, we can choose c = c(ǫ) such that for all s ≥ 0,

|Ds|V ≤ c(|D|sp,V + ǫ)s.

(The c is only needed to cover small s.) Using (5.2.4.1), we deduce

|ds(a)v|F ≤ c2(|D|sp,V + ǫ)s|v|.
Dividing by |v|V and taking the supremum over a ∈ F , we obtain

|ds|F ≤ c2(|D|sp,V + ǫ)s.
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Extracting an s-th root and taking limits, we get

|d|sp,F ≤ |D|sp,V + ǫ.

Since ǫ > 0 was arbitrary, this yields the claim. �

In some cases, it may be useful to compute in terms of a basis of V over F .

Lemma 5.2.5. Let F be a complete nonarchimedean differential field, and let V be a finite
differential module over F . Fix a basis e1, . . . , en of V , and let Ds be the matrix via which
Ds acts on this basis; that is, Ds(ej) =

∑
i(Ds)ijei. Then

(5.2.5.1) |D|sp,V = max{|d|sp,F , lim sup
s→∞

|Ds|1/s}.

Proof. (Compare [CD94, Proposition 1.3].) Equip V with the supremum norm defined
by e1, . . . , en; then |Ds|V ≥ maxi,j |(Ds)i,j|. This plus Lemma 5.2.4 implies that the left side
of (5.2.5.1) is greater than or equal to the the right side.

Conversely, for any x ∈ V , if we write x = x1e1 + · · · + xnen, then

Ds(x) =

n∑

i=1

s∑

j=0

(
s

j

)
dj(xi)D

s−j(ei),

so

(5.2.5.2) |Ds|1/s
V ≤ max

0≤j≤s
{|dj|1/s

F |Ds−j|1/s}.

Given ǫ > 0, we can choose c = c(ǫ) such that for all s ≥ 0,

|ds|F ≤ c(|d|sp,F + ǫ)s

|Ds| ≤ c(lim sup
s→∞

|Ds|1/s + ǫ)s.

Then (5.2.5.2) implies

|Ds|1/s
V ≤ c2/s max{|d|sp,F + ǫ, lim sup

s→∞
|Ds|1/s + ǫ}.

As in the previous proof, the factor c2/s tends to 1 as s → ∞. From this it follows that
the right side of (5.2.5.1) is greater than or equal to the left side minus ǫ; since ǫ > 0 was
arbitrary, we get the same inequality with ǫ = 0. �

Remark 5.2.6. With slightly more work, one may check that in Lemma 5.2.5, if the
maximum is only achieved by the second term, then you can replace the limit superior by a
limit.

Lemma 5.2.7. Let F be a nonarchimedean differential field.

(a) For 0 → V1 → V → V2 → 0 a short exact sequence of normed differential modules
over F ,

|D|sp,V = max{|D|sp,V1, |D|sp,V2}.
(b) For V a finite normed differential module over F ,

|D|sp,V ∨ = |D|sp,V .
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(c) For V1, V2 normed differential modules over F ,

|D|sp,V1⊗V2 ≤ max{|D|sp,V1 , |D|sp,V2},
with equality when |D|sp,V1 6= |D|sp,V2.

Proof. Everything is straightforward except perhaps the last assertion of (c); we explain
how to deduce it from everything else.

Suppose |D|sp,V1 > |D|sp,V2. Then by (b) and the first assertion of (c),

|D|sp,V1 = max{|D|sp,V1 , |D|sp,V2}
≥ max{|D|sp,V1⊗V2 , |D|sp,V ∨

2
}

≥ |D|sp,V1⊗V2⊗V ∨
2
.

Moreover, V2⊗V ∨
2 contains a trivial submodule (the trace), so V1⊗V2⊗V ∨

2 contains a copy of
V1. Hence by (a), |D|sp,V1⊗V2⊗V ∨

2
≥ |D|sp,V1 . We thus obtain a chain of inequalities leading to

|D|sp,V1 ≥ |D|sp,V1 ; this forces the intermediate equality |D|sp,V1 = max{|D|sp,V1⊗V2 , |D|sp,V ∨
2
}.

Since |D|sp,V1 6= |D|sp,V2 = |D|sp,V ∨
2

, we can only have |D|sp,V1 = |D|sp,V1⊗V2, as desired. �

Corollary 5.2.8. If V1, V2 are irreducible normed differential modules over a nonar-
chimedean differential field, and |D|sp,V1 6= |D|sp,V2, then every irreducible submodule W of
V1 ⊗ V2 satisfies |D|sp,W = max{|D|sp,V1 , |D|sp,V2}.

There might be a simple proof improving this to cover irreducible subquotients of V1⊗V2,
but I don’t know of one. I’ll deduce something slightly weaker later (Corollary 5.6.3).

Proof. Suppose the contrary; we may assume that |D|sp,V1 > |D|sp,V2. The inclusion
W →֒ V1⊗V2 corresponds to a nonzero horizontal section of W∨⊗V1⊗V2

∼= (W ⊗V ∨
2 )∨⊗V1,

which in turn corresponds to a nonzero map W ⊗V ∨
2 → V1. Since V1 is irreducible, the map

has image V1; that is, W ⊗ V ∨
2 has a quotient isomorphic to V1.

However, we can contradict this using Lemma 5.2.7. Namely,

|D|sp,W⊗V ∨
2
≤ max{|D|sp,W , |D|sp,V2} < |D|sp,V1,

so each nonzero subquotient of W ⊗ V ∨
2 has spectral norm strictly less than |D|sp,V1. �

Remark 5.2.9. By contrast, when |D|sp,V1 = |D|sp,V2, it is entirely possible for an irre-
ducible submodule W of V1 ⊗ V2 to satisfy |D|sp,W 6= max{|D|sp,V1, |D|sp,V2}. For instance,
take V1 with |D|sp,V1 > |d|sp,F put V2 = V ∨

1 , and let W be the trace component of V1 ⊗ V ∨
1 .

Definition 5.2.10. For V a finite differential module over a nonarchimedean differential
field F , let V1, . . . , Vl be the Jordan-Hölder constituents of V (i.e., the successive quotients
in a filtration of V of maximal length; the list of these is unique up to reordering). Define
the full spectrum of V to be the multiset consisting of |D|sp,Vi

with multiplicity dimF Vi, for
i = 1, . . . , l.

We will need the following differential version of Proposition 3.4.6 later.

Proposition 5.2.11. Let F be a complete normed differential field with |d|F ≤ 1. Let
V be a finite differential module of rank n over F with |D|sp,V ≤ 1. Fix a norm | · |V on V ,
given as the supremum norm for some basis e1, . . . , en, for which |D|V = c ≥ 1. Then there
exists a basis v1, . . . , vn of V defining a second supremum norm | · |′V , for which |D|′V ≤ 1
and |x|′V ≤ |x|V ≤ cn−1|x|′V for all x ∈ V .

50



Proof. Let N be the matrix given by D(ej) =
∑

iNijei. By Proposition 3.4.6, there
exists U ∈ GLn(F ) such that

|U−1NU | ≤ 1, |U−1| ≤ 1, |U | ≤ cn−1.

By Theorem 3.3.4, we may factor U = W∆X with ∆ diagonal and W,X ∈ GLn(oF ). By
changing the original basis e1, . . . , en over oF (so as not to change the original norm | · |V ),
we can reduce to the case W = In. We then define | · |′V as the supremum norm defined by
the new basis ∆11e1, . . . ,∆nnen. This satisfies |x|′V ≤ |x|V ≤ cn−1|x|′V for all x ∈ V because
1 ≤ |∆ii| ≤ cn−1 for all i.

To check |D|′V ≤ 1, we note that the matrix of D in the new basis is ∆−1N∆+∆−1d(∆).
Since ∆−1N∆ = X(U−1NU)X−1 and X ∈ GLn(oF ), we have |∆−1N∆| ≤ 1. Since ∆−1d(∆)
is a diagonal matrix with ii-entry d(∆ii)/∆ii, and |d|F ≤ 1, we have |∆−1d(∆)| ≤ 1. This
proves the claim. �

3. A coordinate-free approach

I mention in passing the following more coordinate-free approach to defining the spectral
norm; in particular, there is no need to explicitly truncate when using this method.

Proposition 5.3.1 (Baldassarri-di Vizio). Let F be a nonarchimedean differential field
of characteristic 0 with d nontrivial; put F0 = ker(d). Let F{T}(s) be the set of twisted
polynomials of degree at most s; define the norm of P ∈ F{T}(s) as |P (d)|F (that is, consider
P (d) as an operator on F ). Let V be a finite differential module over F , and fix a norm on
V compatible with | · |. Let LF0(V ) be the space of bounded F0-linear endomorphisms of V ,
equipped with the operator norm. Let Ds : F{T}(s) → LF0(V ) be the map P 7→ P (D). Then

(5.3.1.1) |D|sp,V = |d|sp,F lim
s→∞

|Ds|1/s.

Proof. We have |D|sp,V ≤ |d|sp,F lim infs→∞ |Ds|1/s because on one hand |Ds|V ≤
|ds|F |Ds| by taking T s ∈ F{T}(s), and on the other hand lim inf |Ds|1/s ≥ 1 because
1 ∈ F{T}(n). In the other direction, we may prove |D|sp,V ≥ |d|sp,F lim sups→∞ |Ds|1/s

by imitating the proof of Lemma 5.2.5. �

4. Newton polygons for twisted polynomials

Twisted polynomials admit a partial analogue of the theory of Newton polygons.

Definition 5.4.1. Let F be a nonarchimedean differential field. For ρ ≥ |d|F , define the
ρ-Gauss norm on the twisted polynomial ring F{T} by

∣∣∣∣∣
∑

i

PiT
i

∣∣∣∣∣ = max
i

{|Pi|ρi}.

For r ≤ − log |d|F , we obtain a corresponding r-Gauss valuation vr(P ) = − log |P |e−r.

Lemma 5.4.2. For ρ ≥ |d|F , the ρ-Gauss norm is multiplicative. Moreover, any polyno-
mial and its formal adjoint have the same ρ-Gauss norm.
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Proof. It suffices to check for ρ > |d|F , as the boundary case may be inferred from
continuity of the map ρ 7→ |P |ρ for fixed P . The key observation (and the source of the
restriction on ρ) is that for P,Q ∈ F{T} and ρ > |d|F ,

|PQ−QP |ρ ≥ ρ−1|d|F |P |ρ|Q|ρ > |P |ρ|Q|ρ.

This allows us to deduce multiplicativity on F{T} from multiplicativity on F [T ]. The claim
about the adjoint follows similarly. �

Definition 5.4.3. We define the Newton polygon of P =
∑

i PiT
i ∈ F{T} by taking

the Newton polygon of the corresponding untwisted polynomial
∑
PiT

i ∈ F [T ], then omit-
ting all slopes greater than or equal to − log |d|F ; this has the usual properties thanks to
Lemma 5.4.2. (Note that we cannot include the slope − log |d|F itself because we cannot
relate the width of PQ under the corresponding Gauss norm to the width of P plus the
width of Q.)

As another application of the master factorization theorem (Theorem 2.2.2), we obtain
the following.

Theorem 5.4.4. Let F be a complete nonarchimedean differential field. Suppose S ∈
F{T}, r < − log |d|F , and m ∈ Z≥0 satisfy

vr(S − Tm) > vr(T
m).

Then there exists a unique factorization S = PQ satisfying the following conditions.

(a) The polynomal P ∈ F{T} has degree deg(S)−m, and its slopes are all less than r.
(b) The polynomial Q ∈ F{T} is monic of degree m, and its slopes are all greater than

r.
(c) We have vr(P − 1) > 0 and vr(Q− Tm) > vr(T

m).

Moreover, for this factorization,

min{vr(P − 1), vr(Q− Tm) − vr(T
m)} ≥ vr(S − Tm) − vr(T

m).

In addition, we have the same result if we ask for the factorization in the order S = QP (but
the factors themselves may differ).

Proof. The same setup works as in Theorem 2.2.1. �

Corollary 5.4.5. If P ∈ F{T} is irreducible, then either it has no slopes, or it has all
slopes equal to some value less than − log |d|F .

5. Twisted polynomials and spectral norms

One can use twisted polynomials over nonarchimedean differential fields to detect only
part of the full spectrum of a normed differential module.

Definition 5.5.1. For V a finite differential module over a nonarchimedean differential
field F , define the visible spectrum of V to be the submultiset of the full spectrum of V
consisting of those values greater than |d|F .
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Remark 5.5.2. In the application to regular singularities, we will consider a case where
|d|F = |d|sp,F , in which case there is no real loss in restricting to the visible spectrum:
the only missing norm is |d|F itself, and one can infer its multiplicity from the dimension
of the module. However, in the applications to p-adic differential equations, we will have
|d|F > |d|sp,F , so the restriction to the visible spectrum will cause real problems; these will
have to be remedied using pullback and pushforward along a Frobenius map.

Theorem 5.5.3 (Christol-Dwork). Let F be a complete nonarchimedean differential field.
For P ∈ F{T}, put V = F{T}/F{T}P . Let r be the least slope of the Newton polygon of
P , or − log |d|F if no such slope exists. Then

max{|d|F , |D|sp,V } = e−r.

Proof. Let r1 ≤ · · · ≤ rk be the slopes of P , and define rk+1 = · · · = rn = − log |d|F .
Equip V with the norm

∣∣∣∣∣
n−1∑

i=0

aiT
i

∣∣∣∣∣
V

= max
i

{|ai|e−rn−1−···−rn−i}.

As in the proof of Proposition 3.3.10, we then have |D|V = e−r1 , and so |D|sp,V ≤ e−r1.
To finish, we must check that if r1 < − log |d|F , then |D|sp,V = e−r1 . Let δ be the

operation

δ

(
n−1∑

i=0

aiT
i

)
=

n−1∑

i=0

d(ai)T
i;

then |δ|V = |d|F , D− δ is F -linear, and |D− δ|V = |D− δ|sp,V = e−r1. Then for all positive
integers s,

|(D − δ)s|V = e−r1s, |Ds − (D − δ)s|V ≤ e−r1(s−1)|d|F < e−r1s,

so |Ds|V = e−r1s and |D|sp,V = er1 as desired. �

Corollary 5.5.4. Let F be a complete nonarchimedean differential field. For any P ∈
F{T}, the visible spectrum of the differential module F{T}/F{T}P consists of e−r for r
running over the slope multiset of the Newton polygon of P .

Proof. Write down a maximal factorization of P ; it corresponds to a maximal filtration
of F{T}/F{T}P . By Corollary 5.4.5, each factor in the factorization has only a single slope,
so Theorem 5.5.3 gives what we want. �

6. The visible decomposition theorem

Using twisted polynomials, we can split V into components corresponding to the elements
of the visible spectrum.

Theorem 5.6.1 (Visible decomposition theorem). Let F be a complete nonarchimedean
differential field of characteristic zero with nontrivial derivation, and let V be a finite dimen-
sional differential module over F . Then there exists a decomposition

V = V0 ⊕
⊕

s>|d|F

Vs
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of differential modules, such that every subquotient of Vs has spectral norm s, and every
subquotient of V0 has spectral norm at most |d|F .

Proof. We induct on dim(V ). Choose a cyclic vector for V (possible by Theorem 4.4.2),
because of the hypotheses we imposed on F ), yielding an isomorphism V ∼= F{T}/F{T}P .
Let r be the least slope of P . If r ≥ − log |d|F , we may put V = V0 and be done, so
assume r < − log |d|F . By applying Theorem 5.4.4 once to P , we obtain a short exact
sequence 0 → V1 → V → V2 → 0 in which (by Theorem 5.5.3) every subquotient of V1 has
spectral norm e−r, and every subquotient of V2 has spectral norm less than e−r. Applying
Theorem 5.4.4 again to P but with the factors in the opposite order, we get a short exact
sequence 0 → V ′

2 → V → V ′
1 → 0 where every subquotient of V ′

1 has spectral norm e−r,
and every subquotient of V ′

2 has spectral norm less than e−r. Moreover, dimV1 = dimV ′
1

and dimV2 = dim V ′
2 because P and its formal adjoint have the same Newton polygon

(Lemma 5.4.2). Consequently, V1∩V ′
2 = 0, so V1⊕V ′

2 injects into V ; by counting dimensions,
this must be an isomorphism. This lets us split V ∼= V1⊕V2, and we may apply the induction
hypothesis to V2 to get what we want. �

Corollary 5.6.2. Let F be a complete nonarchimedean differential field, and let V be
a finite dimensional differential module over F such that every subquotient of V has spectral
norm greater than |d|F . Then H0(V ) = H1(V ) = 0.

Proof. The claim about H0 is clear: a nonzero element of H0(V ) would generate a
differential submodule of V which would be trivial, and thus would have spectral norm
|d|sp,F ≤ |d|F . As for H1, let 0 → V →W → F → 0 be a short exact sequence of differential
modules. Decompose W = W0 ⊕W1 according to Theorem 5.6.1, with every subquotient of
W0 having spectral norm at most |d|F , and every subquotient of W1 having spectral norm
greater than |d|F . The map V → W0 must vanish (its image is a subquotient of both V and
W0), so V ⊆ W1. But W1 6= W as otherwise W could not surject onto a trivial module, so
V = W1. Hence the sequence splits, proving H1(V ) = 0. �

Corollary 5.6.3. If V1, V2 are irreducible, |D|sp,V1 > |d|F , and |D|sp,V1 > |D|sp,V2, then
every irreducible subquotient W of V1 ⊗ V2 satisfies |D|sp,W = |D|sp,V1.

Proof. Decompose V1 ⊗ V2 = V0 ⊕
⊕

s>|d|F
Vs according to Theorem 5.6.1; we have

Vs = 0 whenever s > |D|sp,V1 . If either V0 or some Vs with s < |D|sp,V1 were nonzero, then
V1 ⊗V2 would have an irreducible submodule of spectral norm less than |D|sp,V1, in violation
of Corollary 5.2.8. �

For the study of irregularity, these results are quite sufficient. However, in the p-adic
situation, we will have to do better than this in order to further decompose V0; we will do
this using Frobenius antecedents in Chapter 9.

7. Matrices and the visible spectrum

The proof of Theorem 5.5.3 relies on the fact that one can detect the spectral norm of
a differential module admitting a cyclic vector, using the characteristic polynomial of the
matrix of the action of D on the cyclic basis. For some applications, we need to extend this
to some bases not necessarily generated by cyclic vectors; for this, the relationship between
singular values and eigenvalues will be crucial.
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We state the following lemma over a differential domain rather than a differential field,
so that we can use it again later.

Lemma 5.7.1. Let R be a complete nonarchimedean differential domain with fraction field
F . Let N be a 2 × 2 block matrix over R with the following properties.

(a) The matrix N11 has an inverse A over R.
(b) We have |A|max{|d|F , |N12|, |N21|, |N22|} < 1.

Then there exists a block upper triangular unipotent matrix U over R such that |U12| ≤
|A|max{|N12|, |N21|, |N22|} and U−1NU + U−1d(U) is block lower triangular.

Proof. Put

δ = |A|max{|N12|, |N21|, |N22|} < 1, ǫ = |AN12| ≤ δ.

Let X be the block upper triangular nilpotent matrix with X12 = AN12, and put U = I−X
and

N ′ = U−1NU + U−1d(U).

Since U−1 = I +X, we have N ′ = N +XN −NX −XNX − d(X). In block form,

N ′ =

(
N11 +X12N21 N12 −N11X12 +X12N22 −X12N21X12 + d(X12)

N21 N22 −N21X12

)
.

We claim that

|N ′
12| ≤ ǫmax{δ, |d|F |A|}|A|−1

|N ′
21| ≤ δ|A|−1

|N ′
22| ≤ δ|A|−1.

The second and third lines hold because

|U−1NU −N | = |XN −NX −XNX| ≤ ǫ|A|−1.

The first line holds because we can write

N ′
22 = X12N22 −X12N21X12 + d(X12),

in which the first two terms have norm at most ǫδ|A|−1 and the third has norm at most
|d|F ǫ.

To analyze N ′
11, we write it as (I + X12N21A)N11. Because |X12N21A| ≤ ǫ < 1, the

first factor is invertible, and it and its inverse both have norm 1. Hence N ′
11 is invertible,

|N ′
11| = |N11|, and |(N ′

11)−1| = |A|.
Since ǫmax{δ, |d|F |A|−1} < ǫ, iterating the construction N 7→ N ′ yields obtain a conver-

gent sequence of conjugations whose limit has the desired property. �

We need a refinement of the argument used in Theorem 5.5.3.

Lemma 5.7.2. Let F be a complete nonarchimedean differential field. Let V be a finite
differential module over F . Let e1, . . . , en be a basis of V , and let N be the matrix of action
of D on e1, . . . , en. Suppose that |N | = σ > |d|F and |N−1| = σ−1. Then the full spectrum
of V consists entirely of σ.
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Proof. As in the proof of Theorem 5.5.3, we find that for the supremum norm for
e1, . . . , en, we have |Dsw| = σs|w| for all nonnegative integers s. Consequently, for any
nonzero differential submodule W of V , we have |D|sp,V = σ. By Theorem 5.6.1, it follows
that every irreducible subquotient of V also has spectral norm σ, as desired. �

Lemma 5.7.3. Let F be a complete nonarchimedean differential field. Let V be a finite
differential module over F . Let e1, . . . , en be a basis of V , and let N be the matrix of action
of D on e1, . . . , en. Let σ1, . . . , σn be the singular values of N and let λ1, . . . , λn be the
eigenvalues of N . Suppose that the following conditions hold for some i = 1, . . . , n and some
δ ≥ |d|F .

(a) We have σi > δ.
(b) Either i = n or σi+1 ≤ δ.
(c) We have σj = |λj| for j = 1, . . . , i.

Then the elements of the full spectrum greater than δ are precisely σ1, . . . , σi.

Proof. By enlarging F , we may reduce to the case where δ = |d|F (this is purely for
notational simplicity).

Note that conditions (a), (b), (c), are invariant under a conjugation

N 7→ U−1NU + U−1d(U) = U−1(N + d(U))U

for U ∈ GLn(oF ), because Theorem 3.4.2 implies that N and N +d(U) have the same norms
of eigenvalues greater than |d|F , and conjugating by U changes nothing.

If σ1 ≤ |d|F , then we have nothing to check. If σ1 = · · · = σn > |d|F , then Lemma 5.7.2
implies the claim. If neither of these cases apply, we may induct on n: choose i with
σ1 = · · · = σi > σi+1, so that necessarily σ1 > |d|F . View N as a 2 × 2 block matrix with
block sizes i, n−i. Apply Lemma 5.7.1 to obtain an upper triangular unipotent block matrix
U over oF such that N ′ = U−1NU + U−1d(U) is lower triangular. We may then reduce to
checking the claim with N replaced by the two diagonal blocks of N ′. �

Theorem 5.7.4. Let F be a complete nonarchimedean differential field. Let V be a finite
differential module over F . Let e1, . . . , en be a basis of V , and let N be the matrix of action
of D on e1, . . . , en. Let σ1, . . . , σn be the singular values of N and let λ1, . . . , λn be the
eigenvalues of N . Define fn as in Corollary 3.4.8 and put θ = fn(σ1, . . . , σn, |λ1|, . . . , |λn|).
Suppose that the following conditions hold for some i = 1, . . . , n and some δ ≥ |d|Fθ.

(a) We have |λi| > δ.
(b) Either i = n or |λi+1| ≤ δ.

Then the elements of the full spectrum greater than δ are precisely |λ1|, . . . , |λi|.
Proof. There is no harm in enlarging the constant subfield of F so that the additive

value group of F becomes equal to R. By Corollary 3.4.8, we can choose a matrix U ∈
GLn(F ) such that the following conditions hold.

(a) We have |U | ≤ 1 and |U−1| ≤ θ.
(b) The first i singular values of U−1NU are |λ1|, . . . , |λi|.
(c) Either i = n, or the (i+ 1)-st singular value of U−1NU is at least δ.

By Theorem 3.4.2, the new conditions (b) and (c) hold when U−1NU is replaced by U−1NU+
U−1d(U). We may thus apply Lemma 5.7.3 to obtain the desired result. �
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Notes

Lemma 5.2.5 is tacitly assumed at various places in the literature (including by the
present author), but we were unable to locate even an explicit statement, let alone a proof.
We again thank Liang Xiao for contributing the proof given here.

Proposition 5.2.11 answers a conjecture of Christol and Dwork [CD92, Introduction,
Conjecture A]. This conjecture was posed in the context of giving effective convergence
bounds, and that is exactly how we will use it here; see Theorem 16.2.1 and its proof.

Proposition 5.3.1 is from as yet unreleased work of Baldassarri and di Vizio (a promised
sequel to [BdV07]), which gives a development of much of the material we are discussing
from the point of view of Berkovich analytic spaces. This point of view will probably be
vital for the study of differential modules on higher-dimensional spaces.

Newton polygons for differential operators were considered by Dwork and Robba [DR77,
§6.2.3]; the first systematic treatment seems to have been made by Robba [Rob80]. Our
treatment using Theorem 2.2.2 follows [Chr83].

The proof of Theorem 5.5.3 given here is close to the original proof of Christol and
Dwork [CD94, Théorème 1.5], save that we avoid a small gap in the latter. The gap is in
the implication 1 =⇒ 2; there one makes a finite extension of the differential field, without
accounting for the possibility that this might increase |d|F . (It would be obvious that this
does not occur if the finite extension were being made in the constant subfield, but that is
not the case here.) Compare also [DGS94, Lemma VI.2.1].

Exercises

(1) Prove Fekete’s lemma (Lemma 5.1.3).
(2) Let A,B be commuting bounded linear operators on a normed vector space V over

a nonarchimedean field F . Prove that

|A+B|sp,V ≤ max{|A|sp,V , |B|sp,V },
and that equality occurs when the maximum is achieved only once.

(3) Let V be a normed differential module over a nonarchimedean differential field F .
Prove that |D|V ≥ |d|F .
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CHAPTER 6

Regular singularities

As an application of the theory developed so far, we reconstruct some of the traditional
Fuchsian theory of regular singular points of meromorphic differential equations. While this
is assuredly not the most economical development of this theory (because we have had to
invest more effort in order to be ready to handle p-adic differential equations), it does provide
a simplified illustration of the use of some of the techniques we have amassed.

1. Irregularity

Definition 6.1.1. View C((z)) as a complete nonarchimedean differential field, with the
valuation given by the z-adic valuation vz, and the derivation given by d = z d

dz
; note that

|d|C((z)) = 1. Let V be a finite differential module over C((z)), and decompose V according
to Theorem 5.6.1. Define the irregularity of V as

irr(V ) =
∑

s>1

(− log s) dim(Vs).

For F a subfield of C((z)) stable under d, and V a finite differential module over F , we
define the irregularity of V to be the irregularity of V ⊗F C((z)). We say that V is regular
if irr(V ) = 0.

Theorem 6.1.2. For any isomorphism V ∼= F{T}/F{T}P , the irregularity of V is equal
to the sum of the negations of the slopes of P ; consequently, it is always an integer. More
explicitly, if P = T d +

∑d−1
i=0 PiT

i, then

irr(V ) = max
i

{−vz(Pi)}.

Proof. Note that V admits a cyclic vector by Theorem 4.4.2, so the criterion in the
theorem always applies. �

Corollary 6.1.3. Let F be any subfield of C((z)) containing z and stable under d, and
let V be a finite differential module over F . Then the following conditions are equivalent.

(a) The module V is regular, i.e., irr(V ) = 0.
(b) For some isomorphism V ∼= F{T}/F{T}P with P monic, P has coefficients in oF .
(c) For any isomorphism V ∼= F{T}/F{T}P with P monic, P has coefficients in oF .
(d) There exists a basis of V on which D acts via a matrix over oF .

Proof. By Theorem 6.1.2, (a) implies (c). It is obvious that (c) implies (b), and that
(b) implies (d). Given (d), let | · |V be the supremum norm defined by the chosen basis of
V ; then |D|V ≤ 1, which implies (a). �
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Remark 6.1.4. One can also view C((z)) as a differential field with the derivation d
dz

instead of z d
dz

. The categories of differential modules for these two choices of derivation are

equivalent in the obvious fashion: given an action of z d
dz

, we obtain an action of d
dz

by dividing

by z. If V is a differential module for z d
dz

with spectral norm s > 1, then the spectral norm

of V for d
dz

is s|z|−1. The notion of irregularity naturally translates over: for instance, if V

is a differential module for d
dz

isomorphic to F{T}/F{T}P for some P = T n +
∑n−1

i=0 PiT
i,

then V is regular if and only if vz(Pi) ≥ −n + i for i = 1, . . . , n. For example, for a, b ∈ C,
the differential system corresponding to the hypergeometric differential equation

y′′ +
(c− (a + b+ 1)z)

z(1 − z)
y′ − ab

z(1 − z)
y = 0

is regular.

2. Exponents in the complex analytic setting

To see why regular singularities are so important in the complex analytic setting (by way
of motivation for our p-adic studies), let us consider the monodromy transformation. First,
we recall a familiar fact.

Theorem 6.2.1. Fix ρ > 0, and let R ⊂ CJzK be the ring of power series convergent for
|z| < ρ. Let N be an n× n matrix over R. Then the differential system D(v) = Nv + d

dz
(v)

has a basis of horizontal sections.

Proof. This can be deduced from the fundamental theorem of ordinary differential
equations; however, it will be useful for future reference to give a slightly more detailed
explanation.

Note that there exists a unique n × n matrix U over CJzK such that U ≡ In (mod z)
and NU + d

dz
(U) = 0; this follows by writing U =

∑∞
i=0 Uiz

i and rewriting the equation

NU + d
dz
U = 0 as a recurrence

(i+ 1)Ui+1 =

i∑

j=0

NjUi−j (i = 0, 1, . . . ).

An argument of Cauchy [DGS94, Appendix III] shows that this series converges in a disc
of positive radius.

We now know that any differential system on an open disc admits a basis of horizontal
sections on a possibly smaller disc with the same center. Since an open disc is simply
connected, and it can be covered with open subsets on which we have a basis of horizontal
sections, we obtain a basis of horizontal sections over the entire disc. �

Remark 6.2.2. In the p-adic setting, we will see that the first step of the proof of Theo-
rem 6.2.1 remains valid, but there is no analogue of the second step (analytic continuation),
and indeed the whole conclusion becomes false.

Let us now consider a punctured disc and look at monodromy.

Definition 6.2.3. Let C{z} be the subfield of C((z)) consisting of those formal Laurent
series which represent meromorphic functions on some neighborhood of z = 0 (the choice of
the neighborhood may vary with the series). Let V be a finite differential module over C{z};
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choose a basis of V and let N be the action of D on this basis. On some disc centered at
z = 0, the entries of N are meromorphic with no poles away from z = 0. On any subdisc not
containing 0, by Theorem 6.2.1 we obtain a basis of horizontal sections. If we start with a
basis of horizontal sections in a neighborhood of some point away from 0, then analytically
continue around a circle proceeding once counterclockwise around the origin, we end up with
a new basis of local horizontal sections. The linear transformation from the old basis to the
new is called the monodromy transformation of V (or its associated differential system).
The exponents of V are defined (modulo translation by Z) to be the multiset of numbers
α1, . . . , αn for which eα1 , . . . , eαn are the eigenvalues of the monodromy transformation.

The monodromy transformation controls our ability to construct global horizontal sec-
tions, by the following statement whose proof is evident.

Proposition 6.2.4. In Definition 6.2.3, any fixed vector under the monodromy trans-
formation corresponds to a horizontal section defined on some punctured disc, rather than
the universal covering space of a punctured disc. As a result, the monodromy transformation
is unipotent (i.e., the exponents are all zero) if and only if there exists a basis on which D
acts via a nilpotent matrix.

Definition 6.2.5. In Definition 6.2.3, we say that V is quasi-unipotent if its exponents
are rational; equivalently, V becomes unipotent after pulling back along z 7→ zm for some
positive integer m. This situation arises in examples “coming from geometry” (i.e., Picard-
Fuchs modules), in a sense that we will discuss later.

The relationship between the properties of the monodromy transformation and the ex-
istence of horizontal sections of the differential module begs the question: is it possible to
extract the monodromy transformation for a differential module, whose definition is purely
analytic, from the algebraic data that defines the differential system? In fact, this is only
really possible in the case of a regular module; we will see how to do this in the next section.

3. Formal solutions of regular differential equations

Definition 6.3.1. Let K be a field of characteristic 0. Let N =
∑∞

i=0Nit
i be an n× n

matrix with entries in KJzK. A fundamental solution matrix for N is an n × n matrix U
with U ≡ In (mod z) such that U−1NU + U−1z d

dz
U = N0.

Remark 6.3.2. Note that if U is a fundamental solution matrix for N , then

UTNTU−T + UT z
d

dz
U−T = UTNTU−T − UTU−T (z

d

dz
UT )U−T

= UTNTU−T − (z
d

dz
UT )U−T

= NT
0 .

That is, U−T is a fundamental solution matrix for NT . Consequently, by proving a general
result about U , we also obtain a corresponding result for U−T , and hence for U−1.

To specify when a fundamental solution matrix exists, we need the following definition.
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Definition 6.3.3. We say that a square matrix N with entries in a field of character-
istic zero has prepared eigenvalues if the eigenvalues λ1, . . . , λn of N satisfy the following
conditions:

λi ∈ Z ⇔ λi = 0

λi − λj ∈ Z ⇔ λi = λj.

If only the second condition holds, we say that N has weakly prepared eigenvalues.

Proposition 6.3.4. Let K be a field of characteristic 0. Let N =
∑∞

i=0Nit
i be an n×n

matrix with entries in KJzK such that N0 has weakly prepared eigenvalues λ1, . . . , λn. Then
N admits a unique fundamental solution matrix.

Proof. Rewrite the defining equation asNU+z d
dz
U = UN0, then expand U =

∑∞
i=0 Uit

i

and write the new defining equation as a recurrence:

(6.3.4.1) iUi = UiN0 −N0Ui −
i∑

j=1

NjUi−j (i > 0).

Viewing the map X 7→ XN0−N0X as a linear transformation on the space of n×n matrices
over F , we see that its eigenvalues are the differences λj−λk for j, k = 1, . . . , n. Likewise, the
eigenvalues of X 7→ iX −XN0 +N0X are i− λj + λk; for i a positive integer, the condition
that the λ’s are weakly prepared ensures that i − λj + λk cannot vanish (indeed, it cannot
be an integer unless it equals i). Consequently, given N and U0, . . . , Ui−1, there is a unique
choice of Ui satisfying (6.3.4.1); this proves the desired result. �

We then have the following result [DGS94, §III.8, Appendix II].

Theorem 6.3.5 (Fuchs). Let N =
∑∞

i=0Nit
i be an n × n matrix with entries in C{z}

such that N0 has weakly prepared eigenvalues λ1, . . . , λn. Then the fundamental solution
matrix for N over CJzK also has entries in C{z} (as does its inverse).

Corollary 6.3.6. With notation as in Theorem 6.3.5, let λ1, . . . , λn be the eigenvalues of
N0. Then the eigenvalues of the monodromy transformation (of the system D(v) = Nv+dv)
are e−2πiλ1 , . . . , e−2πiλn.

Proof. In terms of a basis via which D acts via N0, the matrix exp−N0 log(z) provides a
basis of horizontal elements. (The case N0 = 0 is Theorem 6.2.1.) �

Remark 6.3.7. The p-adic analogue of Theorem 6.3.5 is much more complicated; see
the chapter on p-adic exponents.

In order to enforce the condition on prepared eigenvalues, we use what are classically
known as shearing transformations.

Proposition 6.3.8 (Shearing transformations). Let N be an n× n matrix over CJzK ∩
C{z}, with constant term N0. Let α be an eigenvalue of N . Then there exists U ∈
GLn(C[z, z−1]) such that U−1NU + U−1d(U) again has entries in CJzK ∩ C{z}, and its
matrix of constant terms has the same eigenvalues as N0 except that α has been replaced by
α + 1. The same conclusion holds with α− 1 in place of α + 1.

Proof. Exercise. �

62



Corollary 6.3.9 (Fuchs). Let V be a regular finite differential module over C{z}. Then
any horizontal element of V ⊗C((z)) belongs to V itself; that is, any formal horizontal section
is convergent.

4. Index and irregularity

Definition 6.4.1. Let F be any subfield of C((z)) containing C(z), and let V be a finite
differential module over F . We say V has index if dimCH

0(V ) and dimCH
1(V ) are both

finite; in this case, we define the index of V as χ(V ) = dimC H
0(V ) − dimC H

1(V ).

Proposition 6.4.2. For any finite differential module V over C((z)), H0(V ) = H1(V ) <
∞, so χ(V ) = 0.

Proof. Exercise. �

In the convergent case, the index carries more information.

Theorem 6.4.3. Let V be a finite differential module over C{z}. Then V has index, and
χ(V ) = − irr(V ).

Proof. See [Mal74, Théorème 2.1]. �

Notes

The notion of a regular singularity was introduced by Fuchs in the 19th century, as part
of a classification of those differential equations with everywhere meromorphic singularities
on the Riemann sphere which had algebraic solutions. Regular singularities are sometimes
referred to as Fuchsian singularities. Much of our modern understanding of the regularity
condition, especially in higher dimensions, comes from the book of Deligne [Del70].

The algebraic definition of irregularity is due to Malgrange [Mal74]; it had previously
been defined in terms of the index of a certain operator. Our approach, incorporating ideas
of Robba, is based on [DGS94, §3].

A complex analytic interpretation of the Newton polygon, in the manner of the relation
between irregularity and index, has been given by Ramis [Ram84]. It involves considering
subrings of C{z} composed of functions with certain extra convergence restrictions (Gevrey
functions), and looking at the index of z d/dz after tensoring the given differential module
with one of these subrings.

Exercises

(1) In this exercise, we prove Fuchs’s theorem (Theorem 6.3.5). Let N be an n × n
matrix over CJzK. Let U be an n × n matrix over CJzK congruent to the identity
modulo z.
(a) Show that changing basis by U in the differential system D(v) = Nv+d(v) has

the effect of replacing N by N ′ = U−1NU + U−1z dU
dz

.
(b) Show that N ′ ≡ N (mod z).
(c) Assume that the reduction of N modulo z has weakly prepared eigenvalues.

Show that there is a unique choice of U for which N ′ equals the matrix of
constant terms of N .
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(d) Suppose that the entries of N converge in the disc |z| < ρ. Prove that the
entries of the matrix U given in (c) also converge in the disc |z| < ρ.

(2) Prove Proposition 6.3.8.
(3) Prove Proposition 6.4.2.
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Part 3

p-adic differential equations on discs and
annuli





CHAPTER 7

Rings of functions on discs and annuli

In this chapter, we introduce p-adic closed discs and annuli, but in a purely ring-theoretic
fashion. This avoids having to introduce any p-adic analytic geometry.

Notation 7.0.1. Throughout this chapter (and in all later chapters, unless explicitly
contravened), let K be a field complete for a nontrivial nonarchimedean valuation | · |.
Assume that K has characteristic 0, but the residue field κK has characteristic p > 0. Also
assume that things are normalized so that |p| = p−1.

1. Power series on closed discs and annuli

We start by introducing some rings that should be thought of as the analytic functions
on a closed disc |t| ≤ β, or a closed annulus α ≤ |t| ≤ β. As noted in the introduction, this
is more properly done in a framework of p-adic analytic geometry, but we will avoid this
framework.

Definition 7.1.1. For α, β > 0, put

K〈α/t, t/β〉 =

{∑

i∈Z

cit
i ∈ KJt, t−1K : lim

i→±∞
|ci|ρi = 0 (ρ ∈ [α, β]).

}
.

That is, consider formal bidirectional power series which converge whenever you plug in a
value for t with |t| ∈ [α, β], or in other words, when α/|t| and |t|/β are both at most 1; it
suffices to check for ρ = α and ρ = β. Although formal bidirectional power series do not
form a ring, the subset K〈α/t, t/β〉 does form a ring under the expected operations.

Definition 7.1.2. If α = 0, the only reasonable interpretation of the previous definition
is to require ci = 0 for i < 0. When there are no negative powers of t, it is redundant to
require the convergence for ρ < β. In other words,

K〈0/t, t/β〉 = K〈t/β〉 =

{
∞∑

i=0

cit
i ∈ KJtK : lim

i→∞
|ci|βi = 0

}
.

One could also allow β = ∞ for a similar effect in the other direction. More succinctly put,
we identify K〈α/t, t/β〉 with K〈β−1/t−1, t−1/α−1〉.

2. Gauss norms and Newton polygons

The rings K〈α/t, t/β〉 quite a lot like polynomial rings (or Laurent polynomial rings, in
case α 6= 0) in one variable. The next few statements are all instances of this analogy.
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Definition 7.2.1. From the definition ofK〈α/t, t/β〉, we see that it carries a well-defined
ρ-Gauss norm ∣∣∣∣∣

∑

i

cit
i

∣∣∣∣∣
ρ

= max
i

{|ci|ρi}

for any ρ ∈ [α, β]. For ρ = α = 0, this reduces to simply |c0|. (The fact that this is a
multiplicative norm follows as in Proposition 2.1.3.) The additive version is this is to take
r ∈ [− log β,− logα] and put

vr

(∑
cit

i
)

= min
i
{v(ci) + ri},

where v(c) = − log |c|.
Definition 7.2.2. One may define the Newton polygon for an element x =

∑
xit

i ∈
K〈α/t, t/β〉 as the lower convex hull of the set

{(−i, v(xi)) : i ∈ Z, xi 6= 0},
but retaining only those slopes in [− log β,− logα].

Proposition 7.2.3. Let x =
∑

i xit
i ∈ K〈α/t, t/β〉 be nonzero.

(a) The Newton polygon of x has finite width.
(b) The function r 7→ vr(x) on [− log β,− logα] is continuous, piecewise affine, and

convex.
(c) The function ρ 7→ |x|ρ on [α, β] is continuous and log-concave. The log-concavity

means that ρ, σ ∈ [α, β] and c ∈ [0, 1], put τ = ρcσ1−c; then

|x|τ ≤ |x|cρ|x|1−c
σ .

(d) If α = 0, then vr is decreasing on [− log β,∞); in other words, for all ρ ∈ [0, β],
|x|ρ ≤ |x|β.

Part (c) should be thought of as a nonarchimedean analogue of the Hadamard three circle
theorem.

Proof. We have (a) because there is a least i for which |ci|αi is maximized, and there
is a greatest j for which |cj|βj is maximized. This implies (b) because as in the polynomial
case, we may interpret vr(x) as the y-intercept of the supporting line of the Newton polygon
of slope r. This in turn implies (c), and (d) is a remark made earlier. �

When dealing with the ring K〈α/t, t/β〉, the following completeness property will be
extremely useful.

Proposition 7.2.4. The ring K〈α/t, t/β〉 is Fréchet complete for the norms | · |ρ for all
ρ ∈ I. That is, if {xn}∞n=0 is a sequence which is simultaneously Cauchy under | · |ρ for all
ρ ∈ I, then it is convergent. (By Proposition 7.2.3, it suffices to check the Cauchy property
at each nonzero endpoint of I.)

Proof. Exercise. �

For instance, the completeness property is used in the construction of multiplicative
inverses.
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Lemma 7.2.5. If α = 0 (resp. α > 0), a nonzero element f ∈ K〈α/t, t/β〉 is a unit if
and only if vr is constant (resp. affine) on [− log(β),− log(α)].

Proof. We will just consider the case α > 0; the other case is similar (and easier). Put
f =

∑
i∈Z fit

i. Note that the following are equivalent:

(a) there is a single i for which |f |ρ = |fi|ρi for all ρ ∈ [α, β];
(b) the function r 7→ vr(f) on [− log(β),− log(α)] is affine;
(c) the Newton polygon of f has no slopes in [− log(β),− log(α)].

By (c), these conditions all hold if f is a unit. Conversely, if these conditions hold, then the
series

(fiti)
−1(1 − (fit

i − f)/(fit
i))−1 =

∞∑

j=0

(fit
i − f)j(fiti)

−j−1

converges by Proposition 7.2.4, and its limit is an inverse of f . �

3. Factorization results

Proposition 7.3.1 (Weierstrass preparation). Suppose that f =
∑

i∈Z fit
i ∈ K〈α/t, t/β〉,

and that ρ ∈ [α, β] is such that there is a unique m ∈ Z maximizing |fm|ρm. Then there is
a unique factorization f = fmt

mgh with

g ∈ K〈α/t, t/β〉 ∩KJtK = K〈t/β〉,
h ∈ K〈α/t, t/β〉 ∩KJt−1K = K〈α/t〉,

|g|ρ = |g0| = 1, and |h− 1|ρ < 1.

Proof. As in Theorem 2.2.1, this is a consequence of the master factorization theorem
(Theorem 2.2.2); the completeness of the ring is provided by Property 7.2.4. �

In light of the finite width property of the Newton polygon, the following should not be
a surprise.

Proposition 7.3.2 (More Weierstrass preparation). For f ∈ K〈α/t, t/β〉, there exists
a polynomial P ∈ K[t] and a unit g ∈ K〈α/t, t/β〉× such that f = Pg. In particular,
K〈α/t, t/β〉 is a principal ideal domain.

Proof. Using Proposition 7.3.1, we may reduce to two instances of the case α = 0, so
we restrict to that case hereafter. Put f =

∑
i fit

i, and choose m maximizing |fm|βm. Let
R be the ring of formal sums

∑
i cit

i of series with |ci|βi bounded as i → −∞ and tending
to 0 as i → +∞. Let e be the inverse of

∑m
i=0 fit

i in R, and apply Theorem 2.2.2 to factor
ef = gh in R, in which g is a unit in K〈t/β〉 by Lemma 7.2.5. Now h

∑m
i=0 fit

i = fg−1

belongs to

KJtK ∩ tmKJt−1K.

It is thus a polynomial of degree m, proving the claim. �

We will make frequent and often implicit use of the following patching lemma.
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Lemma 7.3.3 (Patching lemma). Suppose α ≤ γ ≤ β ≤ δ. Let M1 be a finite free module
over K〈α/t, t/β〉, let M2 be a finite free module over K〈γ/t, t/δ〉, and suppose we are given
an isomorphism

ψ : M1 ⊗K〈γ/t, t/β〉 ∼= M2 ⊗K〈γ/t, t/β〉.
Then we can find a finite free module M over K〈α/t, t/δ〉 and isomorphisms M1

∼= M ⊗
K〈α/t, t/β〉, M2

∼= M ⊗K〈γ/t, t/δ〉 inducing ψ. Moreover, M is determined by this require-
ment up to unique isomorphism.

Proof. We will only explain the case α > 0; the case α = 0 is similar. Choose bases
of M1 and M2 and let A be the n × n matrix defining ψ; then A must be invertible over
K〈γ/t, t/β〉. Choose ρ ∈ [γ, β]; since det(A) is a unit in K〈γ/t, t/β〉, we can find an in-
vertible n × n matrix W over K〈γ/t, t/β〉 such that det(WA) = 1. (For instance, take
W = Diag(det(A)−1, 1, . . . , 1).)

It is then possible (see exercises) to find invertible matrices U, V over K[t, t−1] such that
|UWAV − In|ρ < 1. By changing the initial choices of bases, we can force ourselves into the
case |A− In|ρ < 1.

By applying Theorem 2.2.2 in the n× n matrix ring over K〈γ/t, t/β〉, we can split A as
a product of an invertible matrix over K〈t/β〉 and an invertible matrix over K〈γ/t〉. Using
these to change basis in M1 and M2, respectively, we can put ourselves in the situation
where A = In, in which case we may identify the bases of M1 and M2. Take M to be the
free module over K〈α/t, t/δ〉 with the same basis. �

4. Open discs and annuli

Although we have been talking about closed discs so far, it is quite natural to also
consider open discs. One important reason is that the antiderivative of an analytic function
on the closed disc of radius β is only defined on the open disc of radius β (see exercises for
Chapter 8).

Definition 7.4.1. By a finite free module M on the region |t| ∈ I, for I ⊆ [0,+∞)
any interval, we will mean a sequence of finite free modules Mi over K〈αi/t, t/βi〉 with
[α1, β1] ⊆ [α2, β2] ⊆ . . . an increasing sequence of closed intervals with union I, together
with isomorphisms Mi+1 ⊗ K〈αi/t, t/βi〉 ∼= Mi. Using Lemma 7.3.3, we check that the
construction is canonically independent of the choice of the sequence.

Notes

The Hadamard three circles theorem (Proposition 7.2.3(c)) is a special case of the fact
that the Shilov boundary of the annulus α ≤ |t| ≤ β consists of the two circles |t| = α and
|t| = β. For much amplification of this remark, including a full-blown theory of harmonic
functions on Berkovich analytic curves, see [Thu05]. For an alternate presentation, restricted
to the Berkovich projective line but otherwise more detailed, see [BR07].

The patching lemma (Lemma 7.3.3) is a special case of the glueing property of coherent
sheaves on affinoid rigid analytic spaces, i.e., the theorems of Kiehl and Tate [BGR84,
Theorems 8.2.1/1 and 9.4.2/3]. The factorization argument in the proof, however, is older
still; it is the nonarchimedean version of what is called a Birkhoff factorization over an
archimedean field. Similarly, Definition 7.4.1 corresponds to the definition of a locally free
coherent sheaf on the corresponding rigid or Berkovich analytic space. Such a sheaf is
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only guaranteed to be freely generated by global sections in case K is spherically complete
[Ked05a, Theorem 3.14].

Exercises

(1) Prove Proposition 7.2.4. (Hint: it may be easiest to first construct the limit using
a single ρ ∈ [α, β], then show that it must also work for the other ρ.)

(2) Let R be the ring of formal power series over K which converge for |t| < 1. Prove
that R is not noetherian; this is why I avoided introducing it. (Hint: pick a sequence
of points in the open unit disc converging to the boundary, and consider the ideal
of functions vanishing on all but finitely many of these points.)

(3) Suppose K is complete for a discrete valuation. Prove that any element of oKJtK⊗oK

K (that is, a power series with bounded coefficients) is equal to a polynomial in t
times a unit. Then prove that this fails if K is complete for a nondiscrete valuation.

(4) Let A be an n× n matrix over K〈ρ/t, t/ρ〉 such that | det(A)− 1|ρ < 1. Prove that
there exist invertible matrices U, V over K[t, t−1] such that |UAV − In|ρ < 1. (Hint:
perform approximate Gaussian elimination.) An analogous argument, but in more
complicated notation, is [Ked04a, Lemma 6.2].
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CHAPTER 8

Radius and generic radius of convergence

In this chapter, we consider the radius of convergence of a differential module defined on a
closed or open disc. We also introduce some key invariants, the generic radius of convergence
and subsidiary radii, that turn out to be easier to work with than the radius of convergence.

1. Differential modules on rings and annuli

Hypothesis 8.1.1. Throughout this chapter, we will view K〈α/t, t/β〉 as a differential
ring with derivation d = d

dt
, the formal differentiation in the variable t.

Proposition 8.1.2. Any finite differential module over K〈α/t, t/β〉 is torsion-free, and
hence free. Consequently, the finite differential modules over K〈α/t, t/β〉 form an abelian
category.

Proof. Exercise. �

Corollary 8.1.3. For M a finite differential module over K〈α/t, t/β〉, any set of hor-
izontal sections which are linearly independent over K〈α/t, t/β〉 form part of a basis of M .

Proof. Let S be such a set; then S determines a morphism from a trivial differential
module to M . By Proposition 8.1.2, the image of this map must be a direct summand of M
as a module, proving the claim. �

Corollary 8.1.4. For M a finite differential module over K〈α/t, t/β〉 of rank n admit-
ting a set S of n horizontal sections linearly independent over K〈α/t, t/β〉, M is trivial and
H0(M) is the K-span of S.

2. Radius of convergence on a disc

Definition 8.2.1. Let M be a nonzero finite differential module over K〈t/β〉 (i.e., a
nonzero finite differential module on the closed disc of radius β around t = 0). Define
the radius of convergence of M around 0, denoted R(M), to be the supremum of the set
of ρ ∈ (0, β) such that M ⊗ K〈t/ρ〉 has a basis of horizontal elements; we refer to those
elements as local horizontal sections of M . For M a nonzero finite differential module on the
open disc of radius β around t = 0, define R(M) as the supremum of M ⊗ R(M ⊗K〈t/γ〉)
over all γ < β. For γ ≤ β, note that

R(M ⊗K〈t/γ〉) =

{
γ γ ≤ R(M)

R(M) γ > R(M).

Example 8.2.2. In general, it is possible to have R(M) < β; that is, there is no p-adic
analogue of the global form of the fundamental theorem of ordinary differential equations (as
was noted in the introduction). For instance, consider the module M = K〈t/β〉 with D(x) =
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x, when β > p−1/(p−1); then R(M) = p−1/(p−1) because that is the radius of convergence of
the exponential series.

On the other hand, the local form of the fundamental theorem of ordinary differential
equations has the following analogue.

Proposition 8.2.3 (p-adic Cauchy theorem). Let M be a nonzero finite differential
module over K〈t/β〉. Then R(M) > 0.

Proof. One can give a direct proof of this, but instead we will deduce this from Dwork’s
transfer theorem (Theorem 8.5.1). We will give a direct proof of a slightly stronger result
later (Proposition 16.1.1); see also the notes. �

Here are some easy consequences of the definition of radius of convergence; note the
parallels with properties of the spectral norm (Lemma 5.2.7).

Lemma 8.2.4. Let M,M1,M2 be nonzero finite differential modules over K〈t/β〉.
(a) If 0 →M1 →M →M2 → 0 is exact, then

R(M) = min{R(M1), R(M2)}.
(b) We have

R(M∨) = R(M).

(c) We have

R(M1 ⊗M2) ≥ min{R(M1), R(M2)},
with equality when R(M1) 6= R(M2).

Proof. For (a), it is clear that R(M) ≤ min{R(M1), R(M2)}; we must check that
equality holds. Choose λ < min{R(M1), R(M2)}, so that M1⊗K〈t/λ〉 and M2⊗K〈t/λ〉 are
both trivial. If we choose a basis of M compatible with the sequence, then the action of D
will be block upper triangular nilpotent, and trivializing M amounts to antidifferentiating
the entries in the nonzero block. We may not be able to perform this antidifferentiation in
K〈t/λ〉, but we can do it in K〈t/λ′〉 for any λ′ < λ. Since we can make λ and λ′ as close to
min{R(M1), R(M2)} as we like, we find R(M) ≥ min{R(M1), R(M2)}.

For (b), we obtain R(M∨) ≥ R(M) from the fact that if M ⊗K〈t/λ〉 is trivial, then so
is its dual M∨ ⊗K〈t/λ〉. Since M and M∨ enter symmetrically, we get R(M∨) = R(M).

For (c), the inequality is clear from the fact that the tensor product of two trivial modules
over K〈t/λ〉 is also trivial. The last assertion follows from everything else so far as in the
proof of Lemma 5.2.7(c). �

Example 8.2.5. Let M be the differential module of rank 1 over K〈t/β〉 defined by
D(v) = λv with λ ∈ K. Then it is an exercise to show that

R(M) = min{β, |p|−1/(p−1)|λ|−1}

3. Generic radius of convergence

In general, the radius of convergence is difficult to compute. To get a better handle on
it, we introduce a related but simpler invariant.
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Definition 8.3.1. For ρ > 0, let Fρ be the completion of K(t) under the ρ-Gauss norm
| · |ρ. Put d = d

dt
on K(t); then d extends by continuity to Fρ, and

|d|Fρ = ρ−1, |d|sp,Fρ = lim
n→∞

|n!|1/nρ−1 = p−1/(p−1)ρ−1.

We also make a related construction in case ρ = 1.

Definition 8.3.2. Let E be the completion of oK((t))⊗oK
K for the 1-Gauss norm. The

elements of E may be identified with formal sums x =
∑

i∈Z xit
i satisfying the following

conditions.

(a) We have |ci| → 0 as i→ −∞.
(b) We have |ci| bounded as i→ +∞.

One again has a 1-Gauss norm | · |1 on E , defined as
∣∣∣∣∣
∑

i

xit
i

∣∣∣∣∣ = sup
i
{|xi|}.

Beware that if K is discretely valued, the supremum in the Gauss norm is achieved, so E is
a field, and its residue field of E is equal to κK((t)); however, none of this applies if K is not
discretely valued. In any case, E is complete under | · |1, there is an isometric map F1 → E
carrying t to t, and the supremum is achieved for elements of E in the image of that map;
this at least gives an embedding κK((t)) →֒ κE .

Definition 8.3.3. Let (V,D) be a nonzero finite differential module over Fρ or E . We
define the generic radius of convergence (or for short, the generic radius) of V to be

R(V ) = p−1/(p−1)|D|−1
sp,V ;

note that R(V ) > 0. We will see later (Proposition 8.6.4) that this does indeed compute
the radius of convergence of horizontal sections of V on a “generic disc”.

We can translate some basic properties of the spectral norm into properties of generic
radii of convergence, leading to the following analogue of Lemma 8.2.4. Alternatively, one
can first check Proposition 8.6.4 and then simply invoke Lemma 8.2.4 itself around a generic
point.

Lemma 8.3.4. Let V, V1, V2 be nonzero finite differential modules over Fρ.

(a) For 0 → V1 → V → V2 → 0 exact,

R(V ) = min{R(V1), R(V2)}.

(b) We have

R(V ∨) = R(V ).

(c) We have

R(V1 ⊗ V2) ≥ min{R(V1), R(V2)},
with equality when R(V1) 6= R(V2).
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Definition 8.3.5. In some situations, it is more natural to consider the intrinsic generic
radius of convergence, or for short the intrinsic radius, defined as

IR(V ) = ρ−1R(V ) =
|d|sp,Fρ

|D|sp,V
∈ (0, 1].

To emphasize the difference, we may refer to the unadorned generic radius of convergence
defined earlier as the extrinsic generic radius of convergence. (See Proposition 8.6.5 and the
notes for some reasons why the intrinsic radius deserves such a name.)

Remark 8.3.6. For I an interval, and forM a nonzero differential module on the annulus
|t| ∈ I, it is unambiguous to refer to the generic radius of convergence R(M ⊗ Fρ) of M at
radius ρ.

4. Some examples in rank 1

An important class of examples is given as follows.

Example 8.4.1. For λ ∈ K, let Vλ be the differential module of rank 1 over Fρ defined
by D(v) = λt−1v. It is an exercise to show that IR(Vλ) = 1 if and only if λ ∈ Zp.

We can further classify Example 8.4.1 as follows.

Proposition 8.4.2. We have Vλ
∼= Vλ′ if and only if λ− λ′ ∈ Z.

Proof. Note that Vλ
∼= Vλ′ if and only if Vλ−λ′ is trivial, so we may reduce to the case

λ′ = 0. By Example 8.4.1, Vλ is nontrivial whenever λ /∈ Zp; by direct inspection, Vλ is
trivial whenever λ ∈ Z.

It remains to deduce a contradiction assuming that Vλ is trivial, λ ∈ Zp, and λ /∈ Z.
There is no harm in enlarging K now, so we may assume that K contains a scalar of norm
ρ; by rescaling, we may reduce to the case ρ = 1. We now have f ∈ F×

1 such that tdf
dt

= λf ;
by multiplying by an element of K×, we can force |f |1 = 1.

Let λ1 be an integer such that λ ≡ λ1 (mod p). Then
∣∣∣∣
d(ft−λ1)

dt

∣∣∣∣
1

= |(λ− λ1)ft
−λ1−1|1 ≤ p−1.

Using the embedding F1 →֒ E , we may expand f =
∑

i∈Z fit
i with maxi{|fi|} = 1. The

previous calculation then forces |fi| ≤ p−1 unless i ≡ λ1 ≡ λ (mod p).
By considering the reduction of f modulo pn and arguing similarly, we find that |fi| ≤ p−1

unless i ≡ λ (mod pn) for all n. But since λ /∈ Z, this means that the image of f in κK((t))
cannot have any terms at all, contradiction. �

5. Transfer theorems

One fundamental relationship between radius of convergence and generic radius of con-
vergence is the following. In the language of Dwork, this is a transfer theorem, because
it transfers convergence information from one disc to another. (Note that the fact that
R(M) > 0, which is Proposition 8.2.3, is an immediate corollary.)

Theorem 8.5.1. For any nonzero finite differential module M over K〈t/β〉, R(M) ≥
R(M ⊗ Fβ). That is, the radius of convergence is at least the generic radius.
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Proof. Suppose λ < β and λ < p−1/(p−1)|D|−1
sp,V . We claim that for any x ∈ M , the

Taylor series

(8.5.1.1) y =

∞∑

i=0

(−t)i

i!
Di(x)

converges under | · |λ. To see this, pick ǫ > 0 such that λp1/(p−1)(|D|sp,V + ǫ) < 1; then there
exists c > 0 such that |Di(x)| ≤ c(|D|sp,V + ǫ)i for all i. The i-th term of the sum defining y
thus has norm at most λipi/(p−1)c(|D|sp,V + ǫ)i, which tends to 0 as i→ ∞.

By differentiating the series expression, we find that

Dy =

∞∑

i=0

(−t)i

i!
Di+1(x) +

∞∑

i=1

−(−t)i−1

(i− 1)!
Di(x)

=
∞∑

i=0

(−t)i

i!
Di+1(x) −

∞∑

i=0

(−t)i

i!
Di+1(x) = 0.

That is, y is a horizontal section of V ⊗K〈t/λ〉.
If we run this construction over a basis of M , we obtain horizontal sections of V ⊗K〈t/λ〉

whose reductions modulo t form a basis; they thus form a basis themselves by Nakayama’s
lemma (and the fact that finite differential modules over K〈t/λ〉 are free). This proves the
claim. �

For future reference, we note that Theorem 8.5.1 extends to the case of nilpotent regular
singularities.

Definition 8.5.2. Let M be a finite differential module over the ring K〈t/β〉 equipped
with the derivation t d

dt
, such that the action of D on M/tM is nilpotent. Let N be the matrix

of action of D on some basis, and let U be the fundamental solution matrix (Definition 6.3.1).
Define the radius of convergence of M to be the supremum of ρ ∈ (0, β) such that U has
entries in K〈t/ρ〉; this does not depend on the choice of the basis.

Lemma 8.5.3. Let M be a finite differential module over KJtK equipped with the derivation
t d

dt
, such that the action of D on M/tM is nilpotent. Let e be the nilpotency index of the

action of D on M/tM . Then for any x ∈M , the sequence

x(i) = De−1 (1 −D)e · · · (i−D)e

(i!)e
(x)

converges t-adically to a horizontal section of M .

Proof. The columns of the fundamental solution matrix form a basis v1, . . . , vn on which
D acts via a nilpotent matrix N0 over K. Write x =

∑n
j=1 xjvj and xj =

∑∞
l=0 xj,lt

l. Then

the image of xj,0vj under De−1(1−D)e · · · (i−D)e/(i!)e is the same as that under De−1 since
De(vj) = 0. On the other hand, for l > 0, xj,lt

lvj is annihilated by (l − D)e, hence also by
De−1(1 −D)e · · · (i−D)e/(i!)e whenever i ≥ l. This proves the claim. �

Theorem 8.5.4. Let M be a finite differential module over the ring K〈t/β〉 equipped
with the derivation t d

dt
, such that the action of D on M/tM is nilpotent. Then R(M) ≥

R(M ⊗ Fβ).
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Proof. Let M1 be any nonzero differential quotient of M , and let e1 be the index of
nilpotency of the action of D on M1/tM1. Then for x ∈ M1, the sequence in Lemma 8.5.3
(applied to M1) converges in M1 ⊗ K〈t/λ〉 for any λ ∈ (0, R(M ⊗ Fβ)). Moreover, the
limit is nonzero if the image of x in M1/tM1 not killed by De1−1, then the limit is nonzero.
Consequently, M1 ⊗K〈t/λ〉 admits a nonzero horizontal section.

By iterating this argument, we deduce that for any λ ∈ (0, R(M ⊗ Fβ)), M ⊗K〈t/λ〉 is
a successive extension of trivial differential modules. This implies that for any λ′ ∈ (0, λ),
the fundamental solution matrix has entries in K〈t/λ′〉. This proves the claim. �

6. Geometric interpretation

As promised, here is a construction that explains the name “generic radius of conver-
gence”.

Definition 8.6.1. Let L be a complete extension of K. A generic point of L of norm
ρ is an element tρ ∈ L with |tρ| = ρ, such that there is no t ∈ Lalg ∩Kalg with |t − tρ| < ρ.
For instance, one can construct a generic point tρ by forming the completion of K(tρ) for
the ρ-Gauss norm.

Definition 8.6.2. Let L be a complete extension of K. For any tρ ∈ L with |tρ| = ρ,
the substitution t 7→ tρ + (t− tρ) induces an isometric map K[t] → L〈(t− tρ)/ρ〉. However,
if (and only if) tρ is a generic point, then the composition of this map with the reduction
modulo t− tρ is again an isometry; this can be seen by writing the map K[t] → L〈(t− tρ)/ρ〉
as

f 7→
∞∑

i=0

f (i)(tρ)

i!
(t− tρ)

i

and using the fact that
∣∣∣∣
f (i)(tρ)

i!

∣∣∣∣ =

∣∣∣∣
f (i)

i!

∣∣∣∣
ρ

≤ ρ−i|f |ρ = ρ−i|f(tρ)|.

Hence we get an isometry Fρ → L〈(t− tρ)/ρ〉.
Remark 8.6.3. In Berkovich’s theory of nonarchimedean analytic geometry, the geomet-

ric interpretation of the above construction is that the analytic space corresponding to Fρ

is obtained from the closed disc of radius ρ by removing the open disc of radius ρ centered
around each point of Kalg. As a result, it still contains any open disc of radius ρ that does
not meet Kalg.

Proposition 8.6.4. Let V be a nonzero finite differential module over Fρ, and let V ′ be
the base change of V to the open disc of radius ρ in t− tρ over L. Then the generic radius
of convergence of V is equal to the radius of convergence of V ′.

Proof. Let Gλ be the completion of L(t − tρ) for the λ-Gauss norm; then the map
Fρ → Gλ is an isometry for any λ ≤ ρ. Consequently, if we compute |D|sp,V in terms of some
basis using Lemma 5.2.5, we get the same norms whether we work in Fρ or Gλ. In other
words,

|D|sp,V ⊗Gλ
= max{|d|sp,Gλ

, |D|sp,V } = max{p−1/(p−1)λ−1, |D|sp,V }.
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On one hand, this implies R(V ) ≤ R(V ′) by applying Theorem 8.5.1 to V ⊗ L〈(t − tρ)/λ〉
for a sequence of values of λ converging to ρ.

On the other hand, pick any λ < R(V ′); then V ⊗Gλ is a trivial differential module, so
the spectral norm of D on it is p−1/(p−1)λ−1. We thus have

|D|sp,V ≤ p−1/(p−1)λ−1,

so R(V ) ≥ λ. This yields R(V ) ≥ R(V ′). �

Here is an example illustrating both the use of the geometric interpretation and a good
transformation property of the intrinsic normalization.

Proposition 8.6.5. Let m be a positive integer coprime to p, and let fm : Fρ → Fρm be
the map t 7→ tm. Then for any finite differential module V over Fρ, IR(V ) = IR(f ∗(V )).

Proof. This follows from the geometric interpretation plus the fact that

(8.6.5.1) |t− tρζ
i
m| < cρ for some i ∈ {0, . . . , m− 1} ⇔ |tm − tmρ | < cρm (c ∈ (0, 1)),

whose proof is left as an exercise. �

Remark 8.6.6. A similar construction can be made for E . Let L be the completion of
oK((t1)) ⊗oK

K for the 1-Gauss norm. Then the substitution t 7→ t1 + (t − t1) induces an
isometry oK((t)) → oLJt − t1K for the 1-Gauss norm, extending to an isometric embedding
of E into the completion of oLJt− t1K ⊗oL

L for the 1-Gauss norm.

7. Subsidiary radii

It is sometimes important to consider not only the generic radius of convergence, but
also some secondary invariants.

Definition 8.7.1. Let V be a finite differential module over Fρ. Let V1, . . . , Vm be the
Jordan-Hölder constituents of V . We define the subsidiary generic radii of convergence, or
for short the subsidiary radii, to be the multiset consisting of R(Vi) with multiplicity dimVi

for i = 1, . . . , m. We also have intrinsic subsidiary generic radii of convergence, or intrinsic
subsidiary radii, obtained by multiplying the subsidiary radii by ρ−1.

Remark 8.7.2. The product of the subsidiary radii is an invariant with properties some-
what analogous to those of the irregularity of a finite differential module over C((z)). We
will flesh out this remark later.

Remark 8.7.3. It is not yet clear how to interpret the subsidiary radii as the radii of con-
vergence of anything. We will give this interpretation in a later chapter (Theorem 10.10.2).

Notes

According to [DGS94, Appendix III] (which see for more information), the p-adic Cauchy
theorem (Proposition 8.2.3) was originally proved by Lutz [Lut37]. See Proposition 16.1.1
for a related result.

The notion of restricting a p-adic differential module to a generic disc originates in the
work of Dwork [Dwo73a], although in retrospect, the base change involved is quite natural
in Berkovich’s framework of nonarchimedean analytic geometry. (This point of view has
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been adopted by Baldassarri and di Vizio in [BdV07].) Our definition of the generic radius
of convergence is taken from Christol and Dwork [CD94].

The intrinsic radius of convergence (original terminology) was introduced in [Ked07e],
where it is called the “toric normalization” in light of Proposition 8.6.5.

The subsidiary radii (original terminology) have not been studied much previously; the
one reference we found is the work of Young [You92]. We will give Young’s interpretation of
the subsidiary radii as radii of convergence of certain horizontal sections, in a refined form,
as Theorem 10.10.2.

Exercises

(1) Prove Proposition 8.1.2. (Hint: first prove that K〈α/t, t/β〉 has no nonzero differ-
ential ideals. Then given a finite differential module over K〈α/t, t/β〉, consider the
annihilator of the torsion submodule.)

(2) Exhibit an example showing that the cokernel of d
dt

on K〈α/t, t/β〉 is not spanned
over K by t−1. That is, antidifferentiation with respect to t is not well-defined.

(3) Prove Example 8.2.5.
(4) Prove Example 8.4.1. (Hint: consider the cases λ ∈ Zp, λ ∈ oK − Zp, and λ /∈ oK

separately.)
(5) Give an explicit formula for IR(Vλ), in terms of ρ and the minimum distance from

λ to an integer.
(6) Prove (8.6.5.1).
(7) Verify that |t d

dt
|sp,Fρ 6= |t|ρ| d

dt
|sp,Fρ . This means that unlike in the case of regular

singularities, we cannot be as cavalier about working with t d
dt

instead of d
dt

.
(8) With notation as in Proposition 8.6.5, show that all of the intrinsic subsidiary radii

of V and f ∗
m(V ) match, not just the largest generic radius.

(9) Here is an “off-centered” analogue of Proposition 8.6.5 suggested by Liang Xiao
(compare with Theorem 9.8.2). Let m be a positive integer coprime to p. Given
ρ ∈ (0, 1], let fm : Fρ → Fρ be the map t 7→ (t + 1)m − 1. Then for any finite
differential module V over Fρ, R(V ) = R(f ∗

m(V )). (As in the previous exercise, one
can also get equality for the other subsidiary radii.)
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CHAPTER 9

Frobenius pullback and pushforward

In this chapter, we introduce Dwork’s technique of “descent along Frobenius” to analyze
the generic radius of convergence and subsidiary radii of a differential module in the range
where Newton polygons do not apply.

Notation 9.0.1. As in the previous chapter, let K be a complete nonarchimedean field,
and let Fρ be the completion of K(t) for the ρ-Gauss norm for some ρ > 0.

1. Why Frobenius?

It may be helpful to review the current state of affairs, to clarify why we need to descend
along Frobenius.

Let V be a finite differential module over Fρ. Then the possible values of the spectral norm
|D|sp,V are the real numbers greater than or equal to |d|sp,Fρ = p1/(p−1)ρ−1, corresponding
to generic radii of convergence less than or equal to ρ. However, if we want to calculate
the spectral norm using the Newton polygon of a twisted polynomial, we cannot distinguish
among values less than or equal to the operator norm |d|Fρ = ρ−1. In particular, we cannot
use this technique to prove a decomposition theorem for differential modules that separates
components of spectral norm between p1/(p−1)ρ−1 and ρ−1.

One way one might want to get around this is to consider not d but a high power of
d, particularly a pn-th power. The trouble with this is that iterating a derivation does not
give another derivation, but something much more complicated. Instead, we will try to
differentiate with respect to tp

n
instead of with respect to t. This will have the effect of

increasing the spectral norm, so that we can push it into the range where Newton polygons
become useful.

2. p-th roots

We first make some calculations in answer to the following question: if two p-adic numbers
are close together, how close are their p-th powers, or their p-th roots? (See also [DGS94,
§V.6] and [Chr83, Proposition 4.6.4].)

Remark 9.2.1. We observed previously (8.6.5.1) that when m is a positive integer co-
prime to p,

|t− ηζ i
m| < λ|η| for some i ∈ {0, . . . , m− 1} ⇔ |tm − ηm| < λ|η|m (λ ∈ (0, 1)).

This breaks down for m = p, because a primitive p-th root of unity ζp satisfies |1 − ζp| < 1.
The quantities 1 − ζm

p for m = 1, . . . , p− 1 are Galois conjugates, so

|1 − ζp| =

∣∣∣∣∣

p−1∏

m=1

(1 − ζm
p )

∣∣∣∣∣

1/(p−1)

= |p|1/(p−1) = p−1/(p−1)
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since the product is the derivative of T p − 1 evaluated at T = 1.

Lemma 9.2.2. Pick t, η ∈ K.

(a) For λ ∈ (0, 1), if |t− η| ≤ λ|η|, then

|tp − ηp| ≤ max{λp, p−1λ}|ηp| =

{
λp|ηp| λ ≥ p−1/(p−1)

p−1λ|ηp| λ ≤ p−1/(p−1).

(b) Suppose ζp ∈ K. If |tp − ηp| ≤ λ|ηp|, then there exists m ∈ {0, . . . , p− 1} such that

|t− ζm
p η| ≤ min{λ1/p, pλ}|η| =

{
λ1/p|η| λ ≥ p−p/(p−1)

pλ|η| λ ≤ p−p/(p−1).

Moreover, if λ ≥ p−p/(p−1), we may always take m = 0.

We will use repeatedly, and without comment, the fact that

λ 7→ max{λp, p−1λ}, λ 7→ min{λ1/p, pλ}
are strictly increasing functions from [0, 1] to itself that are inverse to each other.

Proof. There is no harm in assuming ζp ∈ K for both parts. For (a), factor tp − ηp as
t− η times t− ηζm

p for m = 1, . . . , p− 1, and write

t− ηζm
p = (t− η) + η(1 − ζm

p ).

If |t − η| ≥ p−1/(p−1)|η|, then t − η is the dominant term, otherwise η(1 − ζm
p ) dominates.

This gives the claimed bounds.
For (b), consider the Newton polygon of

tp − ηp − c =

p−1∑

i=0

(
p

i

)
ηi(t− η)p−i − c

viewed as a polynomial in t − η. Suppose |c| = λ|ηp|. If λ ≥ p−p/(p−1), then the terms
(t − η)p and c dominate, and all roots have norm λ1/p|η|. Otherwise, the terms (t − η)p,
p(t−η)ηp−1, and c dominate, so one root has norm pλ|η| and the others are larger; repeating
with η replaced by ζm

p η for m = 0, . . . , p− 1 gives p distinct roots, which accounts for all of
them. �

Corollary 9.2.3. Let T : KJtp − ηpK → KJt − ηK be the substitution tp − ηp 7→ ((t −
η) + η)p − ηp.

(a) If f ∈ K〈(tp − ηp)/(λ|ηp|)〉 for some λ ∈ (0, 1), then T (f) ∈ K〈(t− η)/(λ′|η|)〉 for
λ′ = min{λ1/p, pλ}.

(b) If T (f) ∈ K〈(t−η)/(λ|η|)〉 for some λ ∈ (p−1/(p−1), 1), then f ∈ K〈(tp−ηp)/(λ′|ηp|)〉
for λ′ = λp.

(c) Suppose K contains a primitive p-th root of unity ζp. For m = 0, . . . , p − 1, let
Tm : KJtp−ηpK → KJt−ζm

p ηK be the substitution tp−ηp 7→ ((t−ζm
p η)+ζ

m
p η)

p−ηp. If

for some λ ∈ (0, p−1/(p−1)] one has Tm(f) ∈ K〈(t−ζm
p η)/(λ|η|)〉 for m = 0, . . . , p−1,

then f ∈ K〈(tp − ηp)/(λ′|ηp|)〉 for λ′ = p−1λ.
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3. Moving along Frobenius

Definition 9.3.1. Let F ′
ρ be the completion of K(tp) for the ρp-Gauss norm, viewed as

a subfield of Fρ, and equipped with the derivation d′ = d
dtp

. We then have

d =
dtp

dt
d′ = ptp−1d′.

Given a finite differential module (V ′, D′) over F ′
ρ, we may view ϕ∗V ′ = V ′ ⊗ Fρ as a

differential module over Fρ for the derivation D = ptp−1D′ ⊗ d as a differential

D(v ⊗ f) = ptp−1D′(v) ⊗ f + v ⊗ d(f).

Lemma 9.3.2. Let (V ′, D′) be a finite differential module over F ′
ρ. Then

IR(ϕ∗V ′) ≥ min{IR(V ′)1/p, pIR(V ′)}.
Proof. For any λ < IR(ϕ∗V ′), any complete extension L of K, and any generic point

tρ ∈ L relative to K of norm ρ, (ϕ∗V ′) ⊗ L〈(tp − tpρ)/(λρ
p)〉 admits a basis of horizontal

sections. By Corollary 9.2.3(a), V ′ ⊗ L〈(t− tρ)/(min{λ1/p, pλ}ρ)〉 does likewise. �

Remark 9.3.3. The inequality in Lemma 9.3.2 can be strict; see for instance Defini-
tion 9.3.5.

Definition 9.3.4. For V a differential module over Fρ, define the Frobenius descendant of
V as the module ϕ∗V obtained from V by restriction along F ′

ρ → Fρ, viewed as a differential

module over F ′
ρ with differential D′ = p−1t−p+1D. Note that this operation commutes with

duals.

Definition 9.3.5. For m = 0, . . . , p− 1, let Wm be the differential module over F ′
ρ with

one generator v, such that

D(v) =
m

p
t−pv.

From the Newton polygon associated to v, we read off IR(Wm) = p−p/(p−1) for m 6= 0. (You
may think of the generator v as a proxy for tm.)

Lemma 9.3.6. (a) For V a differential module over Fρ, there are canonical isomor-
phisms

ιm : (ϕ∗V ) ⊗Wm
∼= ϕ∗V (m = 0, . . . , p− 1).

(b) For V a differential module over Fρ, a submodule U of ϕ∗V is itself the Frobenius
descendant of a submodule of V if and only if ιm(U⊗Wm) = U for m = 0, . . . , p−1.

(c) For V ′ a differential module over F ′
ρ, there is a canonical isomorphism

ϕ∗ϕ
∗V ′ ∼=

p−1⊕

m=0

(V ′ ⊗Wm).

(d) For V a differential module over Fρ, there is a canonical isomorphism

ϕ∗ϕ∗V ∼= V ⊕p.

(e) For V a differential module over Fρ, there are canonical bijections

H i(V ) ∼= H i(ϕ∗V ) (i = 0, 1).
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(f) For V1, V2 differential modules over Fρ, there is a canonical isomorphism

ϕ∗V1 ⊗ ϕ∗V2
∼=

p−1⊕

m=0

Wm ⊗ ϕ∗(V1 ⊗ V2).

Proof. Exercise. �

4. Frobenius antecedents

Unlike Frobenius descendants, Frobenius antecedents can only be constructed in some
cases, namely when the intrinsic radius is sufficiently large.

Definition 9.4.1. Let (V,D) be a finite differential module over Fρ such that IR(V ) >
p−1/(p−1). A Frobenius antecedent of V is a differential module (V ′, D′) over F ′

ρ such that

IR(V ′) > p−p/(p−1), together with an isomorphism V ∼= ϕ∗V ′. By Lemma 9.3.2, a necessary
condition for existence of a Frobenius antecedent is that IR(V ) > p−1/(p−1); Theorem 9.4.2
below implies that this condition is also sufficient.

Theorem 9.4.2 (after Christol-Dwork). Let (V,D) be a finite differential module over
Fρ such that IR(V ) > p−1/(p−1). Then there exists a unique Frobenius antecedent V ′ of V .
Moreover, IR(V ′) = IR(V )p.

Proof of Theorem 9.4.2. We may assume ζp ∈ K, as otherwise we may check every-
thing by adjoining ζp and then performing a Galois descent at the end.

We first check existence. Since |D|sp,V < ρ−1, for any x ∈ V , we may define an action of
Z/pZ on V using Taylor series:

ζm
p (x) =

∞∑

i=0

(ζm
p t− t)i

i!
Di(x).

Take V ′ to be the fixed space for this action; then V ′ is an F ′
ρ-subspace of V , and the map

φ∗V ′ → V is an isomorphism by Hilbert’s Theorem 90. (You can also show this explicitly
by writing down projectors onto the eigenspaces of V for the Z/pZ-action.) By applying
the Z/pZ-action to a basis of horizontal sections of V in a generic disc |t − tρ| ≤ λρ, and
invoking Corollary 9.2.3(b), we may construct horizontal sections of V ′ in a generic disc
|tp − tpρ| ≤ λpρp. Hence IR(V ′) ≥ IR(V )p > p−p/(p−1).

To check uniqueness, suppose V ∼= ϕ∗V ′ ∼= ϕ∗V ′′ with IR(V ′), IR(V ′′) > p−p/(p−1). By
Lemma 9.3.6, we have

ϕ∗V ∼= ⊕p−1
m=0(V

′ ⊗Wm) ∼= ⊕p−1
m=0(V

′′ ⊗Wm).

For m = 1, . . . , p − 1, we have IR(Wm) = p−p/(p−1); since IR(V ′) > IR(Wm), we have
IR(V ′ ⊗Wm) = p−p/(p−1). Since IR(V ′′) > p−p/(p−1), the factor V ′′ ⊗W0 must be contained
in V ′ ⊗W0 and vice versa.

For the last assertion, note that the proof of existence gives IR(V ′) ≥ IR(V )p, whereas
Lemma 9.3.2 gives the reverse inequality. �

Corollary 9.4.3. Let V ′ be a differential module over F ′
ρ such that IR(V ′) > p−p/(p−1).

Then V ′ is the Frobenius antecedent of ϕ∗V ′, so IR(V ′) = IR(ϕ∗V ′)p.
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Proof. By Lemma 9.3.2, IR(ϕ∗V ′) ≥ IR(V ′)1/p, so ϕ∗V ′ has a unique Frobenius an-
tecedent by Theorem 9.4.2. Since IR(V ′) > p−p/(p−1), V ′ is that antecedent. �

The construction of Frobenius antecedents carries over to discs and annuli as follows.

Theorem 9.4.4. Let M be a finite differential module over K〈α/t, t/β〉 (we may allow
α = 0), such that IR(M ⊗ Fρ) > p−1/(p−1) for ρ ∈ [α, β] (or equivalently, for ρ = α and
ρ = β). Then there exists a unique differential module M ′ over K〈αp/tp, tp/βp〉 such that
M = M ′ ⊗ K〈α/t, t/β〉 and IR(M ′ ⊗ F ′

ρ) > p−p/(p−1) for ρ ∈ [α, β]; this M ′ also satisfies
IR(M ′ ⊗ F ′

ρ) = IR(M ⊗ Fρ)
p for ρ ∈ [α, β].

Proof. For existence and the last assertion, use the Z/pZ-action as in the proof of
Theorem 9.4.2. (Note that the proof does not apply directly when α = 0; we must make
a separate calculation on a disc around the origin on which M is trivial.) For uniqueness,
apply Theorem 9.4.2 for any single ρ ∈ [α, β]. �

5. Frobenius descendants and subsidiary radii

We saw in Lemma 9.3.2 that we can only weakly control the behavior of generic radius
of convergence under Frobenius pullback. Under Frobenius pushforward, we can do much
better; we can control not only the generic radius of convergence, but also the subsidiary
radii.

Theorem 9.5.1. Let V be a finite differential module over Fρ with intrinsic subsidiary
radii s1, . . . , sn. Then the intrinsic subsidiary radii of ϕ∗V comprise the multiset

n⋃

i=1

{
{sp

i , p
−p/(p−1) (p− 1 times)} si > p−1/(p−1)

{p−1si (p times)} si ≤ p−1/(p−1).

In particular,
IR(ϕ∗V ) = min{p−1IR(V ), p−p/(p−1)}.

Proof. It suffices to consider V irreducible. First suppose IR(V ) > p−1/(p−1). Let V ′

be the Frobenius antecedent of V (as per Theorem 9.4.2); note that V ′ is also irreducible.
By Lemma 9.3.6, ϕ∗V ∼= ⊕p−1

m=0(V
′ ⊗ Wm). Since each Wm has rank 1, V ′ ⊗ Wm is also

irreducible. Since IR(V ′) = IR(V )p and IR(V ′ ⊗Wm) = p−p/(p−1) for m 6= 0, we have the
claim.

Next suppose IR(V ) ≤ p−1/(p−1). We first show that

IR(ϕ∗V ) ≥ p−1IR(V ) = max{IR(V )p, p−1IR(V )}.
For tρ a generic point of radius ρ and λ ∈ (0, p−1/(p−1)), the module ϕ∗V⊗L〈(tp−tpρ)/(p−1λρp)〉
splits as the direct sum of V ⊗ L〈(t− ζm

p tρ)/(λρ)〉 over m = 0, . . . , p− 1. If λ < IR(V ), by

applying Corollary 9.2.3(c), we obtain IR(ϕ∗V ) ≥ p−1λ.
Next, let W ′ be any irreducible subquotient of ϕ∗V ; then IR(W ′) ≥ IR(ϕ∗V ), so

Lemma 9.3.2 gives
(9.5.1.1)

IR(ϕ∗W ′) ≥ min{IR(W ′)1/p, pIR(W ′)} ≥ min{IR(ϕ∗V )1/p, pIR(ϕ∗V )} ≥ IR(V ).

On the other hand, ϕ∗W ′ is a subquotient of ϕ∗ϕ∗V , which by Lemma 9.3.6 is isomorphic to
V ⊕p. Since V is irreducible, each Jordan-Hölder constituent of ϕ∗W ′ must be isomorphic to

85



V , yielding IR(ϕ∗W ′) = IR(V ). That forces each inequality in (9.5.1.1) to be an equality;
in particular, IR(W ′) and IR(ϕ∗V ) have the same image under the injective map s 7→
min{s1/p, ps}. We conclude that IR(W ′) = IR(ϕ∗V ) = p−1IR(V ), proving the claim. �

Remark 9.5.2. One might be tempted to think that the proof that IR(ϕ∗V ) ≥ p−1IR(V )
in the proof of Theorem 9.5.1 should carry over to the case IR(V ) > p−1/(p−1), in which case
it would lead to the false conclusion IR(ϕ∗V ) ≥ IR(V )p. What breaks down in this case is
that pushing forward a basis of local horizontal sections of V only gives you (dimV ) local
horizontal sections of ϕ∗V ; what they span is precisely the Frobenius antecedent of V .

Corollary 9.5.3. Let s1 ≤ · · · ≤ sn be the intrinsic subsidiary radii of V .

(a) For i such that si ≤ p−1/(p−1), the product of the pi smallest intrinsic subsidiary
radii of ϕ∗V is equal to p−pisp

1 · · · sp
i .

(b) For i such that either i = n or si+1 ≥ p−1/(p−1), the product of the pi+(p−1)(n− i)
smallest intrinsic subsidiary radii of ϕ∗V is equal to p−nisp

1 · · · sp
i .

In particular, the product of the intrinsic subsidiary radii of ϕ∗V is p−npsp
1 · · · sp

n.

Note that both conditions apply when si = p−1/(p−1); this will be important later.

6. Decomposition by spectral norm

We now extend the decomposition by spectral norm across the barrier |d|Fρ. This cannot
be done using Frobenius antecedents alone, as they give no information in case IR(V ) =
p−1/(p−1).

Proposition 9.6.1. Let V1, V2 be irreducible finite differential modules over Fρ with
IR(V1) 6= IR(V2). Then H1(V1 ⊗ V2) = 0.

Proof. By dualizing if necessary, we can ensure that IR(V2) > IR(V1). If IR(V1) <
p−1/(p−1), then any short exact sequence 0 → V2 → V → V ∨

1 → 0 splits by the original
decomposition theorem.

Suppose that IR(V1) = p−1/(p−1). Let V ′
2 be the Frobenius antecedent of V2; it is also

irreducible, and IR(V ′
2) = IR(V2)

p > p−p/(p−1). By Theorem 9.5.1, each irreducible subquo-
tient W of ϕ∗V1 satisfies IR(W ) = p−p/(p−1); hence H1(W ⊗ V ′

2) = 0 by the previous case,
so H1(ϕ∗V1 ⊗ V ′

2) = 0 by the snake lemma.
By Lemma 9.3.6,

ϕ∗V1 ⊗ ϕ∗V2
∼= ⊕p−1

m=0(ϕ∗V1 ⊗Wm ⊗ V ′
2)

∼= (ϕ∗V1 ⊗ V ′
2)

⊕p.

(The last isomorphism uses the fact that ϕ∗V1
∼= ϕ∗V1 ⊗ Wm.) This yields H1(ϕ∗V1 ⊗

ϕ∗V2) = 0; since ϕ∗(V1 ⊗ V2) is a direct summand of ϕ∗V1 ⊗ ϕ∗V2 (again by Lemma 9.3.6),
H1(ϕ∗(V1 ⊗ V2)) = 0. By Lemma 9.3.6 once more, H1(V1 ⊗ V2) = H1(ϕ∗(V1 ⊗ V2)) = 0.

In the general case, 1 ≥ IR(V2) > IR(V1). If IR(V1) > p−1/(p−1), then Theorem 9.4.2
implies that V1, V2 have Frobenius antecedents V ′

1 , V
′
2 , and that any extension 0 → V1 →

V → V ∨
2 → 0 itself is the pullback of an extension 0 → V ′

1 → V ′ → (V ′
2)

∨ → 0. To show
that any extension of the first type splits, it suffices to do so for the second type; that is,
we may reduce from V1, V2 to V ′

1 , V
′
2 . By repeating this enough times, we get to a situation

where IR(V1) ≤ p−1/(p−1). We may then apply the previous cases. �
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From here, the proof of the following theorem is purely formal.

Theorem 9.6.2 (Strong decomposition theorem). Let V be a finite differential module
over Fρ. Then there exists a decomposition

V =
⊕

s∈(0,1]

Vs

where every subquotient Ws of Vs satisfies IR(Ws) = s.

Proof. We induct on dimV ; we need only consider V not irreducible. Choose a short
exact sequence 0 → U1 → V → U2 → 0 with U2 irreducible. Split U1 = ⊕s∈(0,1]U1,s

where every subquotient Ws of U1,s satisfies IR(Ws) = s. For each s 6= IR(U2), we have
H1(U∨

2 ⊗ U1,s) = 0 by repeated application of Proposition 9.6.1 plus the snake lemma.
Consequently, we have

V = V ′ ⊕
⊕

s 6=IR(U2)

U1,s,

where 0 → U1,IR(U2) → V ′ → U2 → 0 is exact. �

As with the original decomposition theorem, we obtain the following corollaries.

Corollary 9.6.3. Let V be a finite differential module over Fρ whose intrinsic subsidiary
radii are all less than 1. Then H0(V ) = H1(V ) = 0.

Corollary 9.6.4. With V = ⊕s∈(0,1]Vs as in Theorem 9.6.2, we have H i(V ) = H i(V1)
for i = 0, 1.

This suggests that the difficulties in computing H0 and H1 arise in the case of intrinsic
generic radius 1. We will pursue a closer study of this case in Chapter 12.

Corollary 9.6.5. If V1, V2 are irreducible and IR(V1) < IR(V2), then every irreducible
subquotient W of V1 ⊗ V2 satisfies IR(W ) = IR(V1).

Proof. Decompose V1 ⊗ V2 = ⊕s∈(0,1]Vs according to Theorem 9.6.2; we have Vs = 0
whenever s < IR(V1). If some Vs with s > IR(V1) were nonzero, then V1⊗V2 would have an
irreducible submodule of intrinsic radius greater than IR(V1), in violation of Lemma 8.3.4.

�

7. Integrality, or lack thereof

It may be useful to keep in mind the following limited integrality result for the intrinsic
generic radius of convergence. (There should be a more refined statement covering also
subsidiary radii.)

Theorem 9.7.1. Let V be a finite differential module over Fρ with intrinsic subsidiary
radii s1, . . . , sn. Let m be the largest integer such that sm = IR(V ). Then for any nonnegative
integer h,

s1 > pp−h/(p−1) =⇒ sm
1 ∈ |F×|p−h

ρZ.

Proof. For m = 0, we read this off from a Newton polygon. We reduce from m to m−1
by applying ϕ∗ and invoking Theorem 9.5.1. �
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The exponent p−h is not spurious; here is an example to illustrate why it cannot be
removed.

Example 9.7.2. Pick λ ∈ K× and 0 < α ≤ β such that for ρ ∈ [α, β],

p1/(p−1) < |λ|ρ−p < pp/(p−1).

LetM be the differential module overK〈α/t, t/β〉 generated by v satisfyingD(v) = −pπλt−p−1.
Then M ∼= ϕ∗M ′, where M ′ is the differential module over K〈αp/tp, tp/βp〉 with generator
w and D′(w) = −πλ(tp)−2. We read off

|D′|M ′⊗F ′
ρ

= p−1/(p−1)|λ|ρ−2p > ρ−p.

Hence we have

R(M ′ ⊗ F ′
ρ) = |λ|−1ρ2p

R(M ⊗ Fρ) = |λ|−1/pρ2,

where the first equality follows by Theorem 5.5.3 and the second follows from the first by
Corollary 9.4.3.

8. Off-centered Frobenius descendants

Since pushing forward along Frobenius does not work well on a disc, we must also consider
“off-centered” Frobenius descendants. This can be done rather more generally, but we will
stick to one case sufficient for our purposes.

Definition 9.8.1. For ρ ∈ (p−1/(p−1), 1], let F ′′
ρ be the completion of K((t − 1)p − 1)

under the ρp-Gauss norm, or equivalently, under the restriction of the ρ-Gauss norm on K(t).
(One could allow K((t−µ)p −µp) for any µ ∈ K of norm 1, but there is no loss of generality
in rescaling t to reduce to the case µ = 1.) For brevity, write u = (t − 1)p − 1. Equip F ′′

ρ

with the derivation

d′′ =
d

du
=

1

du/dt
d.

Given a differential module V ′′ over F ′′
ρ , we may view ψ∗V ′′ = V ′′ ⊗ Fρ as a differential

module over Fρ. Given a differential module V over Fρ, we may view the restriction ψ∗V of
V along F ′′

ρ → Fρ as a differential module over F ′′
ρ .

We may apply Lemma 9.2.2 with η replaced by η + 1, keeping in mind that |η + 1| = 1
for |η| ≤ 1. This has the net effect that everything that holds for ϕ also holds for ψ, except
that intrinsic radius must be replaced by generic radius.

Theorem 9.8.2. Let (V,D) be a finite differential module over Fρ such that R(V ) >
p−1/(p−1). Then there exists a unique differential module (V ′′, D′′) over F ′′

ρ such that V ∼=
ψ∗V ′′ and R(V ′′) > p−p/(p−1). For this V ′′, one has in fact R(V ′′) = R(V )p.

Theorem 9.8.3. Let V be a finite differential module over Fρ with extrinsic subsidiary
radii s1, . . . , sn. Then the subsidiary radii of ψ∗V comprise the multiset

n⋃

i=1

{
{sp

i , p
−p/(p−1) (p− 1 times)} si > p−1/(p−1)

{p−1si (p times)} si ≤ p−1/(p−1).
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Note that one cannot expect Theorem 9.8.3 to hold for ρ < p−1/(p−1), as in that case
p−p/(p−1) is too big to appear as a subsidiary radius of ψ∗V .

Notes

Lemma 9.2.2 is taken from [Ked05a, §5.3] with some typos corrected.
The Frobenius antecedent theorem of Christol-Dwork [CD94, Théorème 5.4] is slightly

weaker than the one given here: it only applies for IR(V ) > p−1/p. The discrepancy is created
by the introduction of cyclic vectors, which create some regular singularities which can only
eliminated under the stronger hypothesis. Much closer to the statement of Theorem 9.4.2
is [Ked05a, Theorem 6.13]; the only difference is that uniqueness is only asserted when
IR(V ′) ≥ IR(V )p.

The concept of the Frobenius descendant, and the results deduced using it, are origi-
nal. This includes Theorem 9.5.1, Theorem 9.8.3, and the strong decomposition theorem
(Theorem 9.6.2).

Exercises

(1) Prove Lemma 9.3.6.
(2) Prove that for any finite differential module V ′ over F ′

ρ with IR(V ′) > p−p/(p−1),

H0(V ′) = H0(ϕ∗V ′).
(3) Here is a result of Dwork related to Example 9.7.2. Suppose π ∈ K satisfies πp−1 =

−p. Prove that the power series E(t) = exp(πt − πtp) has radius of convergence
p(p−1)/p2

, even though the series exp(πt) has radius of convergence 1.
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CHAPTER 10

Variation of generic and subsidiary radii

In this chapter, we study the variation of the generic radius of convergence, and the
subsidiary radii, associated to a differential module on a disc or annulus.

Throughout this chapter, we retain Notation 9.0.1.

1. Harmonicity of the valuation function

For f ∈ K〈α/t, t/β〉 and r ∈ [− log β,− logα], the function r 7→ vr(f) is continuous,
piecewise affine, and (by Proposition 7.2.3(c)) concave in r. However, one can make an even
more precise statement; for simplicity, we only write this out explicitly for r = 0.

Definition 10.1.1. For µ ∈ (κalg
K )×, let µ be a lift of µ in some complete extension L of

K. Let E be the completion of oK [t](t) ⊗oK
K for the 1-Gauss norm. For α ≤ 1 ≤ β, define

the substitution
Tµ : K〈α/t, t/β〉 → E, t 7→ t+ µ.

The function r 7→ vr(Tµ(f)) on [0,∞) is continuous and piecewise affine; moreover, its right
slope at r = 0 does not depend on choice of the field L or of the lift µ of µ. We call this
slope sµ(f). For 1 < β (resp. α < 1), define s∞(f) (resp. s0(f)) to be the left (resp. right)
slope of the function r 7→ vr(f).

We then have the following harmonicity property.

Proposition 10.1.2. For 0 ≤ α < 1 < β and f ∈ K〈α/t, t/β〉, we have

s∞(f) =
∑

µ∈κalg
K

sµ(f).

Proof. Without loss of generality, we may assume that |f |1 = 1. The quotient of
oF1 ∩K〈α/t, t/β〉 by the ideal generated by mF is isomorphic to κK [t, t−1]; let f be the image
of f in this quotient. Then sµ is the order of vanishing of f at µ, whereas s∞ is the negative

of the order of vanishing of f at ∞. The desired equality then follows from the fact that a
rational function has as many zeroes as poles (counted with multiplicity). �

Remark 10.1.3. Note that sµ(f) ≥ 0 for µ 6= 0; thus Proposition 10.1.2 does indeed
recover the concavity inequality s∞ ≥ sµ.

2. Variation of Newton polygons

Before proceeding to differential modules, we study the variation of the Newton polygon
of a polynomial over K〈α/t, t/β〉 when measured with respect to different Gauss valuations.
We begin with this both because it motivates the statements of the results for differential
modules, and because it will be used heavily in the proofs of those statements.
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Theorem 10.2.1. Let P ∈ K〈α/t, t/β〉[T ] be a polynomial of degree n. For r ∈ [− log β,− logα],
put vr(·) = − log |·|e−r . Let NPr(P ) be the Newton polygon of P under vr. Let f1(P, r), . . . , fn(P, r)
be the slopes of NPr(P ) in increasing order. For i = 1, . . . , n, put Fi(P, r) = f1(P, r) + · · ·+
fi(P, r).

(a) (Linearity) For i = 1, . . . , n, the functions fi(P, r) and Fi(P, r) are continuous and
piecewise affine in r.

(b) (Integrality) If i = n or fi(r0) < fi+1(r0), then the slopes of Fi(P, r) in some neigh-
borhood of r = r0 belong to Z. Consequently, the slopes of each fi(P, r) and Fi(P, r)
belong to 1

1
Z ∪ · · · ∪ 1

n
Z.

(c) (Superharmonicity) Suppose that α < 1 < β. For i = 1, . . . , n, let s∞,i(P ) and

s0,i(P ) be the left and right slopes of Fi(P, r) at r = 0. For µ ∈ κalg
K , let sµ,i(P ) be

the right slope of Fi(Tµ(P ), r) at r = 0. Then

s∞,i(P ) ≥
∑

µ∈κalg
K

sµ,i(P ),

with equality if i = n or fi(P, 0) < fi+1(P, 0).
(d) (Monotonicity) Suppose that P is monic and α = 0. For i = 1, . . . , n, the slopes of

Fi(P, r) are nonnegative.
(e) (Concavity) Suppose that P is monic. For i = 1, . . . , n, the function Fi(P, r) is

concave.

Proof. Write P =
∑n

i=0 PiT
i with Pi ∈ K〈α/t, t/β〉. The function vr(Pi) is continuous

in r and piecewise affine with slopes in Z; by Proposition 7.2.3(c), it is also concave.
For s ∈ R and r ∈ [− log β,− logα], put

vs,r(P ) = min
i
{vr(Pi) + is};

that is, vs,r(P ) is the y-intercept of the supporting line of NPr(P ) of slope s. Since vs,r(P )
is the minimum of finitely many functions of the pair (r, s), each of which is continuous,
piecewise affine, and concave, these are also true of vs,r(P ).

Note that Fi(P, r) is the difference between the y-coordinates of the points of NPr(P ) of
x-coordinates i− n and −n. That is,

(10.2.1.1) Fi(P, r) = sup
s
{vs,r(P ) − (n− i)s} − vr(Pn).

Moreover, the supremum in (10.2.1.1) is achieved by some s whose denominator is bounded
by n. Consequently, Fi(P, r) is continuous and piecewise affine, proving (a).

If i = n or fi(P, r0) < fi+1(P, r0), then the point of NPr0(P ) of x-coordinate i − n is a
vertex, and likewise for r in some neighborhood of r0. In that case, for r near r0,

(10.2.1.2) Fi(P, r) = vr(Pn−i) − vr(Pn),

proving (b).
Assume that α < 1 < β. Then Proposition 10.1.2 implies that

s∞(Pi) =
∑

µ∈κalg
K

sµ(Pi) (i = 0, . . . , n).
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If i = n or fi(P, 0) < fi+1(P, 0), then this plus (10.2.1.2) yields that the desired inequality
is in fact an equality. Otherwise, let j, k be the least and greatest indices for which fj(0) =
fi(0) = fk(0); then j < i < k, and the convexity of the Newton polygon implies

(10.2.1.3) Fi(P, r) ≥
k − i

k − j
Fj(P, r) +

i− j

k − j
Fk(P, r),

with equality for r = 0. From this plus piecewise affinity, we deduce (c).
Assume that α = 0 and that P is monic. Then each vr(Pi) is a nondecreasing function of

r, as then is each vs,r(P ). Since vr(Pn) = 0, Fr(P, r) is nondecreasing by (10.2.1.1), proving
(d).

To prove (e), one can reduce to working locally around r = 0 and then deduce the claim
from (c) and (d) (because the latter implies sµ,i(P ) ≥ 0 for µ 6= 0). However, one can also
prove (e) directly as follows. Assume that P is monic, so that Pn = 1 and (10.2.1.1) reduces
to

F1(P, r) = sup
s
{vs,r(P ) − (n− i)s}.

It is not immediately clear from this that Fi(P, r) is concave, since we are taking the supre-
mum rather than the infimum of a collection of concave functions. To get around this, pick
r1, r2 ∈ [− log β,− logα] and put r3 = ur1 + (1 − u)r2 for some u ∈ [0, 1]. For j ∈ {1, 2},
choose sj achieving the supremum in (10.2.1.1) for r = rj . Put s3 = us1 + (1 − u)s2; then
using the convexity of vs,r(P ) in both s and r, we have

Fi(P, r3) ≥ vs3,r3(P ) − (n− i)s3

≥ u(vs1,r1(P ) − (n− i)s1) + (1 − u)(vs2,r2(P ) − (n− i)s2)

= uFi(P, r1) + (1 − u)Fi(P, r2).

This yields concavity for Fi(P, r), proving (e).
�

Remark 10.2.2. A more geometric interpretation of the previous proof can be given
by writing each Pi =

∑
j Pi,jt

j and considering the lower convex hull of the set of points

{(−i,−j, v(Pi,j))} in R3; we leave elaboration of this point to the reader.

Remark 10.2.3. It should also be noted that if i = n or fi(r0) < fi+1(r0), then (10.2.1.2)
implies that

f1(r0) + · · · + fi(r0) ∈ v(K×) + Zr0.

This fact does not analogize to subsidiary radii, because one has to replace v(K×) by its
p-divisible closure. See Theorem 9.7.1 and Example 9.7.2.

3. Variation of subsidiary radii: statements

In order to state the analogue of Theorem 10.2.1 for subsidiary radii of a differential
module on a disc or annulus, we must set some corresponding notation.

Notation 10.3.1. Let M be a finite free differential module of rank n over K〈α/t, t/β〉.
For ρ ∈ [α, β], let R1(ρ), . . . , Rn(ρ) be the extrinsic subsidiary radii of M ⊗ Fρ in increasing
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order, so that R1(M, ρ) = R(M ⊗ Fρ) is the generic radius of convergence of M ⊗ Fρ. For
r ∈ [− log β,− logα], define

fi(M, r) = − logRi(M, e−r),

so that fi(M, r) ≥ r for all r. Put Fi(M, r) = f1(M, r) + · · ·+ fi(M, r).

We now have the following results, whose proofs are distributed across the remainder
of this chapter (Lemmas 10.6.1, 10.7.1, 10.7.3, 10.8.1). Note that there is an overall sign
discrepancy from Theorem 10.2.1, so that concavity becomes convexity and so forth.

Theorem 10.3.2. Let M be a finite free differential module of rank n over K〈α/t, t/β〉.
(a) (Linearity) For i = 1, . . . , n, the functions fi(M, r) and Fi(M, r) are continuous and

piecewise affine.
(b) (Integrality) If i = n or fi(M, r0) > fi+1(M, r0), then the slopes of Fi(M, r) in

some neighborhood of r0 belong to Z. Consequently, the slopes of each fi(M, r) and
Fi(M, r) belong to 1

1
Z ∪ · · · ∪ 1

n
Z.

(c) (Subharmonicity) Suppose that α < 1 < β and that fi(M, 0) > 0. For i = 1, . . . , n,
let s∞,i(M) and s0,i(M) be the left and right slopes of Fi(M, r) at r = 0. For

µ ∈ κalg
K , let sµ,i(M) be the right slope of Fi(T

∗
µ(M), r) at r = 0. Then

s∞,i(M) ≤
∑

µ∈κalg
K

sµ,i(M),

with equality if either i = n and fn(0) > 0, or i < n and fi(M, 0) > fi+1(M, 0).
(d) (Monotonicity) Suppose that α = 0. For i = 1, . . . , n, for any point r0 where

fi(M, r0) > r0, the slopes of Fi(M, r) are nonpositive in some neighborhood of r0.
(Remember that fi(r) = r for r sufficiently large.)

(e) (Convexity) For i = 1, . . . , n, the function Fi(M, r) is convex.

4. Convexity for the generic radius

As a prelude to tackling Theorem 10.3.2, we give a quick proof of subharmonicity, mono-
tonicity, and convexity (parts (c)-(e) of Theorem 10.3.2) for the function f1, corresponding
to the generic radius of convergence. This argument applies to both discs and annuli, and
can be used in place of the full strength of Theorem 10.3.2 for many purposes; indeed, this
is true for numerous results which predate Theorem 10.3.2. See the notes for further details.

Proof of Theorem 10.3.2(c), (d), (e) for i = 1. Choose a basis of M , and let Ds

be the basis via which Ds acts on M . Then recall from Lemma 5.2.5 that

R1(M, ρ) = min{ρ, p−1/(p−1) lim inf
s→∞

|Ds|−1/s
ρ }.

For each s, the function r 7→ − log |Ds|−1/s
e−r is convex in r by Proposition 7.2.3(c). This

implies the convexity of

f1(M, r) = max{r, 1

p− 1
log p+ lim sup

s→∞
(− log |Ds|−1/s

e−r )}.

Similarly, we deduce (c) by applying Proposition 10.1.2 to each Ds. If α = 0, then the

function r 7→ − log |Ds|−1/s

e−r is nonincreasing, yielding (d). �
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Remark 10.4.1. To improve upon this result, one might like to try to read off the generic
radius of convergence, and maybe even the other subsidiary radii, from the Newton polygon
of a cyclic vector. In order to do this, we have to overcome two obstructions.

(a) One can only construct cyclic vectors in general for differential modules over differ-
ential fields, not over differential rings.

(b) Some of the subsidiary radii may be greater than p−1/(p−1)ρ, in which case Newton
polygons will not detect them.

The first problem will be addressed by using a cyclic vector over a fraction field to establish
linearity and integrality, then comparing to a carefully chosen lattice to deduce convexity,
subharmonicity, and monotonicity. The second problem will be addressed using Frobenius
descendants.

5. Finding lattices

One key step in what follows is, given a finite free module over K〈α/t, t/β〉 and a basis of
the extension of the module to a differential field, find a basis of the original module which is
close to the original, in the sense that the supremum norms defined by the two bases differ by
a small multiplicative factor in either direction. The following lemma produces such bases.

Lemma 10.5.1 (Lattice lemma). Let F be a complete extension of K, let R be a complete
K-subalgebra of F , and put R′ = R∩ oF . Let M be a finite free R-module of rank n, and let
| · |M be a norm on M ⊗ F compatible with F . Assume that either:

(a) c > 1 and the value group of K is not discrete; or
(b) c ≥ 1, the value group of K is discrete, and the value groups of K,F,M all coincide.

Then there exists a norm | · |′M on M ⊗ F such that {m ∈ M : |m|′M ≤ 1} is a finite free
R′-module of rank n, and c−1|m|M ≤ |m|′M ≤ c|m|M for all m ∈M .

Proof. We induct on n. Pick any m1 ∈ M belonging to a basis of M , so that M1 =
M/Rm1 is also free. Using (a) or (b), we can rescale m1 by an element of K to force
1 ≤ |m1|M ≤ c2/3.

Equip M1 with the quotient norm

|x1|M1 = inf
x∈M :x+M1=x1

{|x|M};

this is a norm because M1 is a closed subspace of M . Moreover, in case (b), the infimum is
always achieved, so the quotient norm again satisfies (b). Apply the induction hypothesis
to choose a basis m2,1, . . . , mn,1 of M1 such that the supremum norm | · |′M1

defined by

m2,1, . . . , mn,1 satisfies c−1/3|x1|M1 ≤ |x1|′M1
≤ c1/3|x1|M1 for all x1 ∈ M1. For i = 2, . . . , n,

choose mi ∈M lifting mi,1 such that |mi|M ≤ c1/3|mi,1|M1 ≤ c2/3.
Let | · |′M be the supremum norm defined by m1, . . . , mn. For a1, . . . , an ∈ R′, we have

|a1m1 + · · ·+ anmn|M ≤ max
1≤i≤n

{|ai||mi|M} ≤ c2/3 ≤ c.

On the other hand, ifm ∈M satisfies |m|M ≤ 1, we can uniquely writem = a1m1+· · ·+anmn

with ai ∈ R. By definition of the quotient norm, |m|M1 ≤ 1, so |m|′M1
≤ c1/3. In other words,

|a2|, . . . , |an| ≤ c1/3, so

|a2m2 + · · ·+ anmn|M ≤ max
2≤i≤n

{|ai||mi|M} ≤ c1/3c2/3 = c.
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Since |m|M ≤ 1 ≤ c, we have |a1m1|M ≤ c. Since |m1|M ≥ 1, we have |a1| ≤ c. This proves
the desired inequalities. �

Remark 10.5.2. Although we will only apply Lemma 10.5.1 in the case where the original
norm | · | is the supremum norm associated to some basis, it is not convenient to prove it
under this extra hypothesis. That is because the construction of the quotient norm does not
preserve the property of the norm being generated by a basis.

6. Measuring small radii

In this section, we address concern (a) from Remark 10.4.1.

Lemma 10.6.1. For any i ∈ {1, . . . , n} and any r0 such that fi(M, r0) > r0+1/(p−1) log p,
Theorem 10.3.2 holds in a neighborhood of r0.

Proof. Put F = FracK〈α/t, t/β〉. Choose a cyclic vector for M ⊗ F to obtain an
isomorphism M ⊗ F ∼= F{T}/F{T}P for some monic twisted polynomial P over F . We
may then apply Theorem 10.2.1 to deduce (a), (b), (c).

It remains to prove (d), as we may then deduce (e) from (c) and (d) as noted in the proof
of Theorem 10.2.1. To deduce (d), we may work in a neighborhood of a single value r0 of r.
There is no harm in enlarging K, so we may assume v(K×) = R. Then we may reduce to
the case r0 = 0 by replacing t by λt for some λ ∈ K×.

Pick λ1, . . . , λn ∈ K such that

− log |λj| = min{1/(p− 1) log p− fj(M, 0), 0} (j = 1, . . . , n).

By Proposition 3.3.10, the characteristic polynomial of the action of D on the basis B0 of
M ⊗ F1 given by

λ−1
n · · ·λ−1

n−j+1T
i (j = 0, . . . , n− 1)

has eigenvalues of norms max{p−1/(p−1)efj(M,0), 1} for j = 1, . . . , n. By Lemma 10.5.1, for
any particular c > 1, we may construct a basis m1, . . . , mn of M such that the supremum
norm defined by B0 differs from the supremum norm defined by the chosen basis of M ⊗ F1

by a multiplicative factor of at most c.
Let N be the matrix via which D acts on m1, . . . , mn. For c > 1 sufficiently small,

Theorem 5.7.4 implies that for r close to 0, the visible spectrum of M ⊗Fe−r is the multiset
of those norms of eigenvalues of the characteristic polynomial of N which exceed e−r. We
may then deduce (d) from Theorem 10.2.1. �

7. Larger radii

We next address concern (b) from Remark 10.4.1, considering the cases fi(M, r0) > r0
and fi(M, r0) = r0 separately.

Lemma 10.7.1. For any i ∈ {1, . . . , n} and any r0 such that fi(M, r0) > r0, clauses (a),
(b), (c), (e) of Theorem 10.3.2 hold in a neighborhood of r0.

Proof. For each nonnegative integer j, we prove the claim for r0 such that fi(M, r0) >
r0 + p−j/(p− 1) log p, by induction on j; the base case j = 0 is precisely Lemma 10.6.1. As
in the proof of Lemma 10.6.1, we may reduce to the case r0 = 0.

96



Let R′
1(ρ

p), . . . , R′
n(ρp) be the subsidiary radii of ϕ∗M ⊗ F ′

ρ in increasing order. (The
normalization is chosen this way because the series variable in F ′

ρ is tp, which has norm ρp.)
Put gi(r) = − logR′

i(e
−r). By Theorem 9.5.1, the list g1(pr), . . . , gpn(pr) consists of

n⋃

i=1

{
{pfi(M, r), pr + p

p−1
log p (p− 1 times)} fi(M, r) ≤ r + 1/(p− 1) log p

{log p+ (p− 1)r + fi(M, r) (p times)} fi(M, r) ≥ r + 1/(p− 1) log p.

Thus we may deduce (a) from the induction hypothesis.
To check (b), (c), (e), it suffices to handle cases where i = n or fi(M, 0) > p−j/(p−1) log p.

(As in the proof of Theorem 10.2.1(c), we may linearly interpolate to establish convexity and
subharmonicity in the other cases.) In these cases, we have either fi(M, 0) > 1/(p− 1) log p,
in which case in some neighborhood of r = 0 we have

(10.7.1.1) g1(pr) + · · · + gpi(pr) = pFi(M, r) + pi log p+ (p− 1)ipr,

or fi+1(M, 0) < 1/(p − 1) log p or i = n, in which case in some neighborhood of r = 0 we
have

(10.7.1.2) g1(pr) + · · · + gpi+(p−1)(n−i)(pr) = pFi(M, r) + pn log p + (p− 1)npr.

Moreover, fi(M, 0) > p−j/(p− 1) log p if and only if gpi(0) > p−j+1/(p− 1) log p.
If fi(M, 0) > 1/(p − 1) log p, apply (10.7.1.1) and the induction hypothesis to write

piecewise

Fi(M, r) = p−1(g1(pr) + · · · + gpi(pr) − pi log p− (p− 1)ipr)

= p−1(m(pr) + ∗)
= mr + p−1∗

for some m ∈ Z. (Note that ∗ is not guaranteed to be in p · v(K×); this explains Exam-
ple 9.7.2.) If fi(M, 0) ≤ 1/(p− 1) log p, then fi+1(M, 0) < 1/(p− 1) log p, so we may apply
(10.7.1.2) to write piecewise

Fi(M, r) = p−1(g1(pr) + · · · + gpi+(p−1)(n−i)(pr) − pn log p− (p− 1)npr)

= p−1(m(pr) + ∗)
= mr + p−1∗

for some m ∈ Z. This is also applicable when i = n. �

Remark 10.7.2. In the proof of Lemma 10.7.1, note the importance of the fact that the
domains of applicability of (10.7.1.1) and (10.7.1.2) overlap: if fi(M, 0) = 1/(p − 1) log p,
then (10.7.1.1) may not remain applicable when we move from r = 0 to a nearby value.

Lemma 10.7.3. For any i ∈ {1, . . . , n} and any r0 such that fi(M, r0) = r0, Theo-
rem 10.3.2 holds in a neighborhood of r0.

Proof. As in the proof of Lemma 10.6.1, it suffices to consider the case r0 = 0. We first
check continuity. For this, note that the proofs of Lemma 10.6.1 and 10.7.1 show that for
any c > 0, the function max{fi(M, r), r + c} is continuous at r = 0. Consequently, for any
ǫ > 0, we can find 0 < δ < ǫ/2 such that

|max{fi(M, r), r + ǫ/4}| < ǫ/2 (|r| < δ).
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For such r, −ǫ < −δ < fi(M, r) < ǫ; this yields continuity. x We next check piecewise
affinity by induction on i. Given that f1(M, r), . . . , fi−1(M, r) are linear in a one-sided
neighborhood of r = 0, say [−δ, 0], and given fi(M, 0) = 0, it suffices to check linearity
of fi(M, r) − r in some [−δ′, 0]. From what we know already, in a neighborhood of each
r ∈ [−δ, 0] where fi(M, r) − r > 0, fi(M, r) − r is convex and piecewise affine with slopes
in 1

n!
Z. Note that none of these slopes can be nonnegative, as otherwise fi(M, r) − r would

thereafter be nondecreasing and could not have limit 0 at r = 0. By the same argument, if
fi(M, r0)−r0 = 0 for some r0 ∈ [−δ, 0), then the slope of fi(M, r)−r at any point r ∈ (r0, 0)
with fi(M, r)− r > 0 must simultaneously be positive and negative; since this cannot occur,
we must have fi(M, r) − r = 0 for all r ∈ [r0, 0].

If fi(M, r) − r = 0 for some r < 0, we are then done, as fi(M, r) − r is constant in a
one-sided neighborhood of 0. Otherwise, the slopes of fi(M, r)−r in [−δ, 0) form a sequence
of discrete values which are negative and nondecreasing. This sequence must then stabilize,
so fi(M, r) − r is linear in a one-sided neighborhood of 0. This proves (a).

To prove (b), note that when fi(M, 0) = 0, the input hypothesis can only hold if i = n.
Suppose we wish to check integrality of the right slope of Fn (the argument for the left slope
is analogous). If f1(M, r) − r, . . . , fn(M, r) − r are identically zero in a right neighborhood
of 0, then we have nothing to check. Otherwise, let j be the greatest integer such that
fj(M, r) − r is not identically zero in a right neighborhood of 0; we then deduce (b) by
applying Lemma 10.7.1 with i replaced by j.

Since (c) and (d) make no assertion at r = 0 in case fi(0) = 0, it remains to check (e),
which we do by induction on i. Given that Fi−1(M, r) is convex and that fi(M, 0) = 0, it
suffices to check that fi(M, r) − r is convex in a neighborhood of 0. But we already know
that fi(M, r)−r is continuous and piecewise affine near 0, and that it only takes nonnegative
values; it must then have nonpositive left slope and nonnegative right slope, and so must be
convex near 0. This proves (e). �

8. Monotonicity

To complete the proof of Theorem 10.3.2, we must prove (d) without the restriction
fi(r0) > r0 + 1/(p− 1) log p. The reason why we do not have (d) as part of Lemma 10.7.1 is
that passing from M to ϕ∗M introduces a singularity at t = 0, so we cannot hope to infer
monotonicity on ϕ∗M . To fix this, we must use off-centered Frobenius descendants.

Lemma 10.8.1. If α = 0 and fi(M, r0) > r0, then the slope of fi(M, r) in a right neigh-
borhood of r0 is nonpositive.

Proof. We proceed as in the proof of Lemma 10.7.1, but using the off-centered Frobenius
ψ instead of ϕ. Again, we may assume r0 = 0 and that i = n or fi(0) > fi+1(0) (reducing to
the latter case by linear interpolation).

Let R′′
1(ρ

p), . . . , R′′
n(ρp) be the subsidiary radii of ψ∗M ⊗ F ′′

ρ in increasing order. Put
gi(r) = − logR′′

i (e
−r). By Theorem 9.8.3, if fi(M, 0) > 1/(p− 1) log p, then

g1(pr) + · · · + gpi(pr) = pFi(M, r) + pi log p,

whereas if fi+1(M, 0) < 1/(p− 1) log p or i = n, then

g1(pr) + · · ·+ gpi+(p−1)(n−i)(pr) = pFi(M, r) + pn log p.
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Moreover, fi(M, 0) > p−j/(p − 1) log p if and only if gpi(0) > p−j+1/(p − 1) log p. We may
thus proceed as in Lemma 10.7.1 to conclude. �

Example 10.8.2. To see in action the discrepancy between the behavior of the centered
and off-centered Frobenius descendants, we consider an example suggested by Liang Xiao.
(All verifications are left as an exercise.) Take β > 1, and let M be the differential module
over K〈t/β〉 with a single generator v satisfying D(v) = tp−1v. Pick any α < 1, so that we
may form φ∗M on K〈α/tp, tp/β〉. Then φ∗M splits as ⊕p−1

m=0(M
′ ⊗Wm), where M ′ has a

single generator v′ satisfying D′(v′) = p−1v. One then computes for m 6= 0 and µ ∈ κalg
K ,

s∞,1(M
′) = 0

sµ,1(M
′) = 0

s∞,1(M
′ ⊗Wm) = 0

s0,1(M
′ ⊗Wm) = 1

s−m,1(M
′ ⊗Wm) = −1

sµ,1(M
′ ⊗Wm) = 0 (µ 6= 0,−m).

This yields

s∞,p(φ∗M) = 0

s0,p(φ∗M) = p− 1

sµ,p(φ∗M) = −1 (µ ∈ F×
p )

sµ,p(φ∗M) = 0 (µ /∈ Fp)

and in turn

s∞,1(M) = −p+ 1

s0,1(M) = 0

sµ,1(M) = −1 (µ ∈ F×
p )

sµ,1(M) = 0 (µ /∈ Fp).

9. Radius versus generic radius

As promised, we can recover some information about radius of convergence from the
properties of generic radius of convergence.

Proposition 10.9.1. Let M be a differential module over K〈t/β〉 for some β > 0. Then
the radius of convergence of M equals e−r, for r the smallest value such that f1(r) = r.
Consequently, f(r′) = r′ for all r′ ≥ r.

Proof. By Theorem 8.5.1, the radius of convergence of M is at least the generic radius
of convergence of M ⊗Fe−r , which by hypothesis equals e−r. On the other hand, if λ > e−r,
then by hypothesis f1(− log λ) > − log λ, or in other words R(M⊗Fλ) < λ. This means that
M ⊗ K〈t/λ〉 cannot be trivial, so the radius of convergence cannot exceed λ. This proves
the desired result. �
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Corollary 10.9.2. Let M be a differential module over K〈t/β〉 for some β > 0. Then
the radius of convergence of M belongs to the divisible closure of the multiplicative value
group of K.

Proof. By Theorem 10.3.2 and Theorem 9.7.1, the function f1(r) is piecewise of the
form ar+ b with a ∈ Q and b ∈ p−∞v(K×). By Proposition 10.9.1, the radius of convergence
of M equals e−r for r the smallest value such that f1(r) = r. To the left of this r, f1 must be
piecewise affine with slope 6= 1; by comparing the left and right limits at r, we deduce that
r = ar + b for some a 6= 1 rational and some b ∈ p−∞v(K×). Since this gives r = b/(a− 1),
we deduce the claim. �

One should be able to better control the denominators, as in the following question.

Question 10.9.3. Let M be a differential module over K〈t/β〉 for some β > 0. Does
there necessarily exist j ∈ {1, . . . , rank(M)} such that the j-th power of the radius of con-
vergence of M belongs to the p-divisible closure of the multiplicative value group of K?

We also have a criterion for when the radius of convergence equals the generic radius.

Corollary 10.9.4. Let M be a differential module over K〈t/β〉 for some β > 0, such
that for some α ∈ (0, β), R(M ⊗ Fρ) is constant for ρ ∈ [α, β]. Then R(M) = R(M ⊗ Fρ).

10. Subsidiary radii as radii of convergence

The subsidiary generic radii of convergence can be interpreted as the radii of convergence
of a well-chosen basis of local horizontal sections at a generic point. The argument is a
variation on Corollary 10.9.4.

Definition 10.10.1. Let M be a differential module of rank n over K〈t/β〉, or on the
open disc of radius β. For i = 1, . . . , n, the i-th subsidiary radius of convergence of M is
the supremum of those λ ∈ [0, β) for which there exist n− i linearly independent horizontal
sections of M⊗K〈t/λ〉. Note that there exists a basis of local horizontal sections s1, . . . , sn of
M such that si has radius of convergence equal to the i-th subsidiary radius: once si, . . . , sn

have been chosen, there must be at least a one-dimensional space of choices left for si−1.
Such a basis is sometimes called an optimal basis of local horizontal sections.

The following generalizes Proposition 8.6.4.

Theorem 10.10.2 (after Young). Let (V,D) be a differential module over Fρ of dimension
n with subsidiary (generic) radii s1 ≤ · · · ≤ sn, and let V ′ be the base change of V to the
open disc of radius ρ in t− tρ over L. Then the subsidiary radii of V ′ are also s1 ≤ · · · sn.

Proof. We first produce a basis for which ρi = si for i = 1, . . . , n. For this, we may
apply Theorem 9.6.2 to decompose V into components each with a single subsidiary radius,
and thus reduce to the case s1 = · · · = sn = s. By the geometric interpretation of the
generic radius (Proposition 8.6.4), each Jordan-Hölder constituent of V admits a basis of
local horizontal sections on a generic disc of radius s. By Lemma 5.2.7, the same is true for
V itself.

For the remaining inequality, we induct on n. Let m be the largest integer such that
s1 = sm. Let V1 be the component of V of subsidiary radius s1, so that dim V1 = m. We
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will check that no local horizontal section of V1 at tρ can have radius of convergence strictly
greater than s1.

Put

fi(r) = fi(V1 ⊗ L〈(t− tρ)/e
−r〉, r) (i = 1, . . . , m; r ∈ (− log ρ,∞));

then the fi(r) behave as in Theorem 10.3.2. By the proof of Theorem 10.3.2(d), the fi(r)
are constant in a neighborhood of r = − log ρ. By Theorem 10.3.2(c) and (e) and induction
on i,

fi(r) =

{
− log si 0 < r ≤ − log si

r r ≥ − log si.

By contrast, if there were a local horizontal section of V1 at tρ which converged on a closed
disc of radius λ for some λ ∈ (s1, ρ), then V1 ⊗L〈(t− tρ)/λ〉 would have a trivial submodule,
and so would have λ as one of its subsidiary radii. This would force fn(r) = r for r =
− log λ < − log si, contradiction.

We conclude that any local horizontal section of V that projects nontrivially onto V1 has
radius strictly greater than s1. We can divide the given basis into m sections that project
onto a basis of V1, and n − m sections that project onto a basis of the complementary
component. The first m sections have radius of convergence at most s1 by above; the others
have radii of convergence bounded by sm+1, . . . , sn by the induction hypothesis. This yields
the desired result. �

Notes

The harmonicity property of functions on annuli (Proposition 10.1.2) may be best viewed
inside a theory of subharmonic functions on one-dimensional Berkovich analytic spaces. Such
a theory has been developed by Thuillier [Thu05].

For the function f1(M, r) = Fi(M, r) representing the generic radius of convergence,
Christol and Dwork established convexity [CD94, Proposition 2.4] (using essentially the
same short proof given here) and continuity at endpoints [CD94, Théorème 2.5] (see also
[DGS94, Appendix I]). The analogous results for the higher Fi(M, r) are original.

When restricted to intrinsic subsidiary radii less than p−1/(p−1), Theorem 10.10.2 is a
result of Young [You92, Theorem 3.1]. Young’s proof is an explicit calculation using twisted
polynomials and cyclic vectors.

Exercises

(1) Given an example to show that in Theorem 10.2.1, f2 need not be concave (even
though f1 and f2 are concave).

(2) Prove that if K is discretely valued, then oK〈t〉 = F1 ∩K〈t〉 is noetherian. It isn’t
otherwise, because then oK itself is not noetherian.

(3) Prove that each maximal ideal of oK〈t〉 is generated by mK together with some
P ∈ oK [t] whose reduction modulo mK is irreducible in κK [t].

(4) Verify Example 10.8.2.
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CHAPTER 11

Decomposition by subsidiary radii

In this chapter, we show that one can sometimes decompose a differential module on a
disc according to a separation of the subsidiary radii of convergence.

Besides Notation 9.0.1, we also retain Notation 10.3.1.

1. Metrical detection of units

One can identify the units in K〈α/t, t/β〉 rather easily in terms of power series coefficients
(Lemma 7.2.5). However, for the present application, we need an alternate characterization
based on more intrinsic data, namely the Gauss norms.

Definition 11.1.1. For f ∈ K〈α/t, t/β〉 with α ≤ 1 ≤ β, define the discrepancy of f at
r = 0 as the sum

disc(f, 0) =
∑

µ∈(κalg
K )×

sµ(f);

note that disc(f, 0) ≥ 0. We define disc(f, r) for general r ∈ [− log β,− logα] by rescal-
ing: assume without loss of generality that K contains a scalar c of norm e−r, let Tc :
K〈α/t, t/β〉 → K〈(αer)/t, t/(βer)〉 be the substitution t 7→ c−1t, then put

disc(f, r) = disc(Tc(f), 0).

Lemma 11.1.2. For x ∈ K〈t/β〉 nonzero, x is a unit if and only if s0(x) = disc(x,− log β) =
0.

Proof. We may reduce to the case β = 1 and |x|1 = 1. In this case, by Lemma 7.2.5, x
is a unit if and only if its image modulo mK in κK [t] is a unit. As noted in Proposition 10.1.2,

the order of vanishing of this image at µ ∈ κalg
K is precisely sµ(x); this proves the claim. �

For annuli, it is more convenient to prove a weak criterion first.

Lemma 11.1.3. For x ∈ ∪α∈(0,β)K〈α/t, t/β〉 nonzero, x is a unit if and only if disc(x,− log β) =
0.

Proof. We again reduce to the case β = 1 and |x|1 = 1. In this case, by Lemma 7.2.5,
x is a unit if and only if its image modulo mK in κK [t, t−1] is a unit. We then argue as in
Lemma 11.1.2. �

One may then deduce the following.

Lemma 11.1.4. For x ∈ K〈α/t, t/β〉 nonzero, x is a unit if and only if the function
r 7→ vr(x) is affine on [− log β,− logα], and disc(x,− logα) = disc(x,− log β) = 0.
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Proof. It suffices to check that x is a unit in K〈αi/t, t/βi〉 for a finite collection of
closed intervals [αi, βi] with union [α, β]. However, Lemma 11.1.3 implies that one can cover
a one-sided neighborhood of any element of [α, β] with such an interval; compactness of [α, β]
then yields the claim. �

2. Decomposition over a closed disc

We get different-looking results for decomposition by subsidiary radii, depending on
whether we are working on a closed disc or a closed annulus. Let us consider the disc first.
First, a general definition.

Definition 11.2.1. Let M be a finite differential module over K〈α/t, t/β with α ≤ 1 ≤
β. Define the i-th discrepancy of M at r = 0 as

disci(M, 0) = −
∑

µ∈(κalg
K )×

sµ,i(M);

it is always nonnegative. Extend the definition to general r ∈ [− log β,− logα] as in Defini-
tion 11.1.1.

Theorem 11.2.2. Let M be a finite differential module over K〈t/β〉 of rank n. Suppose
that the following conditions hold for some i ∈ {1, . . . , n− 1}.

(a) We have fi(M,− log β) > fi+1(M,− log β).
(b) The function Fi(M, r) is constant for r in a neighborhood of − log β.
(c) We have disci(M,− log β) = 0.

Then the decomposition of M ⊗ Fβ separating the first i subsidiary radii lifts to a decompo-
sition of M itself.

Before proving Theorem 11.2.2, we record a trivial but useful observation.

Lemma 11.2.3. Let R, S, T be subrings of a common ring U with S ∩ T = R. Let M be
a finite free R-module. Then the intersection (M ⊗ S) ∩ (M ⊗ T ) inside M ⊗ U is equal to
M itself.

This also holds when M is only locally free; see exercises.

Remark 11.2.4. The immediate application of Lemma 11.2.3 is to replace K by a com-
plete extension L in Theorem 11.2.2; inside the completion of L(t) for the 1-Gauss norm, we
have

F1 ∩ L〈t〉 = K〈t〉.
Thus obtaining matching decompositions of M ⊗ F1 and M ⊗ L〈t〉 gives a corresponding
decomposition of M itself.

We also need a lemma about polynomials over K〈t〉.
Lemma 11.2.5. Let P =

∑
i PiT

i and Q =
∑

iQiT
i be polynomials over K〈t〉 satisfying

the following conditions.

(a) We have |P − 1|1 < 1.
(b) For m = deg(Q), Qm is a unit and |Q|1 = |Qm|1.

Then P and Q generate the unit ideal in K〈t〉[T ].
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Proof. We may assume without loss of generality that Qm = 1. The hypothesis on Q
implies that if R ∈ K〈t〉[T ] and S is the remainder upon dividing R by Q, then |S|1 ≤ |Q|1
(compare Proposition 4.5.2). If we then set δ = |P −1|1 < 1 and let Si denote the remainder
upon dividing (1 − P )i by Q, the series

∑∞
i=0 Si converges and its limit S satisfies PS ≡ 1

(mod Q). This proves the claim. �

Lemma 11.2.6. Theorem 11.2.2 holds if fi(− log β) > 1/(p− 1) log p− log β.

Proof. By invoking Remark 11.2.4 to justifying enlarging K, then rescaling, we may
reduce to the case β = 1. Set notation as in the proof of Lemma 10.6.1. Then for c > 1
sufficiently small, the coefficient of T n−i in the characteristic polynomial Q(T ) of N is a unit
in K〈t/〉 by Lemma 11.1.2, and we can apply Theorem 2.2.2 to factor Q = Q2Q1 so that the
roots of Q1 are the i largest roots of Q under | · |1.

Use the basis m1, . . . , mn to identify M with K〈t〉n. Then we obtain a short exact
sequence

0 → ker(Q1(N)) → M → coker(Q1(N)) → 0

of free modules over K〈t〉n. (The quotient is torsion-free because by Lemma 11.2.5, Q1 and
Q2 generate the unit ideal in K〈t〉[T ].) Applying Lemma 10.5.1 to both factors (again for
c > 1 sufficiently small), we construct a basis of M on which D acts via a matrix

N1 =

(
A1 B1

C1 D1

)

in which:

(a) The matrix Ai is invertible and |A−1
1 |1|d|1 < 1.

(b) The Newton slopes of Ai under v0 account for the first i subsidiary radii of M ⊗F1.
(c) We have |B1|1, |C1|1, |D1|1 ≤ |A−1

1 |−1
1 δ for some δ < 1.

By Lemma 5.7.1, M admits a differential submodule accounting for the n − i subsidiary
radii of M ⊗ Fe−r for r near 0. By repeating this argument for M∨, we obtain the desired
splitting. �

To prove Theorem 11.2.2 in general, we must use Frobenius antecedents again.

Proof of Theorem 11.2.2. It suffices to prove that for β = 0, Theorem 11.2.2 holds
if fi(0) > p−j/(p− 1) log p for each nonnegative integer j; we again proceed by induction on
j, with base case j = 0 provided by Lemma 11.2.6.

Suppose fi(0) > p−j/(p−1) log p. Let M ′
1 ⊕M ′

2 be the decomposition of ϕ∗M separating
the subsidiary radii less than or equal to e−pfi(0) from the others. This might not be induced
by a decomposition of M1, because some factors of subsidiary radius p−p/(p−1) that are needed
in M ′

2 are instead grouped into M ′
1. To fix this, consider instead the decomposition

((M ′
1 ⊗W0) ∩ · · · ∩ (M ′

1 ⊗Wp−1)) ⊕ ((M ′
2 ⊗W0) + · · ·+ (M ′

2 ⊗Wp−1));

this is induced by a decomposition of M having the desired properties. �

3. Decomposition over a closed annulus

Over an annulus, one has a decomposition theorem of a somewhat different shape. For-
tunately, the proof is essentially the same as for Theorem 11.2.2.
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Theorem 11.3.1. Let M be a finite differential module over K〈α/t, t/β〉 of rank n.
Suppose that the following conditions hold for some i ∈ {1, . . . , n− 1}.

(a) We have fi(M, r) > fi+1(M, r) for − log β ≤ r ≤ − logα.
(b) The function f1(M, r) + · · · + fi(M, r) is affine for − log β ≤ r ≤ − logα.
(c) We have disci(M,− log β) = disci(M,− logα) = 0.

Then there is a decomposition of M inducing, for each ρ ∈ [α, β], the decomposition of
M ⊗ Fρ separating the first i subsidiary radii from the others.

We first prove a lemma which looks somewhat more like Theorem 11.2.2.

Lemma 11.3.2. Let M be a finite differential module over K〈α/t, t/β〉 of rank n. Suppose
that the following conditions hold for some i ∈ {1, . . . , n− 1}.

(a) We have fi(M,− log β) > fi+1(M,− log β).
(b) We have disci(M,− log β) = 0.

Then for some γ ∈ [α, β), there is a decomposition of M ⊗K〈γ/t, t/β〉 inducing the decom-
position of M ⊗ Fβ separating the first i subsidiary radii from the others.

Proof. Using Remark 11.2.4 again, we may enlarge K and then reduce to the case
β = 1. Moreover, it suffices to consider the case where fi(0) > 1/(p − 1) log p, as we may
reduce the general case to this one as in the proof of Theorem 11.2.2.

Set notation again as in the proof of Lemma 10.6.1. Then for c > 1 sufficiently small
and γ ∈ [α, 1) sufficiently large, the coefficient of T n−i in the characteristic polynomial
Q(T ) of N is a unit in K〈γ/t, t〉 by Lemma 11.1.3, so we may continue as in the proof of
Lemma 11.2.6. �

To prove Theorem 11.3.1 from Lemma 11.3.2, we proceed as in the proof of Lemma 11.1.4.

Proof of Theorem 11.3.1. Note that by subharmonicity (Theorem 10.3.2(d)), con-
ditions (b) and (c) together are equivalent to the condition that disci(M, r) = 0 for − log β <
r ≤ − logα. Consequently, if M satisfies the given hypothesis, then so does M ⊗K〈γ/t, t/δ〉
for each closed subinterval [γ, δ] ⊆ [α, β].

For each ρ ∈ (α, β], Lemma 11.3.2 implies that for some γ ∈ [α, ρ), M ⊗ K〈γ/t, t/ρ〉
admits a decomposition with the desired property. Similarly, for each ρ ∈ [α, β), for some
γ ∈ (ρ, β], M ⊗K〈ρ/t, t/γ〉 admits a decomposition with the desired property.

We now have a collection of intervals [γi, δi] covering [α, β] for which M ⊗K〈γi/t, t/δi〉
admits a decomposition with the desired property. By compactness of [α, β], we can reduce
to a finite collection of intervals. Since the decomposition of M ⊗K〈γi/t, t/δi〉 is uniquely
determined by the induced decomposition over Fρ for any single ρ ∈ [γi, δi], these decompo-
sitions agree on overlaps of the covering intervals. By the patching lemma (Lemma 7.3.3),
we obtain a decomposition of M itself. �

4. Decomposition over an open disc or annulus

Over open discs, we have similar decomposition theorems but without the discrepancy
conditions at endpoints.

Theorem 11.4.1. Let M be a finite differential module of rank n over the open disc of
radius β. Suppose that the following conditions hold for some i ∈ {1, . . . , n − 1} and some
γ ∈ (0, β).
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(a) The function Fi(M, r) is constant for − log β < r ≤ − log γ.
(b) We have fi(M, r) > fi+1(M, r) for − log β < r ≤ − log γ.

Then M admits a unique decomposition separating the first i subsidiary radii of M ⊗ Fρ for
ρ ∈ [γ, β).

Proof. Note that (a) and subharmonicity imply that disci(M, δ) = 0 for δ ∈ [γ, β).
Thus for any such δ, we may apply Theorem 11.2.2 to m ⊗K〈t/β〉; doing so for all such δ
(or a sequence ascending to β) yields the desired result. �

Similarly, for open annuli, we obtain a decomposition theorem without a discrepancy
condition at endpoints.

Theorem 11.4.2. Let M be a finite differential module of rank n over the open annulus
of inner radius α and outer radius β. Suppose that the following conditions hold for some
i ∈ {1, . . . , n− 1}.

(a) The function Fi(M, r) is affine for − log β < r < − logα.
(b) We have fi(M, r) > fi+1(M, r) for − log β < r < − logα.

Then M admits a unique decomposition separating the first i subsidiary radii of M ⊗ Fρ for
any ρ ∈ (α, β).

Remark 11.4.3. One can also obtain a decomposition theorem for a half-open annu-
lus, by covering it with an open annulus and a closed annulus, and patching together the
decompositions given by Theorem 11.3.1 and Theorem 11.4.2. Similarly, one can obtain
decomposition theorems on more exotic subspaces of the affine line by patching; the reader
knowledgeable enough to be interested in such statements should at this point have no
trouble formulating and deriving them.

5. Modules solvable at a boundary

Definition 11.5.1. Let M be a finite differential module on the half-open annulus with
closed inner radius α and open outer radius β. We say M is solvable at β if R(M ⊗Fρ) → β
as ρ → β−, or equivalently, if IR(M ⊗ Fρ) → 1 as ρ → β−. (One can also make a similar
definition with the roles of the inner and outer radius reversed; we will not refer to that
definition here.)

Lemma 11.5.2. Let M be a finite differential module on the half-open annulus with closed
inner radius α and open outer radius β, which is solvable at β. There exist b1 ≥ · · · ≥ bn ∈
[0,∞) such that for ρ ∈ [α, β) sufficiently close to β, the intrinsic subsidiary radii of M ⊗Fρ

are (ρ/β)b1, . . . , (ρ/β)bn. Moreover, if i = n or bi > bi+1, then b1 + · · · + bi ∈ Z.

Proof. For r → (− log β)+, Fi(M, r) − ir is a convex function with slopes in a discrete
subset of R. Moreover, it is nonnegative and its limit is 0; this implies that the slopes are
all positive. However, the slopes lie in a discrete subgroup of R, so they must eventually
stabilize. We deduce that each fi is linear in a neighborhood of − log β, and we may infer
the desired conclusions from the known properties of the fi provided by Theorem 10.3.2. �

Definition 11.5.3. Let M be a finite differential module on the half-open annulus with
closed inner radius α and open outer radius β, which is solvable at β. The quantities
b1, . . . , bn defined by Lemma 11.5.2 will be called the differential slopes of M at β. (They
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are also called ramification numbers; the reason for this will become clear when we consider
quasiconstant differential modules in Chapter 17. See specifically Theorem 17.3.5.)

We now recover a decomposition theorem of Christol-Mebkhout; see the notes for further
discussion. We will see several applications of this result later in the book.

Theorem 11.5.4 (Christol-Mebkhout). Let M be a finite differential module on the half-
open annulus with closed inner radius α and open outer radius β, which is solvable at β.
Then for any sufficiently large γ ∈ [α, β), the restriction of M to the open annulus with
inner radius α and outer radius β splits uniquely as a direct sum ⊕b∈[0,∞)Mb, such that for
each b ∈ [0,∞), for all ρ ∈ [γ, β), the intrinsic subsidiary radii of Mb ⊗ Fρ are all equal to
(ρ/β)b.

Proof. By Lemma 11.5.2, we are in a case where Theorem 11.4.2 may be applied. �

Remark 11.5.5. For some differential module for which one has fairly explicit series
expansions for local horizontal sections, one may be able to establish solvability at a boundary
by explicit estimates. However, it is more common for solvability at a boundary to be
established by proving the existence of a Frobenius structure; this notion will be introduced
in Chapter 15.

Notes

Our results on modules solvable at a boundary are originally due to Christol and Mebkhout
[CM00, CM01]. In particular, Lemma 11.5.2 for the generic radius is [CM00, Théorème 4.2.1],
and the decomposition theorem (which implies Lemma 11.5.2 in general) is [CM01, Corol-
laire 2.4–1].

The proof technique of Christol and Mebkhout is significantly different from ours: they
construct the desired decomposition by exhibiting convergent sequences for a certain topology
on the ring of differential operators. This does not appear to give quantitative results; that
is, one does not control the range over which the decomposition occurs, although we are not
sure whether this is an intrinsic limitation of the method. (Keep in mind that the approach
here crucially uses Frobenius descendants, which were not previously introduced.)

Note also that Christol and Mebkhout work directly with a differential module on an open
annulus as a ring-theoretic object; this requires a freeness result of the following form. If K is
spherically complete, any finite free module on the half-open annulus with closed inner radius
α and open outer radius β is induced by a finite free module over the ring ∩ρ∈[α,β)K〈α/t, t/ρ〉.
(That is, any locally free coherent sheaf on this annulus is freely generated by global sections.)
For a proof, see for instance [Ked05a, Theorem 3.14]. A result of Lazard [Laz62] implies
that this property, even when restricted to modules of rank 1, is in fact equivalent to spherical
completeness of K.

Exercises

(1) Prove the analogue of Lemma 11.2.3 in which M is only required to be locally free.
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CHAPTER 12

p-adic exponents

In this chapter, we discuss (without full proofs) what happens when one tries to analyze
p-adic differential modules on annuli for which the intrinsic generic radius of convergence is
equal to 1 everywhere; this is precisely the case where the techniques of the previous chapters
fail to deliver any information. It turns out that there is a notion of p-adic exponents in this
setting, but one must avoid exponents which are closely approximated by integers without
being integers themselves (p-adic Liouville numbers). This can already be seen by considering
p-adic differential modules on discs with one regular singularity, so we do that first.

1. p-adic Liouville numbers

Definition 12.1.1. For λ ∈ K, the type of λ, denoted type(λ), is the radius of conver-
gence of the p-adic power series

∞∑

m=0,m6=λ

xm

λ−m
.

This cannot exceed 1, as there are infinitely many m for which |λ−m| = 1 (namely those
not congruent to λ modulo p). Moreover, if λ /∈ Zp, then |λ − m| is bounded below, so
type(λ) = 1. We will thus mostly worry about λ ∈ Zp.

Definition 12.1.2. We say that λ is a p-adic Liouville number if either λ or −λ has
type less than 1, and a p-adic non-Liouville number otherwise. The reference to both λ and
−λ is not superfluous, as they may have different types (exercise).

The following alternate characterization of type may be helpful.

Definition 12.1.3. For λ ∈ Zp, let λ(m) be the unique integer in {0, . . . , pm−1} congruent
to λ modulo pm.

Proposition 12.1.4. For λ ∈ Zp not a nonnegative integer,

(12.1.4.1) − 1

logp type(λ)
= lim inf

m→∞

λ(m)

m
.

In particular, λ has type 1 if and only if λ(m)/m→ ∞ as m→ ∞.

Proof. It suffices to check that for 0 < η < 1, we have

(12.1.4.2) lim sup
m→∞

(m+ λ(m) logp η) = −∞

when η < type(α) and

(12.1.4.3) lim sup
m→∞

(m+ λ(m) logp η) = +∞
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when η > type(α). Namely, (12.1.4.2) implies m + λ(m) logp η ≤ 0 for all large m, so

lim infm→∞
λ(m)

m
≥ −1/(logp η), whereas (12.1.4.3) implies m + λ(m) logp η ≥ 0 for infinitely

many m, so lim infm→∞
λ(m)

m
≤ −1/(logp η).

Suppose first that type(λ) > η > 0; then as s → ∞, ηs/|λ − s| → 0 or equivalently
vp(λ − s) + s logp η → −∞. (Here vp denotes the renormalized valuation with v(p) = 1.)

Since λ is not a nonnegative integer, we have λ(m) → ∞ as m→ ∞, so

vp(λ− λ(m)) + λ(m) logp η → −∞.

The left side does not increase if we replace vp(λ−λ(m)) by m, so we may deduce (12.1.4.2).
Suppose next that type(λ) < η < 1; then we may choose a sequence sj such that as

j → ∞, vp(λ− sj) + sj logp η → +∞. Put mj = vp(λ− sj), so that sj ≥ λ(mj). Then

mj + λ(mj ) logp η → +∞,

yielding (12.1.4.3). �

The alternate characterization is convenient for such verifications as the fact that rational
numbers are non-Liouville (exercise), or this stronger result [DGS94, Proposition VI.1.1],
whose proof we omit.

Proposition 12.1.5. Any element of Zp algebraic over Q is non-Liouville.

We will encounter the p-adic Liouville property in yet another apparently different form.
(See exercises for an alternate proof of this lemma.)

Lemma 12.1.6. For λ not a nonnegative integer, we have an equality of formal power
series

∞∑

m=0

xm

λ(1 − λ)(2 − λ) · · · (m− λ)
= ex

∞∑

m=0

(−x)m

m!

1

λ−m
.

Proof. The coefficient of xm on the right side is a sum of the form
∑m

i=0 ci/(i− λ) for
some ci ∈ Q. It is thus a rational function of λ of the form P (λ)/(λ(1−λ) · · · (m−λ)), where
P has coefficients in Q and degree at most m. To check that in fact P (λ) = 1 identically,
we need only check this for λ = 0, . . . , m.

In other words, to check the original identity, it suffices to check after multiplying both
sides by λ − i and evaluating at λ = i, for each nonnegative integer i. On the left side, we
obtain

∞∑

m=i

−xm

(−1)i−1i!(m− i)!
.

On the right side, we obtain

ex (−x)i

i!
,

which is the same thing. �

Corollary 12.1.7. If λ ∈ K is not a nonnegative integer, and type(λ) = 1, then the
series

∞∑

m=0

xm

λ(1 − λ)(2 − λ) · · · (m− λ)
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has radius of convergence p−1/(p−1).

2. p-adic regular singularities

We now consider a p-adic analogue of Theorem 6.3.5. Unlike its archimedean analogue,
it requires a hypothesis on exponents beyond simply being weakly prepared (which simply
meant that no two eigenvalues of the constant matrix differ by a nonzero integer).

Definition 12.2.1. We say that a finite set is p-adic non-Liouville if its elements are
p-adic non-Liouville number. We say the set has p-adic non-Liouville differences if the
difference between any two elements of the set is a p-adic non-Liouville number.

Theorem 12.2.2 (p-adic Fuchs theorem). For β > 0, let M be a finite differential module
on K〈t/β〉 for the derivation d = t d

dt
. Let N =

∑∞
i=0Nit

i be the action of D on some basis.
Assume that N0 has eigenvalues which are weakly prepared and have p-adic non-Liouville
differences. Then there exists γ > 0 such that the fundamental solution matrix for N has
entries in K〈t/γ〉 (as does its inverse).

Proof. We proceed as in Proposition 16.1.1. Recall (6.3.4.1):

N0Ui − UiN0 + iUi = −
i∑

j=1

NjUi−j (i > 0).

Because N0 has weakly prepared eigenvalues, U is uniquely determined. There is thus no
harm in enlarging K to ensure that the eigenvalues λ1, . . . , λn of N0 belong to K. Then the
map X 7→ N0X − XN0 + i has eigenvalues λg − λh + i for g, h ∈ {1, . . . , n}. If e is the
maximum number of pairwise equal eigenvalues, we obtain the bound

|Ui|βi ≤ max
g,h

{|λg − λh + i|−2e+1}|N |β max
j<i

{|Uj|βj}.

Thus to conclude the theorem, it suffices to verify that for each h, j ∈ {1, . . . , n}, the number
λ = λg − λh has the property that

m∏

i=1

max{1, |λ− i|−1}

grows at worst exponentially.
If λ /∈ Zp, then |λ − i|−1 is bounded above and the claim is verified. Otherwise, Corol-

lary 12.1.7 and the hypothesis that λ is a p-adic non-Liouville number give the desired
estimate. �

By a slight modification of the argument (which we omit), one may obtain the following
result of Clark [Cla66, Theorem 3].

Theorem 12.2.3 (Clark). Let M be a finite differential module over K〈t/β〉 for the
derivation t d

dt
, with a regular singularity at 0 whose exponents are p-adic non-Liouville num-

bers. Then for any x ∈M and y ∈M ⊗KJtK such that Dy = x, we have Dy ∈M ⊗K〈t/ρ〉
for some ρ > 0.

The p-adic non-Liouville hypothesis in Theorem 12.2.2 turns out not to be superfluous,
as demonstated by the following example of Monsky.
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Example 12.2.4. Consider the rank 2 differential module over K〈t〉 for the derivation
t d

dt
associated to the differential polynomial differential polynomial p(1−t)T 2−tT−a, where

a ∈ Zp is constructed so that

(12.2.4.1) type(a) = 1, type(−a) < 1.

(The existence of such a is left as an exercise, or see [DR77, §7.20].) It can then be shown
that the conclusion of Theorem 12.2.2 fails for the basis 1, T of M , that is, the fundamental
solution matrix does not converge in any disc. (The eigenvalues of N0 are 0, a, so the
hypothesis of non-Liouville differences is violated by this example.) See [DR77, §7] or
[DGS94, §IV.8] for further discussion.

3. The Robba condition

We are interested in the question: given a finite differential module on an annulus for the
derivation t d

dt
, under what circumstances is it necessarily isomorphic to a differential module

which can be defined over a disc?
In order to answer this question, we must identify properties of a differential module

on a disc which betray information about the exponents, but which are defined in terms of
information away from the center of the disc.

Definition 12.3.1. Let M be a finite differential module on the disc/annulus |t| ∈ I,
for I an interval. We say that M satsifies the Robba condition if IR(M ⊗ Fρ) = 1 for all
nonzero ρ ∈ I.

Proposition 12.3.2. Let M be a finite differential module on the open disc of radius β
for the derivation t d

dt
, satisfying the Robba condition in some annulus. Then the exponents

of the action of D on M/tM belong to Zp.

Proof. Let N =
∑∞

i=0Nit
i be the matrix via which D acts on some basis of M . Suppose

N0 has an eigenvalue λ /∈ Zp; there is no harm in enlarging K to force λ ∈ K. Choose v ∈M
such that the image of v in M/tM is a nonzero eigenvector of N0 of eigenvalue λ. Let D′ be
the derivation corresponding to d

dt
instead of t d

dt
. Then with notation as in Example 8.2.5,

we have for any ρ < β,

lim inf
s→∞

|(D′)sv|1/s > |D′|sp,Vλ,ρ > p−1/(p−1)ρ,

so IR(M ⊗ Fρ) < 1. �

We will establish a partial converse to Proposition 12.3.2 later (Theorem 12.7.1). In the
interim, we mention the following easy result.

Proposition 12.3.3. Let M be a finite differential module on the open disc of radius β
for the derivation t d

dt
, such that the action of D on some basis of M is given by a matrix N0

over K. Then M satisfies the Robba condition if and only if N0 has eigenvalues in Zp.

Proof. Exercise, or see [DGS94, Corollary IV.7.6]. �

112



4. Abstract p-adic exponents

We now consider the question: given a finite differential module on an annulus for the
derivation t d

dt
satisfying the Robba condition, if it is isomorphic to a differential module over

a disc, how do we read off the exponents of that module by looking only at the original
annulus?

The answer to this question is complicated by the fact that the exponents are only well-
defined as elements of the quotient Zp/Z. This means we cannot hope to identify them using
purely p-adic considerations; in fact, we must use archimedean considerations to identify
them. Here are those considerations.

Definition 12.4.1. We will say that two elements A,B ∈ Zn
p are equivalent if there

exists a permutation σ of {1, . . . , n} such that Ai − Bσ(i) ∈ Z for i = 1, . . . , n. This is
evidently an equivalence relation.

Definition 12.4.2. We say that A,B ∈ Zn
p are weakly equivalent if there exists a constant

c > 0, a sequence σ1, σ2, . . . of permutations of {1, . . . , n}, and signs ǫi,m ∈ {±1} such that

(ǫi,m(Ai −Bσm(i)))
(m) ≤ cm (i = 1, . . . , n;m = 1, 2, . . . ).

In other words, the distance from Ai − Bσm(i) to the nearest multiple of pm is at most cm.
Again, this is clearly an equivalence relation, and equivalence implies weak equivalence.

Lemma 12.4.3. If A,B ∈ Zp (regarded as 1-tuples) are weakly equivalent, then they are
equivalent.

Proof. For some c > 0, we have

|ǫ1,m+1(ǫ1,m+1(A− B))(m+1) − ǫ1,m(ǫ1,m(A− B))(m)| ≤ 2cm+ c,

and the left side is an integer divisible by pm. For m large enough, we have pm > 2cm + c
and so

ǫ1,m+1(ǫ1,m+1(A−B))(m+1) = ǫ1,m(ǫ1,m(A− B))(m).

Hence for m large enough, ǫ1,m is constant and ǫ1,m(A− B) is a nonnegative integer. �

Corollary 12.4.4. Suppose A ∈ Zn
p is weakly equivalent to hA for some positive integer

h. Then A ∈ (Zp ∩ Q)n.

Proof. We are given that for some c > 0, some permutations σm, and some signs ǫi,m,

(ǫi,m(Ai − hAσm(i)))
(m) ≤ cm.

The order of σm divides n!, so we have

(±(Ai − hn!Ai))
(m) ≤ n!cm

for some choice of sign (depending on i,m). That is, for each i, the 1-tuple consisting of
(hn!−1)Ai is weakly equivalent to zero. By Lemma 12.4.3, (hn!−1)Ai ∈ Z, so Ai ∈ Zp∩Q. �

Proposition 12.4.5. Suppose that A,B ∈ Zn
p are weakly equivalent and that B has

p-adic non-Liouville differences. Then A and B are equivalent.
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Proof. There is no harm in replacing A by an equivalent tuple in which Bi −Bj ∈ Z if
and only if Bi = Bj.

For some c and σm, we have for all m,

(±(Ai − Bσm(i)))
(m) ≤ cm

(±(Ai −Bσm+1(i)))
(m+1) ≤ c(m+ 1)

and so
(±(Bσm(i) −Bσm+1(i)))

(m) ≤ 2cm+ c.

By hypothesis, the difference Bσm(i)−Bσm+1(i) is either zero or a p-adic non-Liouville number
which is not an integer; for m large, the previous inequality is inconsistent with the second
option, so Bσm(i) = Bσm+1(i). That is, for m large we have σm = σ for some fixed σ, so

(±(Ai −Bσ(i)))
(m) ≤ cm (m = 1, 2, . . . ).

By Lemma 12.4.3, Ai −Bσ(i) ∈ Z, so A and B are equivalent. �

5. Exponents for annuli

Definition 12.5.1. Let M be a finite differential module of rank n over K〈α/t, t/β〉
satisfying the Robba condition, and fix a basis e1, . . . , en of M . An exponent for M is an
element A ∈ Zn

p for which there exist a sequence {Sm}∞m=1 of n×n matrices over K〈α/t, t/β〉
satisfying the following conditions.

(a) For j = 1, . . . , n, under the action of ζpm on M via Taylor series (which converge

because of the Robba condition), the vector vm,j =
∑

i(Sm)ijei is carried to ζ
Aj

pmvm,j .

(b) For some k, we have |Sm|ρ ≤ pmk for all m and all ρ ∈ [α, β].
(c) Writing Sm =

∑
h∈Z Sm,ht

h, we have |Sm,0|ρ ≥ 1 for all ρ ∈ [α, β].

Note that the property of being an exponent does not depend on the choice of the basis
(although the choice of the matrices Sm does).

Proposition 12.5.2. Let M be a finite differential module of rank n over K〈α/t, t/β〉
satisfying the Robba condition.

(a) There exists an exponent for M .
(b) Any two exponents for M are weakly equivalent. In particular, if M admits an

exponent with non-Liouville differences, then (by Lemma 12.4.3) any other exponent
for M is strongly equivalent to it.

Proof. For (a), see [Dwo97, Lemma 3.1, Corollary 3.3]. For (b), see [Dwo97, Theo-
rem 4.4]. �

Remark 12.5.3. If M is a differential module of rank n over K〈t/β〉 for the derivation t d
dt

,
such that the eigenvalues of the action ofD onM/tM are in Zp, then it is easy to check (using
shearing transformations) that these eigenvalues form an exponent for M ⊗K〈α/t, t/β〉 for
any α ∈ (0, β).

The following is straightforward to verify.

Lemma 12.5.4. Let M be a finite differential module of rank n over K〈α/t, t/β〉 satisfying
the Robba condition, and let φ : K〈α/t, t/β〉 → K〈α1/q/t, t/β1/q〉 be the substitution t 7→ tq.
If A is an exponent of M , then qA is an exponent of φ∗M .
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This gives an important instance where the exponent of a differential module can be
controlled.

Corollary 12.5.5. Let M be a finite differential module on an open annulus with outer
radius 1, such that there exists an isomorphism φ∗

Kφ
∗M ∼= M on some annulus, where

φK : K → K is an isometry, and φ is the substitution t 7→ tq. Then any exponent for M
consists of rational numbers.

Proof. This holds by Lemma 12.5.4 and Corollary 12.4.4. �

6. The p-adic Fuchs theorem for annuli

Having sufficiently well understood the definition of exponents for a differential module
on an open annulus, one then obtains the following theorem. We omit its proof; see notes
for further discussion.

Theorem 12.6.1 (Christol-Mebkhout). Let M be a finite differential module on an open
annulus for the derivation t d

dt
satisfying the Robba condition, admitting an exponent with

non-Liouville differences. Then M is isomorphic to a differential module in which D acts on
some basis via a matrix N0 with coefficients in K, whose eigenvalues represent the exponents
of M (and hence are in Zp). Consequently, M admits a canonical decomposition

M =
⊕

α∈Zp/Z

Mα

in which each Mα has exponent identically equal to α.

Remark 12.6.2. The exponent differences condition is difficult to verify in general be-
cause of the indirect nature of the definition of exponents. However, ifM is a finite differential
admits a Frobenius structure, then Corollary 12.5.5 implies that the exponents are rational.
This leads to a quasiunipotence result (Theorem 18.4.1) which can be used to establish the
p-adic local monodromy theorem (Theorem 18.1.8).

One other consequence of Theorem 12.6.1 that can be stated without reference to expo-
nents is the following.

Corollary 12.6.3. Let M be a finite differential module on an open annulus for the
derivation t d

dt
satisfying the Robba condition. Suppose that the restriction M ′ of M to some

smaller open annulus is trivial/unipotent. Then the same is true for M .

Proof. If M” is unipotent, then its exponent is equivalent to 0. However, any exponent
A of M restricts to an exponent of M ′, so is weakly equivalent to 0 by Proposition 12.5.2.
By Lemma 12.4.3, A is equivalent to 0, so Theorem 12.6.1 implies that M is unipotent.
Moreover, if M is unipotent and M ′ is trivial, then M is forced to be trivial also. �

7. Transfer to a regular singularity

As an application of Theorem 12.6.1, we obtain a transfer theorem in the presence of a
regular singularity, in the spirit of Theorem 8.5.1 and Theorem 8.5.4 but with a somewhat
weaker estimate.
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Theorem 12.7.1. Let M be a finite differential module of rank n over KJtK0 for the
derivation t d

dt
, with a regular singularity at t = 0 whose exponents are in Zp and have non-

Liouville differences. Then the fundamental solution matrix of M converges in the open disc
of radius R(M ⊗ F1)

n. In particular, if M has generic radius of convergence 1, then the
fundamental solution matrix of M converges in the open unit disc.

Proof. By Theorem 12.2.2, the fundamental solution matrix of M converges in a disc
of positive radius. From this and Proposition 12.3.3, it follows that R(M ⊗ Fρ) = ρ for
ρ ∈ (0, 1) sufficiently small.

Let λ be the supremum of ρ ∈ (0, 1) for which R(M ⊗ Fρ) = ρ. Note that the function
f1(r) = − logR(M ⊗ Fe−r) is convex by Theorem 10.3.2, is equal to r for r sufficiently large
by the previous paragraph, and is also equal to r for r = − log λ by continuity. Consequently,
f1(r) = r for all r ≥ − log λ.

Choose α, β ∈ (0, λ) with α < β, such that the fundamental solution matrix of M
converges in the open disc of radius β. By Theorem 12.6.1, it also converges in the open
annulus of inner radius α and outer radius 1. By patching, we deduce that the fundamental
solution matrix converges in the open disc of radius λ.

To conclude, it suffices to give a lower bound for λ. By Theorem 10.3.2, for r ∈ [0,− log λ],
the function f1 is continuous and piecewise affine, with slopes belonging to 1

1
Z ∪ · · · ∪ 1

n
Z.

Since the slope for r > − log λ is equal to 1, the slopes for r ≤ − log λ cannot exceed 1;
moreover, there cannot be a slope equal to 1 in this range, as otherwise it would occur as
the left slope at r = − log λ, so there would exist ρ > λ for which R(M ⊗ Fρ) = ρ, contrary
to how λ was defined. Consequently, f1 has all slopes less than or equal to (n − 1)/n for
r ∈ [0,− log λ], yielding

− log λ = f1(− log λ) ≤ f1(0) +
n− 1

n
(− log λ).

From this we deduce λ ≥ R(M ⊗ F1)
n, as desired. �

Remark 12.7.2. We do not have in mind an example where one does not get convergence
on the open disc of radius R(M ⊗ F1).

Notes

The definition of a p-adic Liouville number was introduced by Clark [Cla66]; our pre-
sentation follows [DGS94, §VI.1].

The cited theorem of Clark [Cla66, Theorem 3] is actually somewhat stronger than
Theorem 12.2.3, as it allows differential operators of possibly infinite order.

Proposition 12.3.2 is originally due to Christol; compare [DGS94, Proposition IV.7.7].
The theory of exponents for differential modules on a p-adic annulus satisfying the Robba

condition was originally developed by Christol and Mebkhout [CM97, §4–5]; in particular,
Theorem 12.6.1 appears therein as [CM97, Théorème 6.2–4]. A somewhat more stream-
lined development was later given by Dwork [Dwo97], in which Theorem 12.6.1 appears as
[Dwo97, Theorem 7.1]. (Dwork coyly notes that he did not verify the equivalence between
the two constructions; we do not recommend losing any sleep over this.) A useful expository
article on the topic is that of Loeser [Loe96].

A somewhat more elementary treatment of Theorem 12.7.1 than the one given here is
given in [DGS94, §6]; it does not rely on the p-adic Fuchs theorem for annuli. However, it
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gives a weaker result: it only establishes convergence of the fundamental solution matrix in
the open disc of radius R(M ⊗ F1)

n2
. A similar treatment is [Chr83, Théorème 6.4.7].

Exercises

(1) Prove that rational numbers are p-adic non-Liouville numbers.
(2) Give another proof of Lemma 12.1.6 (as in [DGS94, Lemma VI.1.2]) by first ver-

ifying that both sides of the desired equation have the same coefficients of x0 and
x1, and are killed by the second-order differential operator d

dx
( d

dx
− λ− x).

(3) Show that Theorem 12.2.2 can be deduced from Theorem 12.2.3. (Hint: show that
if H0(M) 6= 0, then 0 must occur as an eigenvalue of N0.)

(4) Prove that there exists a ∈ Zp satisfying (12.2.4.1).
(5) Prove Proposition 12.3.3.
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Part 4

Difference algebra and Frobenius structures





CHAPTER 13

Formalism of difference algebra

In this chapter, we set up a bit of formalism for difference algebra, parallel to what we
did with differential algebra earlier. This formalism will be used in subsequent chapters to
describe Frobenius structures on p-adic differential equations.

1. Difference algebra

Definition 13.1.1. A difference ring/field is a ring/field R equipped with an endomor-
phism φ. A difference module over R is an R-module M equipped with a map Φ : R → R
which is additive and φ-semilinear; the latter means that

Φ(rm) = φ(r)Φ(m) (r ∈ R,m ∈M).

A difference submodule of R itself is also called a difference ideal.

Definition 13.1.2. IfM is a finite difference module over R freely generated by e1, . . . , en,
then we can recover the action of Φ from the n× n matrix A defined by

Φ(ej) =
∑

i

Aijei.

Namely, if we use the basis to identify M with the space of column vectors of length n over
R, then

Φ(v) = Aφ(v).

Moreover, if we change to a new basis e′1, . . . , e
′
n, and let U be the change-of-basis matrix

(defined by e′j =
∑

i Uijei), then Φ acts on the new basis via the matrix

A′ = U−1Aφ(U).

We say M is dualizable if A is invertible. If M is dualizable, we define the dual M∨ as
the module-theoretic dual HomR(M,R) with Φ-action given on the dual basis by A−T (the
inverse transpose). Note that the property of dualizability, and the definition of the dual,
do not depend on the choice of the basis; hence they both extend to the case where M is
only locally free as an R-module.

Definition 13.1.3. We say that the difference ring R is inversive if φ is an automor-
phism. In this case, we can define the opposite difference ring Ropp to be R again, but now
equipped with the endomorphism φ−1. If R is inversive and M is locally free, we define the
opposite module Mopp of M as the module-theoretic dual HomR(M,R) equipped with the
pullback action (i.e., on the dual basis, use the matrix AT for the action).

Definition 13.1.4. For M a difference module, write

H0(M) = ker(id−Φ), H1(M) = coker(id−Φ).
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If M1,M2 are difference modules with M1 dualizable, then H0(M∨
1 ⊗M2) computes mor-

phisms from M1 to M2, and H1(M∨
1 ⊗M2) computes extensions 0 →M2 → M → M1 → 0.

That is,

H0(M∨
1 ⊗M2) = Hom(M1,M2), H1(M∨

1 ⊗M2) = Ext(M1,M2).

2. Twisted polynomials

As in differential algebra, there is a relevant notion of twisted polynomials.

Definition 13.2.1. For R a difference ring, we define the twisted polynomial ring R{T}
as the set of finite formal sums

∑∞
i=0 riT

i, but with the multiplication this time obeying the
rule Tr = φ(r)T . For any P ∈ R{T}, the quotient R{T}/R{T}P is a difference module;
if M is a difference module, we say m ∈ M is a cyclic vector if there is an isomorphism
M ∼= R{T}/R{T}P carrying m to 1.

Definition 13.2.2. If R is inversive, we again have a formal adjoint construction: given
P ∈ R{T}, its formal adjoint is obtained by pushing the coefficients to the right side of T .
This may then be viewed as an element of the opposite ring of R{T}, which we may identify
with Ropp{T}.

It is not completely straightforward to analogize the cyclic vector theorem to difference
modules; see the exercises for one attempt to do so. Instead, we will use only the following
trivial observation.

Lemma 13.2.3. Any irreducible finite difference module over a difference field contains a
cyclic vector.

Proof. If F is a difference field, M is a finite difference module over F , and m ∈
M is nonzero, then m,Φ(m), . . . generate a nonzero difference submodule of M . If M is
irreducible, this submodule must be all of M . �

Definition 13.2.4. If φ is isometric for a norm | · | on F , then we have the usual
definition of Newton polygons and slopes for twisted polynomials. If R is inversive, then a
twisted polynomial and its adjoint have the same Newton polygon.

Applying the master factorization theorem (Theorem 2.2.2) yields the following.

Theorem 13.2.5. Let F be a difference field complete for a norm | · | under which φ is
isometric. Then any monic twisted polynomial P ∈ F{T} admits a unique factorization

P = Pr1 · · ·Prm

for some r1 < · · · < rm, where each Pri
is monic with all slopes equal to ri. (If F is inversive,

the same holds with the factors in the opposite order.)

3. Difference-closed fields

Definition 13.3.1. We will say that a difference field F is weakly difference-closed if
every dualizable finite difference module over F is trivial. We say F is strongly difference-
closed if F is inversive and weakly difference-closed.

122



Remark 13.3.2. Note that the property that F is weakly difference-closed includes the
fact that short exact sequences of dualizable finite difference modules over F always split. By
contrast, if for instance φ is the identity map, then this is never true even if F is algebraically
closed, because linear transformations need not be semisimple.

Lemma 13.3.3. The difference field F is weakly difference-closed if and only if the fol-
lowing conditions hold.

(a) Every nonconstant monic twisted polynomial P ∈ F{T} factors as a product of
linear factors.

(b) For every c ∈ F×, there exists x ∈ F× with φ(x) = cx.
(c) For every c ∈ F×, there exists x ∈ F× with φ(x) − x = c.

Proof. We first suppose that F is weakly difference-closed. To prove (a), it suffices to
check that if P ∈ F{T} is nonconstant monic with nonzero constant term, then P factors
as P1P2 with P2 linear. The nonzero constant term implies that M = F{T}/F{T}P is a
dualizable finite difference module over F , so must be trivial by the hypothesis that F be
weakly difference-closed. In particular, there exists a short exact sequence 0 →M1 →M →
M2 → 0 with M2 trivial; this corresponds to a factorization P = P1P2 with P2 linear.

To prove (b), note that F{T}/F{T}(T − c−1) must be trivial, which means there exists
x ∈ F× such that Tx − x = y(T − c−1) for some y ∈ F . Then y = φ(x) and yc−1 = x,
proving the claim.

To prove (c), form the φ-module V corresponding to the matrix

(
1 c
0 1

)
. By construction,

we have a short exact sequence 0 → V1 → V → V2 → 0 with V1, V2 trivial; since V must also
be trivial, this extension must split. That means that we can find x ∈ F with φ(x)− x = c,
proving the claim.

Conversely, suppose that (a), (b), (c) hold. Every nonzero dualizable finite difference
module over F admits an irreducible quotient. This quotient admits a cyclic vector by
Lemma 13.2.3, and so admits a quotient of dimension 1 by (a). That quotient in turn is
trivial by (b). By induction, we deduce that every dualizable finite difference module over
F admits a filtration whose successive quotients are trivial of dimension 1. This filtration
splits by (c). �

Proposition 13.3.4. Let F be a separably (resp. algebraically) closed field of character-
istic p > 0 equipped with a power of the absolute Frobenius. Then F is weakly (resp. strongly)
difference-closed.

Proof. For P =
∑m

i=0 PiT
m ∈ F{T} with m > 0, Pm = 1, and P0 6= 0, the polynomial

Q(x) =
∑m

i=0 Pix
qi

has degree qm ≥ 2, and x = 0 occurs as a root only with multiplicity
1. Moreover, the formal derivative of P is a constant polynomial, so has no common roots
with P ; hence P is a separable polynomial. Since F is separably closed, there must exist a
nonzero root x of Q; this implies criteria (a) and (b) of Lemma 13.3.3. To deduce (c), note
that for c ∈ F×, the polynomial xq − x− c is again separable, so has a root in F . �

4. Difference algebra over a complete field

Hypothesis 13.4.1. For the rest of this chapter, let F be a difference field complete for
a norm | · | with respect to which φ is isometric. We do not assume that F is inversive; if
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not, then we can embed into F into an inversive difference field by forming the completion
F ′ of the direct limit of the system

F
φ→ F

φ→ · · · .
We sometimes call F ′ the φ-perfection of F .

As in the differential case, we would like to classify finite difference modules over F by
the spectral norm of Φ. The following basic properties will help, as long as we are mindful
of the discrepancies between the differential and difference cases.

Lemma 13.4.2. Let V, V1, V2 be nonzero finite difference modules over F .

(a) For 0 → V1 → V → V2 → 0 a short exact sequence,

|Φ|sp,V = max{|Φ|sp,V1 , |Φ|sp,V2}.
(b) We have

|Φ|sp,V1⊗V2 = |Φ|sp,V1|Φ|sp,V2 .

(c) We have
|Φ|sp,V = |Φ|sp,V ⊗F ′.

Proof. Exercise. �

The relationship between V and the dual V ∨ is more complicated.

Lemma 13.4.3. If V ∼= F{T}/F{T}P and P has only one slope r in its Newton polygon,
then

|Φ|sp,V = e−r.

If F is inversive, then also
|Φ−1|sp,V = e−r.

Proof. By replacing F with F ′, we may reduce to the case where F is inversive. Put
n = deg(P ), and define a norm on V by

|a0 + · · ·+ an−1T
n−1| = max

i
{|ai|e−ri};

then
|Φ|V = e−r, |Φ−1|V = er.

We deduce that
|Φ|sp,V ≤ e−r, |Φ−1| ≤ er;

since
1 = |Φ|sp,V |Φ−1|sp,V ≤ e−rer,

we obtain the desired equalities. �

Corollary 13.4.4. For any nonzero finite difference module V over F , either |Φ|sp,V =
0, or there exists an integer m ∈ {1, . . . , dimF V } such that |Φ|msp,V ∈ |F×|.

Definition 13.4.5. Let V be a nonzero finite difference module over F . We say that V
is pure of norm s if all of the Jordan-Hölder constituents of V have spectral norm s. Note
that V is pure of norm 0 if and only if ΦdimF V = 0. If V is pure of norm 1, we also say that
V is étale or unit-root.
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Proposition 13.4.6. Let V be a nonzero finite difference module over F . Then V is
pure of norm s > 0 if and only if

(13.4.6.1) |Φ|sp,V ⊗F ′ = s, |Φ−1|sp,V ⊗F ′ = s−1.

Proof. If V is pure of norm s, then (13.4.6.1) holds by Lemma 13.4.3. Conversely, if
(13.4.6.1) holds and W is a subquotient of V , then

|Φ|sp,W⊗F ′ ≤ |Φ|sp,V ⊗F ′, |Φ−1|sp,W⊗F ′ ≤ |Φ−1|sp,V ⊗F ′.

We thus have
1 ≤ |Φ|sp,W⊗F ′|Φ−1|sp,W⊗F ′ ≤ ss−1 = 1,

which forces |Φ|sp,W = |Φ|sp,W⊗F ′ = s. �

Corollary 13.4.7. Let V1, V2 be nonzero finite difference modules over F which are pure
of respective norms s1, s2. Then V1 ⊗F V2 is pure of norm s1s2.

Proof. If s1s2 = 0, then it is easy to check that V1 ⊗ V2 is pure of norm 0. Otherwise,
one direction of Proposition 13.4.6 yields

|Φ|sp,V1⊗V2⊗F ′ = |Φ|sp,V1⊗F ′|Φ|sp,V2⊗F ′ = s1s2,

|Φ−1|sp,V1⊗V2⊗F ′ = |Φ−1|sp,V1⊗F ′|Φ−1|sp,V2⊗F ′ = s−1
1 s−1

2 ,

so the other direction of Proposition 13.4.6 implies that V1 ⊗ V2 is pure of norm s1s2. �

Corollary 13.4.8. Let V be a nonzero finite difference module over F . Then for any
positive integer d, V is pure of norm s if and only if V becomes pure of norm sd when viewed
as a difference module over (F, φd).

Proposition 13.4.9. Let V be a nonzero finite difference module over F . Suppose that
either:

(a) |Φ|sp,V < 1, or
(b) F is inversive and |Φ−1|sp,V < 1.

Then H1(V ) = 0.

Proof. In case (a), given v ∈ V , the series

w =
∞∑

i=0

Φi(v)

converges to a solution of w − Φ(w) = v. In case (b), the series

w = −
∞∑

i=0

Φ−i−1(v)

does likewise. �

Corollary 13.4.10. If V1, V2 are nonzero finite differential modules over F which are
pure of respective norms s1, s2, and either:

(a) s1 < s2; or
(b) F is inversive and s1 > s2;

then any exact sequence 0 → V1 → V → V2 → 0 splits.
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Proof. If s2 > 0, then by Corollary 13.4.7, V ∨
2 ⊗ V1 is pure of norm s1/s2, so Proposi-

tion 13.4.9 gives the desired splitting. Otherwise, we must be in case (b), so we can pass to
the opposite ring to make the same conclusion. �

If F is inversive, we again get a decomposition theorem.

Theorem 13.4.11. Suppose that F is inversive. Let V be a finite difference module over
F . Then there exists a unique direct sum decomposition

V =
⊕

s≥0

Vs

of difference modules, in which each Vs is pure of norm s. (Note that V is dualizable if and
only if V0 = 0.)

Proof. This follows at once from Corollary 13.4.10. �

Remark 13.4.12. Note that in case φ is the identity map on F , Theorem 13.4.11 simply
reproduces the decomposition of V in which the generalized eigenspaces for all eigenvalues
of a given modulus are grouped together.

If F is not inversive, we only get a filtration instead of a decomposition.

Theorem 13.4.13. Let V be a finite difference module over F . Then there exists a unique
filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V

of difference modules, such that each successive quotient Vi/Vi−1 is pure of some norm si,
and s1 > · · · > sl. (Note that V is dualizable if and only if V = 0 or sl > 0.)

Proof. Start with any filtration of V with irreducible successive quotients, and let s1

be the largest norm which appears. By Corollary 13.4.10, we can change the filtration to
move the first appearance of s1 one step earlier; consequently, we can put all appearances
of s1 before all other slopes. Group these together to form V1, then repeat to construct the
desired factorization. Uniqueness follows by tensoring with F ′ and invoking the uniqueness
in Theorem 13.4.11. �

The following alternate characterization of pureness may be useful in some situations.

Proposition 13.4.14. Let V be a finite difference module over F , and choose λ ∈ F×.
Then V is pure of norm |λ| if and only if there exists a basis of V on which Φ acts via λ
times an element of GLn(oF ).

Proof. If such a basis exists, then Proposition 13.4.6 implies that V is pure of norm
|λ|. Conversely, if V is irreducible of spectral norm |λ|, then Lemma 13.4.3 provides a basis
of the desired form. Otherwise, we proceed by induction on dimF V . Suppose we are given
a short exact sequence 0 → V1 → V → V2 → 0 in which V1, V2 admit bases of the desired
form. Let e1, . . . , em ∈ V form such a basis for V1, and let em+1, . . . , en ∈ V lift such a basis
for V2. Then for µ ∈ F of sufficiently small norm,

e1, . . . , em, µem+1, . . . , µen

will form a basis of V of the desired form. �

Remark 13.4.15. Note that whenever V is pure of positive norm, we can apply Propo-
sition 13.4.14 after replacing Φ by some power of it, thanks to Corollary 13.4.4.
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5. Hodge and Newton polygons

Definition 13.5.1. Let V be a finite difference module over F equipped with a norm
defined as the supremum norm for some basis e1, . . . , en. Let A be the basis via which Φ
acts on this basis; define the Hodge polygon of V as the Hodge polygon of the matrix A.
Given the choice of the norm on V , this definition is independent of the choice of the basis:
we can only change basis by a matrix U ∈ GLn(oF ), which replaces A by U−1Aφ(U), and
φ being an isometry ensures that φ(U) ∈ GLn(oF ) also. As in the linear case, we list the
Hodge slopes sH,i, . . . , sH,n in increasing order.

Definition 13.5.2. Let V be a finite difference module over F . Define the Newton
polygon of V to have slopes sN,1, . . . , sN,n such that r appears with multiplicity equal to the
dimension of the quotient in Theorem 13.4.13 of norm e−r.

Lemma 13.5.3. Let V be a finite difference module over F . We have

sH,1 + · · ·+ sH,i = − log |Φ|∧iV (i = 1, . . . , n)

sN,1 + · · ·+ sN,i = − log |Φ|sp,∧iV (i = 1, . . . , n).

Proof. The first assertion follows from the corresponding fact in the linear case. The
second assertion reduces to the fact that if V is irreducible of dimension n and spectral norm
s, then ∧iV has spectral norm si for i = 1, . . . , n; this follows by imitating the proof of
Lemma 13.4.3. �

Corollary 13.5.4 (Newton above Hodge). We have

sN,1 + · · ·+ sN,i ≥ sH,1 + · · · + sH,i (i = 1, . . . , n)

with equality for i = n.

Theorem 13.5.5. Let V be a finite difference module over F equipped with a basis. If
for some i ∈ {1, . . . , n− 1} we have

sN,i > sN,i+1, sN,1 + · · ·+ sN,i = sH,1 + · · · + sH,i,

then we can change basis by a matrix in GLn(oF ) so that the matrix of action of Φ becomes
block upper triangular, with the top left block accounting for the first i Hodge and Newton
slopes of M . Moreover, if F is inversive and sH,i > sH,i+1, we can ensure that the matrix of
action of Φ is block diagonal.

Proof. As in Theorem 3.3.11. �

Remark 13.5.6. Beware that the Newton polygon, unlike the Hodge polygon, cannot
be directly read off from the matrix via which Φ acts on some basis; see exercises for a
counterexample. On the other hand, this works if the matrix of Φ is a companion matrix;
this is a restatement of the following fact.

Proposition 13.5.7. If V ∼= F{T}/F{T}P , then the Newton polygon of V coincides
with that of P .

Proof. This reduces to Lemma 13.4.3. �
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Proposition 13.5.8. Suppose that F is discrete. Let K be a complete difference subfield
of F with the same value group, and let R be a complete difference subring of F containing
K. Let M be a finite free difference module over R, and suppose c ∈ R is such that the least
Newton slope of M is at least c. Then there exists a basis of M with respect to which for
each positive integer m, the least Hodge slope of Φm is the least element of v(F×) greater
than or equal to cm.

Proof. Construct a suitable basis ofM⊗F using Lemma 3.3.13, then apply Lemma 10.5.1.
�

6. The Dieudonné-Manin classification theorem

Definition 13.6.1. For λ ∈ F and d a positive integer, let Vλ,d be the difference module
over F with basis e1, . . . , ed such that

Φ(e1) = e2, . . . , Φ(ed−1) = ed, Φ(ed) = λe1.

Lemma 13.6.2. Suppose λ ∈ F× and the positive integer d are such that there is no
i ∈ {1, . . . , d− 1} such that |λ|i/d ∈ |F×|. Then Vλ,d is irreducible.

Proof. Note that

Φdei = φi−1(λ)ei (i = 1, . . . , n).

Hence by Proposition 13.4.14, Vλ,d is pure of norm λ1/d, as then is any submodule. But if
the submodule were proper and nonzero, we would have a violation of Corollary 13.4.4. �

Theorem 13.6.3. Let F be a complete discretely valued field equipped with an isometric
endomorphism φ, such that κF is strongly difference-closed. Then every dualizable finite
difference module over F can be split (non-uniquely) as a direct sum of submodules, each of
the form Vλ,d for some λ, d. Moreover, for π any fixed uniformizer of F , we can force each
λ to be a power of π.

Proof. We first check that if V is pure of norm 1, then V is trivial. We must show that
for any A ∈ GLn(oF ), there exists a convergent sequence U1, U2, · · · ∈ GLn(oF ) such that

U−1
m Aφ(Um) ≡ In (mod πm).

Specifically, we will insist that Um+1 ≡ Um (mod πm). Finding U1 amounts to trivializing a
dualizable difference module of dimension n over κF . For m > 1, given Um, we must have
Um+1 = Um(In + πmXm) for some m, and

(In + πmXm)−1(U−1
m Aφ(Um))(In + πmXm) ≡ In (mod πm+1).

Since already U−1
m Aφ(Um) ≡ In (mod πm), this amounts to solving

−Xm + π−m(U−1
m Aφ(Um) − In) + φ(Xm) ≡ 0 (mod π),

which we solve by applying criterion (c) from Lemma 13.3.3.
By similar (but easier) arguments, we also show that:

• φ is surjective on oF , so F is inversive;
• if V is trivial, then H1(V ) = 0.
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In particular, we may apply Theorem 13.4.11 to reduce the desired result to the case where
V is pure of norm s > 0.

Let d be the smallest positive integer such that sd = |πm| for some integer m. Then
the first paragraph implies that π−mΦd fixes some nonzero element of V ; this gives us a
nonzero map from Vπm,d to V . By Lemma 13.6.2, this map must be injective. Repeating this
argument, we write V as a successive extension of copies of Vπm,d. However, V ∨

πm,d ⊗ Vπm,d is

pure of norm 1, so has trivial H1 as above. Thus V splits as a direct sum of copies of Vπm,d,
as desired. �

By Proposition 13.3.4, Theorem 13.6.3 has the following immediate corollary.

Corollary 13.6.4. Let F be a complete discretely valued field, normalized so that the
additive value group is Z, such that κF is algebraically closed of characteristic p > 0. Let
φ : F → F be an isometric automorphism lifting a power of the absolute Frobenius on κF .
Then every dualizable finite difference module over F can be split (non-uniquely) as a direct
sum of difference submodules, each of the form Vλ,d for some λ ∈ F× and some positive
integer d coprime to the valuation of λ. Moreover, for π any fixed uniformizer of F , we can
force each λ to be a power of π.

Remark 13.6.5. The case of Corollary 13.6.4 in which k is an algebraically closed field of
characteristic p, W (k) is the ring of p-typical Witt vectors (i.e., the unique complete discrete
valuation ring with residue field k and maximal ideal (p)), F = Frac(W (k)), and φ is the
Witt vector Frobenius is the Dieudonné-Manin theorem, i.e., the classification theorem of
rational Dieudonné modules over an algebraically closed field.

Notes

The parallels between difference and differential algebra are quite close, enough so that
a survey of references for difference algebra strongly resembles its differential counterpart.
An older, rather dry reference is [Coh65]; a somewhat more lively modern reference, which
develops difference Galois theory under somewhat restrictive conditions, is [SvdP97]. We
again mention [And01] as a useful unifying framework for difference and differential algebra.

Proposition 13.3.4 can be found in SGA7 [DK73, Exposé XXII, Corollaire 1.1.10],
wherein Katz attributes it to Lang. Indeed, it is a special case of the nonabelian Artin-
Schreier theory associated to an algebraic group over a field of positive characteristic (in our
case GLn), via the Lang torsor ; see [Lan56].

In the special case of the difference field Frac(W (k)), with k perfect of characteristic
p > 0, a number of the results in this chapter appear (in marginally less generality) in
[Kat79]. For instance, Corollary 13.5.4 reproduces Mazur’s [Kat79, Theorem 1.4.1], while
Proposition 13.5.8 generalizes [Kat79, Theorem 2.6.1] and answers the question posed by
Katz in the following remark.

For the original classification of rational Dieudonné modules over an algebraically closed
field, see Manin’s original paper [Man63] or the book of Demazure [Dem72].

As in Chapter 3, one can interpret what we have done here as the special case for GLn of a
construction for any reductive algebraic group. This point of view was originally introduced
by Kottwitz [Kot85, Kot97], but a full development of the analogy is the subject of recent
and ongoing (as of this writing) work of Kottwitz [Kot03] and Csima [Csi07].
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Exercises

(1) Let F be a difference field of characteristic zero containing an element x such that
φ(x) = λx for some λ fixed by φ. Prove that every finite difference module for M
admits a cyclic vector. (Hint: under these hypotheses, one can readily imitate the
proof of Theorem 4.4.2.)

(2) Let F be the completion of Qp(t) for the 1-Gauss norm, viewed as a difference field
for φ equal to the substitution t 7→ tp. Let V be the difference module corresponding
to the matrix

A =

(
1 t
0 p

)
.

Prove that there is a nonsplit short exact sequence 0 → V1 → V → V2 → 0 with
V1, V2 pure of slopes s1, s2 with s1 < s2.

(3) Here is a beautiful example from [Kat79, §1.3] (attributed to B. Gross). Let p be
a prime congruent to 3 modulo 4, put F = Qp(i) with i2 = −1, and let φ be the
automorphism i 7→ −i of F over Qp. Define a difference module M of rank 2 over
F using the matrix

A =

(
1 − p (p+ 1)i

(p+ 1)i p− 1

)
.

Compute the Newton polygons of A and M and verify that they do not coincide.
(Hint: find another basis of M on which Φ acts diagonally.)

(4) Prove that every difference field can be embedded into a strongly difference-closed
field. (This requires your favorite equivalent of the axiom of choice, e.g., Zorn’s
lemma.) Variant: prove that every complete nonarchimedean difference field can
be embedded into a strongly difference-closed complete nonarchimedean difference
field.
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CHAPTER 14

Frobenius modules

In this chapter, we restrict the formalism of difference algebra to the special case of
Frobenius lifts.

Hypothesis 14.0.6. Throughout the remaining chapters in this part, we assume that our
complete nonarchimedean field K is discretely valued. This is necessary to avoid a number
of technical complications, some of which we will point out as we go along.

1. A multitude of rings

One can talk about Frobenius structures on a variety of rings; here are some of the ones
we will use.

Definition 14.1.1. We have already defined

K〈α/t, t/β〉 =

{∑

i∈Z

cit
i : ci ∈ K, lim

i→−∞
|ci|αi = 0, lim

i→+∞
|ci|βi = 0

}
.

We will also need

KJtK0 =

{
∞∑

i=0

cit
i : ci ∈ K, sup

i
{|ci|} <∞

}

K{{t}} =

{
∞∑

i=0

cit
i : ci ∈ K, lim

i→∞
|ci|ρi = 0 (ρ ∈ (0, 1))

}
.

We will allow the following hybrids:

K〈α/t, tK0 =

{∑

i∈Z

cit
i : ci ∈ K, lim

i→−∞
|ci|αi = 0, sup

i
{|ci|} <∞

}

K〈α/t, t}} =

{∑

i∈Z

cit
i : ci ∈ K, lim

i→−∞
|ci|αi = 0, lim

i→+∞
|ci|ρi = 0 (ρ ∈ (0, 1))

}
.

Definition 14.1.2. For later use, we give special notations to certain rings appearing in
this framework. We already have defined E to be the completion of oK((t)) ⊗oK

K for the
1-Gauss norm; that is, E consists of formal sums

∑
cit

i which have bounded coefficients and
satisfy |ci| → 0 as i → −∞. Since we are assuming that K is discretely valued, this is a
complete nonarchimedean field with residue field κK((t)). We next set

E† =
⋃

α∈(0,1)

K〈α/t, tK0;
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that is, E † consists of formal sums
∑
cit

i which have bounded coefficients and converge in
some range α ≤ |t| < 1. We also put

R =
⋃

α∈(0,1)

K〈α/t, t}}

that is, R consists of formal sums
∑
cit

i which converge in some range α ≤ |t| < 1, but
need not be bounded. The ring R is commonly known as the Robba ring with coefficients
in K.

Remark 14.1.3. Beware that since R consists of series with unbounded coefficients, the
1-Gauss norm | · |1 is not defined on all of R. We will conventionally write |x|1 = ∞ if x ∈ R
has unbounded coefficients.

2. Frobenius lifts

Definition 14.2.1. Let q be a power of p. Let R be one of the following rings:

• K〈t〉, KJtK0, or K{{t}};
• the union of K〈α/t, t〉, K〈α/t, tK0, or K〈α/t, t}} over all α ∈ (0, 1);
• F1, the completion of K(t) for the 1-Gauss norm;
• E , the completion of KJtK0[t

−1] for the 1-Gauss norm.

By a q-power Frobenius lift on R, we will mean a map φ : R → R of the form
∑

i

cit
i 7→

∑

i

φK(ci)u
i,

where:

• the map φK : K → (R ∩ KJtK0) is an isometry whose composition with reduction
modulo t is also an isometry;

• the element u ∈ R satisfies |u− tq|1 < 1. (If R = R, this forces u ∈ E†.)

We say φ is scalar-preserving if φK carries K into K. We say φ is absolute if φK carries K
into K and lifts the q-power Frobenius on κK .

Lemma 14.2.2. For any Frobenius lift φ on KJtK0, there exists a unique λ ∈ mK such
that φ(t− λ) ≡ 0 (mod t− λ).

Proof. Exercise. �

Definition 14.2.3. We define the center of a Frobenius lift φ on KJtK0 to be the element
λ ∈ mK given by Lemma 14.2.2. We say φ is zero-centered if its center is equal to 0, i.e., if
φ(t) ≡ 0 (mod t).

Remark 14.2.4. In case K is not discretely valued, one could also allow u such that
|u− tq|1 = 1 but each coefficient of u− tq has norm less than 1. However, this creates certain
technical complications which we do not wish to deal with here. In any case, we will restrict
to K discretely valued at some point to avoid even further messiness.

132



3. Generic versus special Frobenius

Definition 14.3.1. Let M be a finite free difference module over KJtK0, for φ a Frobenius
lift. Define the generic Newton polygon of M to be the Newton polygon of M ⊗ E . Define
the special Newton polygon of M to be the Newton polygon of M/(t−λ)M , for λ the center
of φ.

Theorem 14.3.2 (Grothendieck, Katz). Let M be a finite free difference module over
KJtK0, for φ a Frobenius lift. Then the special Newton polygon lies on or above the generic
Newton polygon, with the same endpoints.

Proof. Choose a basis of M , and use it to define supremum norms on M ⊗ E and
M/(t − λ)M . Then it is evident that for any positive integer n, the Hodge polygon of
Φn acting on M ⊗ E lies on or above the Hodge polygon of Φn acting on M/(t − λ)M ,
with the same endpoints. If we divide all slopes by n and take limits as n → ∞, then an
analogue of Proposition 3.4.10 implies that the generic/special Hodge slopes converge to the
generic/special Newton slopes. �

As in the comparison of Hodge and Newton polygons, one gets a decomposition result in
case the special and generic Newton polygons touch somewhere.

Theorem 14.3.3. Let M be a finite free difference module of rank n over KJtK0, for φ
a zero-centered Frobenius lift. Let sg,1 ≤ · · · ≤ sg,n and ss,1 ≤ · · · ≤ ss,n be the generic and
special Newton slopes, respectively. Suppose that for some i ∈ {1, . . . , n− 1}, we have

ss,i > ss,i+1, sg,1 + · · ·+ sg,i = ss,1 + · · ·+ ss,i.

Then there is a unique difference submodule N of M with M/N free whose generic and
special Newton slopes are sg,1, . . . , sg,i and ss,1, . . . , ss,i, respectively.

Proof. Uniqueness follows from the uniqueness in M ⊗ E , as in Theorem 13.4.13. For
existence, we first replace φ by a suitable power to ensure that all of the slopes are integral
multiples of − log p; we then apply Lemma 10.5.1 to change basis in M to ensure that the
generic Hodge slopes of M are also equal to sg,1, . . . , sg,i.

If ss,H,1, . . . , ss,H,n denote the special Hodge slopes in this basis, then we have

ss,1 + · · ·+ ss,i ≥ ss,H,1 + · · · + ss,H,i

by Corollary 13.5.4, but also

ss,H,1 + · · ·+ ss,H,i ≥ sg,1 + · · ·+ sg,i

by Theorem 14.3.2, and sg,1 + · · · + sg,i = ss,1 + · · · + ss,i by hypothesis. Consequently,
ss,1 + · · ·+ ss,i = ss,H,1 + · · · + ss,H,i; that is, for this basis, the condition of Theorem 13.5.5
is also satisfied by M/tM .

We can thus choose a basis of M on which the action of Φ is via a block matrix

A =

(
B C
D E

)

in which modulo t, B accounts for the first i Hodge and Newton slopes of M/tM , E accounts
for the remaining slopes of M/tM , and D vanishes. By Cramer’s rule, DB−1 has entries
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in oKJtK. Conjugating by the block lower triangular unipotent matrix U with off-diagonal
block DB−1, we obtain

U−1AU =

(
B + CDB−1 C

Eφ(DB−1) −DB−1Cφ(DB−1) E −DB−1C

)
.

Repeating this operation, we get a sequence of block matrices

Al =

(
Bl Cl

Dl El

)

in which DlB
−1
l has entries in oKJtK, and converges to zero for the (t,mK)-adic topology

(because φ(t) ≡ 0 (mod tq,mK)). This proves the claim. �

Theorem 14.3.4. Let M be a finite free difference module of rank n over KJtK0, for φ a
zero-centered Frobenius lift. Suppose that the generic and special Frobenius slopes of M are
all equal to a single value r. Then there is a canonical isomorphism M ∼= (M/tM)⊗K KJtK0

of differential modules.

Proof. First suppose that r = 0. By Lemma 10.5.1, we can choose a basis for which
the generic Hodge slopes are all equal to 0. Let A be the matrix of action of Φ on this
basis. We wish to construct an n × n matrix U =

∑∞
i=0 Uit

i over oKJtK with U0 = In such
that U−1Aφ(U) = A0, or equivalently U = Aφ(U)A−1

0 . Since the map U 7→ Aφ(U)A−1
0 is

contractive for the (t,mK)-adic topology on In + tMn×n(oKJtK), it has a unique fixed point,
which gives the desired isomorphism.

If r ∈ v(K×), we may apply the above argument after twisting by a scalar. Otherwise,
we may replace φ by a power, then twist and apply the above argument. �

Notes

Much of the existing literature makes the restriction that Frobenius lifts must be absolute,
or at least scalar-preserving. The generality we consider here is relevant for some applications
(e.g., to families of Galois representations in p-adic Hodge theory), so it is prudent to allow
it as much as possible.

Theorem 14.3.2 in the absolute case is a local formulation of a geometric result of
Grothendieck. The proof given is from [Kat79, Theorem 2.3.1]; the analogue of Propo-
sition 3.4.10 used therein is [Kat79, Corollary 1.4.4].

Theorem 14.3.4 is an adaptation of [Kat79, Theorem 2.7.1].

Exercises

(1) Suppose that κK is perfect and that φ : E → E is a q-power Frobenius lift inducing
the absolute q-power Frobenius on κK((t)). Prove that φ is absolute in the sense of
Definition 14.2.1, i.e., φ(K) = K. (Hint: use Witt vector functoriality; otherwise
put, for x ∈ K, show that φ(xpn

) = φ(x)pn
is p-adically close to an element of K.)

(2) Prove Lemma 14.2.2. (Hint: view φ as a map taking λ ∈ mK to the reduction of
φ(t) modulo t− λ. Then show that this map is contractive.)
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CHAPTER 15

Frobenius structures on differential modules

In this chapter, we define the concept of a Frobenius structure on a differential module
on a disc or annulus.

1. Frobenius structures

Definition 15.1.1. Let R be a ring as in Definition 14.2.1. ForM a finite free differential
module over R, a Frobenius structure on M with respect to a Frobenius lift φ on R is an
isomorphism Φ : φ∗M ∼= M of differential modules. In more explicit terms, we must equip
M with the structure of a dualizable difference module over (R, φ), such that

D(Φ(m)) =
dφ(t)

dt
Φ(D(v)) (m ∈M).

In even more explicit terms, if A,N are the matrices via which Φ, D act on some bases, they
must satisfy

(15.1.1.1) NA +
dA

dt
=
dφ(t)

dt
Aφ(N).

Remark 15.1.2. We may also speak about Frobenius structures on finite free differential
modules for the derivation t d

dt
; the analogue of (15.1.1.1) is

(15.1.2.1) NA + t
dA

dt
=

t

φ(t)

dφ(t)

dt
Aφ(N).

However, if R is a subring of KJtK, then (15.1.2.1) only makes sense if φ(t) = tqu for u ∈ R×,
in which case taking constant terms in (15.1.2.1) yields N0A0 = qu0A0φ(N0). This gives
|N0|sp = q−1|N0|sp, so N0 must be nilpotent.

It is not easy to directly construct Frobenius structures except in a few simple examples.
However, they frequently manifest on Picard-Fuchs modules; see Chapter 19.

2. Frobenius structures and generic radius of convergence

Lemma 15.2.1. Let φ be a Frobenius lift on E †. Then there exists ǫ ∈ (0, 1) such that for
β, γ ∈ [ǫ, 1) with β ≤ γ, φ carries K〈β/t, t/γ〉 to K〈β1/q/t, t/γ1/q〉, and

|f |β = |φ(f)|β1/q .

Proof. Since |φ(t)t−q−1|1 < 1, by continuity we can choose ǫ so that |φ(t)t−q−1|ρ1/q < 1
for ρ ∈ [ǫ, 1]; this inequality implies |φ(ti)t−qi − 1|ρ1/q < 1 for all i ∈ Z. For such an ǫ, the
claim is easily verified: if f =

∑
i fit

i, then for β ∈ [ǫ, 1),

|f |β =

∣∣∣∣∣
∑

i

φK(fi)t
qi

∣∣∣∣∣
β1/q

>

∣∣∣∣∣
∑

i

φK(fi)(t
qi − φ(ti))

∣∣∣∣∣
β1/q

.
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Remark 15.2.2. By virtue of Lemma 15.2.1, we can talk about Frobenius structures
with respect to φ on finite differential modules on the half-open annulus with closed inner
radius α and open outer radius 1, whether or not they are not represented by finite free
modules over K〈α/t, t}}0.

One of Dwork’s early discoveries is that the presence of a Frobenius structure forces
solvability at the boundary.

Proposition 15.2.3. Let M be a finite differential module on the half-open annulus with
closed inner radius α and open outer radius 1, equipped with a Frobenius structure. Then

lim
ρ→1−

IR(M ⊗ Fρ) = 1,

that is, M is solvable at the outer boundary. More precisely, for ρ ∈ (0, 1) sufficiently close
to 1,

IR(M ⊗ Fρ1/q) ≥ IR(M ⊗ Fρ)
1/q.

Proof. By imitating the proof of Lemma 9.3.2, we may show that for ρ ∈ (0, 1) suffi-
ciently close to 1,

IR(M ⊗ Fρ1/q) ≥ min{IR(M ⊗ Fρ)
1/q, qIR(M ⊗ Fρ)}.

The function f(s) = min{s1/q, qs} on (0, 1] is strictly increasing, and any sequence of the
form s, f(s), f(f(s)), . . . converges to 1. This proves the first claim; for the second claim,
note that once s is sufficiently close to 1, f(s) = s1/q. �

The following corollary is sometimes called “Dwork’s trick”.

Corollary 15.2.4 (Dwork). Let M be a finite differential module on the open unit disc,
equipped with a Frobenius structure. Then M admits a basis of horizontal sections.

Proof. By Proposition 15.2.3, for each λ < 1, there exists ρ ∈ (λ, 1) such that R(M ⊗
Fρ) > λ. By Dwork’s transfer theorem (Theorem 8.5.1), M ⊗ K〈t/λ〉 admits a basis of
horizontal sections. Taking λ arbitrarily close to 1 yields the claim. �

Remark 15.2.5. Corollary 15.2.4 admits the following geometric interpretation. By
Proposition 8.2.3, the horizontal sections converge on some disc of positive radius ρ. Pulling
back by Frobenius gives a new space of horizontal sections on the disc of radius min{ρ1/p, pρ},
but this space must coincide with the original space. Repeating the construction, we even-
tually stretch the horizontal sections out over the entire open unit disc.

One also has a nilpotent analogue of Dwork’s trick, by using Theorem 8.5.4 in place of
Theorem 8.5.1.

Corollary 15.2.6. Let M be a finite differential module on the open unit disc for the
derivation t d

dt
, equipped with a Frobenius structure as in Remark 15.1.2. Then M has radius

of convergence 1.

A nice application of Dwork’s trick is the following.
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Proposition 15.2.7. Let M be a finite differential module over KJtK0 with R(M) =
1. (For instance, this holds if M admits a Frobenius structure, by Dwork’s trick.) Then
H0(M) = H0(M ⊗ E†).

Proof. By hypothesis, there exists a horizontal basis e1, . . . , en of M ⊗ K{{t}}. If
v ∈ H0(M ⊗E†), then when we write v =

∑n
i=1 viei with vi ∈ R, we must have d(vi) = 0 for

i = 1, . . . , n. This forces vi ∈ K for i = 1, . . . , n, so

v ∈ (M ⊗ E†) ∩ (M ⊗K{{t}}) = M ⊗ (E † ∩K{{t}}) = M ⊗KJtK0 = M.

�

It should be noted that Dwork’s trick also holds in the absence of a differential structure;
see [Ked05c, Proposition 4.3].

Theorem 15.2.8. Let M be a finite free difference module over K{{t}} for an absolute
Frobenius lift. Then there exists a noncanonical isomorphism of difference modules M ∼=
(M/tM) ⊗K K{{t}}.

3. Independence from the Frobenius lift

Another key property of Frobenius structures is that the exact shape of the Frobenius
lift is immaterial.

Proposition 15.3.1. Let φ1, φ2 be two Frobenius lifts on R. Let M be a finite free differ-
ential module over R equipped with a Frobenius structure for φ1. Then there is a functorial
way to equip M with a Frobenius structure for φ2.

Proof. The Frobenius structure for φ2 is defined by

Φ2(m) =

∞∑

i=0

(φ2(t) − φ1(t))
i

i!
Φ1

(
di

dti
(m)

)
.

By Proposition 15.2.3 and the fact that |φ2(t)− φ1(t)|1 < 1, this series converges under | · |ρ
for ρ ∈ (0, 1) sufficiently close to 1 (if this makes sense for R), and also under | · |1 (if this
makes sense for R). �

Corollary 15.3.2. Let φ1, φ2 be two Frobenius lifts on R. Then there is a canonical
equivalence between the categories of finite free differential modules over R equipped with
Frobenius structure with respect to φi for i = 1, 2; this equivalence is the identity functor on
the underlying difference modules.

Notes

We cannot resist viewing Dwork’s trick (Corollary 15.2.4) as an instance of a general
principle articulated beautifully by Coleman [Col82, §III]:

Rigid analysis was created to provide some coherence in an otherwise totally
disconnected p-adic realm. Still, it is often left to Frobenius to quell the
rebellious outer provinces.
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CHAPTER 16

Effective convergence bounds

In this chapter, we discuss some effective bounds on the solutions of p-adic differential
equations with nilpotent singularities; we put this chapter here partly to illustrate the im-
provement one gets in the bounds by accounting for a Frobenius structure. Just like their
archimedean counterparts, these are important for carrying out rigorous numerical calcula-
tions.

1. Nilpotent singularities in the p-adic setting

For applications in geometry, it is important to have effective bounds not just for nonsin-
gular differential equations, but also for some regular singular differential equations. How-
ever, in the p-adic case, the p-adic behavior of the exponents creates many headaches. The
case where the exponents are all zero is an important middle ground.

Proposition 16.1.1. Let N =
∑∞

i=0Nit
i be an n× n matrix over K〈t/β〉 corresponding

to the differential system D(v) = Nv + d(v), where d = t d
dt

. Assume that N0 is nilpotent

with nilpotency index m; that is, Nm
0 = 0 but Nm−1

0 6= 0. Assume also that |N0| ≤ 1. Then
the fundamental solution matrix U =

∑∞
i=0 Uit

i over KJtK (as in Proposition 6.3.4) satisfies

(16.1.1.1) |Ui|βi ≤ |i!|−2m+1 max{|Nj|βj : 0 ≤ j ≤ i} (i = 1, 2, . . . ).

Consequently, U has entries in K〈t/(p−(2m−1)/(p−1)β)〉 (as does its inverse).

Note that this reproves the p-adic Cauchy theorem (Proposition 8.2.3).

Proof. Recall (6.3.4.1):

N0Ui − UiN0 + iUi = −
i∑

j=1

NjUi−j (i > 0) >

The map f(X) = NX −XN on n× n matrices is nilpotent with nilpotency index 2m− 1:
this is most easily seen by writing

f i(X) =

i∑

j=0

ajN
jXN i−j

for some aj ∈ Z, then noting that each term vanishes for i = 2m−1 because min{j, i−j} ≥ m.
Hence the map X 7→ iX + f(X) has inverse

X 7→
2m−2∑

j=0

(−1)ji−j−1f j(X).

This gives the claim by induction on i. �
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2. Effective bounds for solvable modules

We now give an improved version of Proposition 16.1.1 under the hypothesis that U has
entries in K〈t/β〉. The hypothesis is only qualitative, in that it implies that |Ui|βi → 0 as
i→ ∞ but does not give a specific bound on |Ui| for any particular i. Somewhat surprisingly,
this hypothesis plus any explicit bound on N together imply a rather strong explicit bound
on |Ui|. We first suppose the bound on N is of a specific form.

Theorem 16.2.1. Let N =
∑∞

i=0Nit
i, U =

∑∞
i=0 Uit

i be n× n matrices over KJtK such
that

(a) N has entries in K〈t/β〉;
(b) U0 = In;
(c) U−1NU + U−1t d

dt
(U) = N0;

(d) N0 is nilpotent;
(e) U and U−1 have entries in K〈t/β〉.

Then for every nonnegative integer i,

|Ui|βi ≤ p(n−1)⌊logp i⌋ max{1, |N |n−1
β }.

The first step in the proof of Theorem 16.2.1 is to change basis to reduce |N |β; however,
we pay the price of decreasing β slightly.

Lemma 16.2.2. With notation as in Theorem 16.2.1, for any λ < 1, µ > 1, there exists
an invertible n× n matrix X =

∑∞
i=0 Uit

i over K〈t/(λβ)〉 such that

|X−1NX + U−1t
d

dt
(X)|λβ ≤ 1

|X−1|λβ ≤ µ

|X|λβ ≤ |N |n−1
β µ.

Proof. Let M be the differential module over K〈t/β〉 for the operator t d
dt

, with a basis
on which D acts via N , and let | · | be the supremum norm defined by this basis. Since the
fundamental solution matrix for M converges in the closed disc of radius β, M has generic
radius of convergence β. In particular,

|D|sp,M ≤
∣∣∣∣t
d

dt

∣∣∣∣
Fβ

= 1.

By Proposition 5.2.11 plus the lattice lemma (Lemma 10.5.1), for any desired ǫ > 0, we may
find V ∈ GLn(K〈t/(λ1/2β)〉) such that for N ′ = V −1NV + V −1t d

dt
(V ),

|N ′|β ≤ 1 + ǫ

|V −1|β ≤ 1 + ǫ

|V |β ≤ |N |n−1
β (1 + ǫ).

Since the constant coefficient N ′
0 of N ′ is nilpotent, it has spectral norm 0. By Proposi-

tion 3.4.6, there exists W ∈ GLn(K) with

|W−1| ≤ 1, |W | ≤ (1 + ǫ)n−1, |W−1N ′
0W | ≤ 1.
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We now take X = VW , so that X−1NX +X−1t d
dt

(X) = W−1N ′W . We then have

|(W−1N ′W )0| ≤ 1

|W−1N ′W |β ≤ (1 + ǫ)n

|X−1|β ≤ 1 + ǫ

|X|β ≤ |N |n−1
β (1 + ǫ)n.

For ǫ such that (1 + ǫ)n ≤ max{λ−1, µ}, we have the desired inequalities. �

Using Lemma 16.2.2, we prove Theorem 16.2.1 by using Frobenius antecedents to reduce
the index from i to ⌊i/p⌋. One can improve upon this argument if one has a Frobenius
structure on the differential module; see Lemma 16.3.2.

Lemma 16.2.3. With notation as in Theorem 16.2.1, suppose that |N |β ≤ 1. Then for
any λ < 1, µ > 1, there exist n×n matrices N ′, U ′ over K〈t/(λpβp)〉 satisfying the hypotheses
of Theorem 16.2.1, such that

|N ′|λβ ≤ p

max{|Uj|(λβ)j : 0 ≤ j ≤ i} ≤ max{|U ′
j|(λβ)pj : 0 ≤ j ≤ i/p}.

Proof. Define the invertible n×n matrix V =
∑∞

i=0 Vit
i over KJtK as follows. Start with

V0 = In. Given V0, . . . , Vi−1, if i ≡ 0 (mod p), put Vi = 0. Otherwise, put W =
∑i−1

j=0 Vjt
j

and NW = W−1NW +W−1t d
dt

(W ), and let Vi be the unique solution of the matrix equation

N0Vi − ViN0 + iVi = −(NW )i.

By induction on i, |Vi|βi ≤ 1 for all i, so V is invertible over K〈t/(λ1/2β)〉.
Let φ : KJtK → KJtK denote the substitution t 7→ tp. Put N ′′ = V −1NV + V −1t d

dt
(V );

thenN ′′ has entries inKJtpK, and |φ−1(N ′′)|λp/2βp ≤ 1. Put U ′′ = V −1U , so that |U ′′|λ1/2β = 1;
then

(U ′′)−1N ′′U ′′ + (U ′′)−1t
d

dt
(U ′′) = N ′′

0 = N0,

which forces U ′′ also to have entries in KJtpK. We may then take N ′ = p−1φ−1(N ′′) and
U ′ = φ−1(U ′′). �

We now put everything together.

Proof of Theorem 16.2.1. We prove the claim by induction on i, in three stages.
First, if i < p and |N |β ≤ 1, then the desired estimate follows from Proposition 16.1.1.
Second, for any given i, the desired estimate for general N follows from the estimate for the
same i in the case |N |β ≤ 1, by Lemma 16.2.2. (More precisely, for any λ < 1, µ > 1, replace
the pair N,U by X−1NX +X−1t d

dt
(X), X−1UX0; then take the limit as λ, µ→ 1.) Third, if

|N |β ≤ 1, then the desired estimate for any given i follows from the corresponding estimate
for general N with i replaced by ⌊i/p⌋, by Lemma 16.2.3 (again applying the argument for
any λ < 1, µ > 1, then taking the limit as λ, µ→ 1). �

We will often apply Theorem 16.2.1 through the following corollary (deduced by taking
β to be an arbitrary value less than 1).
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Theorem 16.2.4. Let N =
∑∞

i=0Nit
i, U =

∑∞
i=0 Uit

i be n× n matrices over KJtK such
that:

(a) |N |1 <∞ (i.e., |Ni| is bounded over all i);
(b) U0 = In;
(c) U−1NU + U−1t d

dt
(U) = N0;

(d) N0 is nilpotent;
(e) for all β < 1, U and U−1 have entries in K〈t/β〉.

Then for every nonnegative integer i,

|Ui| ≤ p(n−1)⌊logp i⌋|N |n−1
1 .

Example 16.2.5. It is easy to make an example that shows that one cannot signifi-
cantly improve the bound of Theorem 16.2.1 without extra hypotheses. (There is a tiny
improvement possible; see notes.) For instance, one can use the functions

fi =
1

i!
(log(1 + t))i (i = 0, . . . , n− 1)

which satisfy the differential system

d

dt
f0 = 0,

d

dt
fi =

1

1 + t
fi−1 (i = 1, . . . , n− 1),

in which the coefficients have 1-Gauss norm at most 1.

3. Frobenius structures

Although Theorem 16.2.4 is close to optimal under its hypotheses, it can be improved in
case the differential module in question admits a Frobenius structure.

Hypothesis 16.3.1. In this section, fix a power q of p, and let φ be a scalar-centered
q-power Frobenius lift on KJtK0.

The key here is to imitate the proof of Theorem 16.2.1 with the differential equation
replaced by a certain Frobenius equation.

Lemma 16.3.2. Let U =
∑∞

i=0 Uit
i, A =

∑∞
i=0Ait

i be n × n matrices over KJtK such
that:

(a) |A|1 <∞;
(b) U0 = In and A0 is invertible;
(c) U−1Aφ(U) = A0.

Then
max{|Uj| : 0 ≤ j ≤ i} ≤ |A|1|A−1

0 |max{|Uj | : 0 ≤ j ≤ i/q}.
Consequently, for every nonnegative integer i,

|Ui| ≤ (|A|1|A−1
0 |)⌈logq i⌉.

Proof. Note that (c) can be rewritten as

U = Aφ(U)A−1
0 .

This gives the first inequality. To deduce the second inequality, we proceed as in the proof
of Theorem 16.2.1, except that we iterate ⌈logq i⌉ times to get to the case i = 0 (rather than
iterating ⌊logq i⌋ times to get to the case 0 < i < p). �
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Theorem 16.3.3. Let N =
∑∞

i=0Nit
i, U =

∑∞
i=0 Uit

i, A =
∑∞

i=0Ait
i be n× n matrices

over KJtK such that:

(a) |A|1 <∞;
(b) U0 = In and A0 is invertible;
(c) U−1NU + U−1t d

dt
(U) = N0;

(d) NA + t d
dt

(A) = qAφ(N).

Then U−1Aφ(U) = A0, and for every nonnegative integer i,

|Ui| ≤ (|A−1
0 ||A|1)⌈logq i⌉.

Proof. As noted in Remark 15.1.2, the commutation relation (d) implies that N0A0 =
qA0φ(N0), which forcesN0 to be nilpotent. Put B = U−1Aφ(U) =

∑∞
i=0Bit

i. Then B0 = A0,
and N0B + t d

dt
(B) = qBφ(N0). Hence

N0Bi + iBi = qBiφ(N0) = BiA
−1
0 N0A0,

or

(16.3.3.1) N0(BiA
−1
0 ) + i(BiA

−1
0 ) = (BiA

−1
0 )N0.

As in the proof of Proposition 16.1.1, the operator X 7→ N0X−XN0 + iX on n×n matrices
is invertible for i 6= 0, so (16.3.3.1) implies Bi = 0 for i > 0.

We conclude that indeed U−1Aσ(U) = A0, so we may conclude by applying Lemma 16.3.2
to reduce to the case i < q, then applying Theorem 16.2.4. �

Remark 16.3.4. By combining Theorem 16.2.4 with Theorem 16.2.1 (applying the latter
for i < q), we can obtain the bound

|Ui| ≤ |N |n−1
1 p(n−1)⌊logp i−(logp q)⌊logq i⌋⌋(|A−1

0 ||A|1)⌊logq i⌋.

Remark 16.3.5. In applications to Picard-Fuchs modules, the difference between the
bounds given by Theorem 16.2.4 and Theorem 16.3.3 can be quite significant. For instance,
given a Picard-Fuchs module arising from a family of curves of genus g, the bound of The-
orem 16.2.4 contains the factor p(2g−1)⌊logp i⌋, but the bound of Theorem 16.3.3 replaces the
factor of 2g − 1 by 1. In general, it should be possible to use Theorem 16.3.3 (and perhaps
also Theorem 16.3.6) to explain various instances in which a calculation of n terms of a
power series involves a precision loss of pO(log(n)), even though the accumulated factors of p
by which one divides throughout the calculation amount to pO(n). (A typical example of this
is [Ked01, Lemma 3].)

We record also a sharper form of Theorem 16.3.3 for use in the discussion of logarithmic
growth in the next section.

Theorem 16.3.6. Let v be a column vector of length n over KJtK, let A =
∑∞

i=0Ait
i be

an n× n matrix over KJtK, and let λ ∈ K be such that:

(a) |A|1 <∞;
(b) A0 is invertible;
(c) Aσ(v) = λv.
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Then

max{|vj| : 0 ≤ j ≤ i} ≤ |A|1|λ−1|max{|vj| : 0 ≤ j ≤ i/q}.
Consequently, for every nonnegative integer i,

|vi| ≤ |v0|(|A|1|λ−1|)⌈logq i⌉.

Proof. Rewrite (c) as v = λ−1Aσ(v) and proceed as in Lemma 16.3.2. �

4. Logarithmic growth

Definition 16.4.1. For δ ≥ 0, let KJtKδ be the subset of KJtK consisting of those
f =

∑∞
i=0 fit

i for which

|f |δ = sup
i

{ |fi|
(i+ 1)δ

}
<∞;

note that KJtKδ forms a Banach space under the norm | · |δ. (The notation for δ = 0 is
consistent with our earlier usage.) However, KJtKδ is not a ring for δ > 0; rather, we have

KJtKδ1 ·KJtKδ2 ⊂ KJtKδ1+δ2 .

Also, KJtKδ is stable under d
dt

, but antidifferentiation carries it into KJtKδ+1. Put

KJtKδ+ =
⋂

δ′>δ

KJtKδ′ .

We also consider a logarithmic version:

KJtK[log t]δ =

⌊δ⌋⊕

i=0

KJtKδ−i(log t)i.

For another useful characterization of KJtKδ, see the exercises.

Definition 16.4.2. For f ∈ KJtK[log t], we say that f has order of log-growth δ if
f ∈ KJtK[log t]δ but f /∈ KJtK[log t]δ′ for any δ′ < δ. We say f has order of log-growth δ+ if
f /∈ KJtK[log t]δ but f ∈ KJtK[log t]δ′ for any δ′ > δ. We have similar definitions for vectors
or matrices over KJtK[log t], and for elements of M ⊗KJtK[log t] if M is a finite free module
over KJtK0 (by computing in terms of a basis, the choice of which will not affect the answer).

We then deduce the following from Theorem 16.2.4.

Proposition 16.4.3. Let M be a differential module of rank n over KJtK0 for the operator
t d

dt
, which is nilpotent at the origin. Then M ⊗KJtKn−1[log t] is trivial.

Corollary 16.4.4. Let M be a differential module of rank n over KJtK0 for the operator
t d

dt
, which is nilpotent at the origin with index of nilpotency e. Then any element of H0(M⊗

KJtK[log t]) has order of log-growth at most n− 1 + e.

Remark 16.4.5. In Corollary 16.4.4, it should be possible to reduce n− 1 + e to n.

In the presence of a Frobenius structure, one obtains a much sharper bound.
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Theorem 16.4.6. Let M be a differential module of rank n over KJtK0 for the operator
t d

dt
, equipped with a Frobenius structure for a q-power Frobenius lift as in Remark 15.1.2.

Then any element v ∈ H0(M ⊗KJtK[log t]) satisfying Φ(v) = λv for some λ ∈ K has order
of log-growth at most (− log |λ| − s0)/(log q), where s0 is the least generic Newton slope of
M .

Proof. By replacing the Frobenius lift by some power, we can reduce to the case where
s0 is a multiple of − log p. We can then twist into the case s0 = 0. By Proposition 13.5.8,
we can choose a basis of M such that the least generic Hodge slope of M is also 0. Then the
claim follows immediately from Theorem 16.3.6. �

Remark 16.4.7. Refining a conjecture of Dwork, Chiarellotto and Tsuzuki [CT06] have
conjectured that if M is indecomposable, then Theorem 16.4.6 is optimal. That is, in the
notation of Theorem 16.4.6, v should have order of log-growth exactly (− log |λ|−s0)/(log q));
Chiarellotto and Tsuzuki have proven this for rank(M) ≤ 2 [CT06, Theorem 7.2]. It should
be possible to extend their proof to all cases where − log |λ| is less than or equal to s1 (the
least Newton slope of M greater than s0, not counting multiplicity), but it is less clear what
happens in general.

Remark 16.4.8. By contrast, if M does not carry a Frobenius structure, then the order
of log-growth of a horizontal section behaves much less predictably. For instance, it need
not be rational, and it can have the form δ+ instead of δ [CT06, §5.2].

5. Nonzero exponents

So far, we only have considered regular differential systems with all exponents equal to
zero. Concerning nonzero exponents, we limit ourselves to two remarks.

Remark 16.5.1. Suppose the eigenvalues of N0 are rational numbers with least common
denominator dividing m. One can then apply Theorem 16.2.1 after making the substitution
t 7→ tm, resulting in the bound

|Ui|βi ≤ p(n−1)⌊logp(im)⌋ ≤ p(n−1)⌊logp m⌋p(n−1)⌊logp i⌋.

Note that as i varies, the difference between the bound in this case and in the nilpotent case
is only a constant multiplicative factor.

Remark 16.5.2. Suppose that the eigenvalues of N0 all belong to Zp. (One might want
to consider this remark instead of Remark 16.5.1 even if the eigenvalues are rational, in case
one does not have an a priori bound on their denominators.) One can then prove an effective
bound by imitating the proof of Theorem 16.2.1, but using shearing transformations to force
the exponents to be multiples of p before forming the Frobenius antecedent. However, the
best known bound using this technique is worse than in Remark 16.5.1; it has the form
p(n2+cn)⌊logp i⌋ for some constant c. See [DGS94, Theorem V.9.1] for more details.

Notes

In the case of no singularities (N0 = 0), the effective bound of Theorem 16.2.4 is due
to Dwork and Robba [DR80], with a slightly stronger bound: one may replace p(n−1)⌊logp i⌋

with the maximum of |j1 · · · jn−1|−1 over j1, . . . , jn−1 ∈ Z with 1 ≤ j1 < · · · < jn−1 ≤ i. See
also [DGS94, Theorem IV.3.1].
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The general case of Theorem 16.2.1 is due to Christol and Dwork [CD91], except that
their bound is significantly weaker: it is roughly pc(n−1)⌊logp i⌋ with c = 2 + 1/(p − 1). The
discrepancy comes from the fact that the role of Proposition 5.2.11 is played in [CD91] by
an effective version of the cyclic vector theorem, which does not give optimal bounds. As
usual, use of cyclic vectors also introduces singularities which must then be removed, leading
to some technical difficulties. See also [DGS94, Theorem V.2.1]. (The poor estimate in the
case of exponents in Zp does not appear to be due to use of cyclic vectors.)

In the case of no singularities, Proposition 16.4.3 was first proved by Dwork; it appears
in [Dwo73a] and [Dwo73b]. (See also [Chr83].) The nilpotent case appears to be orig-
inal; as noted above, the effective bounds in [CD91] are not strong enough to imply this.
Theorems 16.3.3 and 16.3.6 are original, but they owe a great debt to the proof of [CT06,
Theorem 7.2]; the main difference is that we prefer to argue in terms of matrices rather than
cyclic vectors.

The theory of logarithmic growth in the p-adic setting (which may be viewed as loosely
analogous to its archimedean counterpart, as in [Del70]) emerged from some close analysis
made by Dwork [Dwo73a, Dwo73b] of the finer convergence behavior of solutions of certain
p-adic differential equations. The subject languished until the recent work of Chiarellotto and
Tsuzuki [CT06]; inspired by this, André [And07] proved a conjecture of Dwork [Dwo73b,
Conjecture 2] analogizing the specialization property of Newton polygons (Theorem 14.3.2)
to logarithmic growth.

Exercises

(1) Prove that for δ ≥ 0,

KJtKδ = {f ∈ KJtK : lim sup
ρ→1−

|f |ρ
(− log ρ)δ

<∞.}

(Hint: the inequality

sup
i
{(i+ 1)δρi} ≤ ρ−1

(
δ

e

)δ

(− log ρ)−δ

may be helpful.)
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CHAPTER 17

Quasiconstant differential modules

In this chapter, we construct a class of examples of differential modules on open annuli
which are solvable at a boundary, and relate these to Galois representations of local fields in
positive characteristc. We also assert (without proof) a numerical relationship between wild
ramification and convergence of solutions of p-adic differential equations.

Hypothesis 17.0.1. Throughout this chapter, assume that K is a complete discretely
valued nonarchimedean field of characteristic 0 and residual characteristic p.

Notation 17.0.2. For E/F a Galois extension of fields, write GE/F for Gal(E/F ). If
E = F sep, write GF instead, to mean the absolute Galois group.

1. Some key rings

Definition 17.1.1. Recall that we defined the ring E as the completion of oK((t))⊗oK
K

for the 1-Gauss norm ∣∣∣∣∣
∑

i∈Z

cit
i

∣∣∣∣∣
1

= sup
i
{|ci|}.

Besides the p-adic topology, it is natural to consider also the weak topology on E , in which
a sequence converges to 0 if it does so in the t-adic topology on E/mm

KoE for each m ∈ Z.
Note that E is complete for both topologies.

Remark 17.1.2. Because K carries a discrete valuation, the supremum defining the
Gauss norm of a nonzero element x =

∑
xit

i ∈ E is achieved by some i. If j is the least such
index, then the sum

x−1
j t−j

∞∑

l=0

(1 − x−1
j t−jx)l

converges in the weak topology (but not in the p-adic topology!) to an inverse of x. That
is, E is a discrete complete nonarchimedean field with residue field κK((t)).

We now try to analogize from E to E †, which is no longer complete.

Lemma 17.1.3. (a) The ring E † is a field.
(b) Under the norm | · |1, the valuation ring oE† is a local ring with maximal ideal mKoE†.
(c) The field E †, equipped with | · |1, is henselian (see Remark 1.5.9).

This last property implies that finite separable extensions of κE† = κK((t)) lift functorially
to finite étale extensions of oE† (and to unramified extensions of E †). In particular, the
maximal unramified extension E †,unr carries an action of GκK((t)).
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Proof. The proof of (a) uses the same construction as for E , except that the series
converges under | · |α for some α < 1. From this, (b) is straightforward. The proof of (c) is
to reduce to working in some K〈α/t, tK0 and use the fact that the latter ring is complete for
the Fréchet topology generated by | · |α and | · |1. �

2. Finite representations and differential modules

Definition 17.2.1. Let E †
L be the finite unramified extension of E † corresponding to L;

then GκK((t)) acts on E †
L with fixed field E †.

Remark 17.2.2. By the Cohen structure theorem, L can always be written as a power
series field λ((u)), and similarly for E †

L. But if L induces an inseparable residue field extension,
then you can’t ensure that κK can be contained in λ. I recommend not worrying about this
unless you really have to.

Definition 17.2.3. Let V be a finite dimensional vector space over K, and let τ :
GκK((t)) → GL(V ) be a continuous homomorphism for the discrete topology on GL(V ).
That is, τ factors through GL/κK((t))) for some finite separable extension L of κK((t)). Let

us view V ⊗K E†
L as a GκK((t))-module with the action on the first factor coming from τ and

the action on the second factor as above. Put

D†(V ) = (V ⊗K E†
L)GκK((t)).

Lemma 17.2.4. The space D†(V ) is an E †-vector space of dimension dimK(V ). Equiva-

lently, the natural map D†(V ) ⊗E† E†
L → V ⊗K E†

L is an isomorphism.

Proof. This is a consequence of the nonabelian version of Hilbert’s Theorem 90: for
any finite Galois extension E/F of fields, the nonabelian cohomology set H1(GE/F ,GLn(E))
is trivial. �

Definition 17.2.5. Note that d
dt

extends uniquely to E †
L, and hence to D†(V ) by taking

the action on V to be trivial. Since the action of d
dt

commutes with the Galois action,

we also obtain an action on D†(V ). That is, D†(V ) is a differential module over E †. By
the same token, D†(V ) admits a Frobenius structure for any Frobenius lift φ on E †. This
Frobenius structure is unit-root, because V admits a Galois-stable lattice L, and φ acts on
(V ⊗K E†

L)GκK ((t)).

Definition 17.2.6. Note that there is a sense in which it makes sense to compute the
subsidiary radii of D†(V ) ⊗ Fρ for ρ ∈ (0, 1) sufficiently close to 1. Namely, realize D†(V )
as a differential module over K〈α/t, tK0 for some α and compute there. Beware that any
two such realizations for a given α need only become isomorphic over K〈β/t, tK0 for some
β ∈ [α, 1). However, statements about the germ at 1 of the function ρ 7→ R(D†(V ) ⊗ Fρ)
are unambiguous.

Proposition 17.2.7. The generic radius of convergence of D†(V ) ⊗ E is equal to 1.
Consequently (by continuity of generic radius of convergence), D†(V ) is solvable at 1.

Proof. This follows from the existence of a Frobenius structure on D†(V ). �
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Remark 17.2.8. Note that the kernel of d on E †
L is the integral closure K ′ of K in

E†
L (exercise). Consequently, the space of horizontal sections of D†(V ) ⊗E† E†

L is equal to
V ⊗K K ′. This suggests that we cannot recover all of V from D†(V ), at least if we only use
the differential structure; instead, we only recover the restriction of V to the inertia subgroup
of GκK((t)), which we can identify with Gκsep

K ((t)).

The previous remark suggests the following construction.

Definition 17.2.9. Let τ : GκK((t)) → GL(V ) be a homomorphism which is now con-
tinuous for the p-adic topology on V , rather than the discrete topology. One can form a
differential module over E by taking

D(V ) = (V ⊗K Êunr)GκK ((t))

but this in general does not descend to E †. Suppose, however, that the image of GκK((t)),1
∼=

Gκsep
K ((t)) (the inertia subgroup) is finite; that is, τ has finite local monodromy. Let E †

κsep
K ((t))

be the ring defined in the same fashion as E † but using K̂unr on the coefficients; let GκK((t))

act on this ring via the quotient by its inertia subgroup. We can then define

D†(V ) = (V ⊗K (E†
κsep

K ((t))
)unr)GκK ((t))

and this will be a differential module over E † of the right dimension, again carrying a unit-root
Frobenius structure.

Example 17.2.10 (Dwork). Assume that K contains an element π with πp−1 = −p; then
K contains a unique p-th root of unity ζp satisfying 1− ζp ≡ π (mod π2) (exercise). Let L =

κK((t))[z]/(zp−z−f) be an Artin-Schreier extension, and let V be the Galois representation
corresponding to the character of GL/κK((t)) taking the automorphism z 7→ z + 1 to ζp. We

can then explicitly describe D†(V ) as follows: if we pick any lift f ∈ oE† of f , then there is
a generator v of D†(V ) with

D(v) = π
df

dt
.

Moreover, for any Frobenius lift φ, the Frobenius action on v is given by

Φ(v) = exp(πf − πφ(f))v.

3. Ramification and differential slopes

There is a close relationship between R(D†(V ) ⊗ Fρ) and wild ramification of the repre-
sentation V . To explain this, we must recall a bit of classical ramification theory for local
fields, from [Ser79, Chapter IV].

Definition 17.3.1. Let F be a complete discrete nonarchimedean field whose residue
field κF is perfect. (For more on what happens when the perfectness hypothesis is lifted, see
the notes.) Let E be a finite Galois extension of F . The lower numbering filtration of GE/F

is defined as follows: for i ≥ −1 an integer.

GE/F,i = ker(GE/F → Aut(oE/m
i+1
E )).

In particular, GE/F,−1 = GE/F , and GE/F,0 is the Galois group of E over its maximal un-
ramified subextension (the inertia group). For i ≥ −1 real, we define GE/F,i = GE/F,⌈i⌉.
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The lower numbering filtration behaves nicely with respect to subgroups of GE/F but not
quotients; it thus cannot be defined on the absolute Galois group GF .

Lemma 17.3.2. The quotient GE/F,0/GE/F,1 is cyclic of order prime to p. For i > 0, the
quotient GE/F,i/GE/F,i+1 is an elementary abelian p-group.

Corollary 17.3.3. The fixed field of GE/F,1 is the maximal tamely ramified subextension
of E over F , and GE/F,1 is a p-group.

The upper numbering filtration of GE/F is defined by the relation G
φE/F (i)

E/F = GE/F,i, where

φE/F (i) =

∫ i

0

[GE/F,0 : GE/F,t]
−1 dt.

Note that the indices where the filtration jumps are now rational numbers, but not necessarily
integers. In any case, Proposition 17.3.4 below implies that there is a unique filtration Gi

F on
GF which induces the upper numbering filtration on each GE/F (that is, Gi

E/F is the image

of Gi
F under the surjection GF → GE/F ).

Proposition 17.3.4 (Herbrand). Let E ′ be a Galois subextension of E/F , and put H =
Gal(E/E′), so that H is normal in GE/F and GE/F/H = GE′/F . Then Gi

E′/F = (Gi
E/FH)/H;

that is, the upper numbering filtration is compatible with forming quotients of GE/F .

In the equal characteristic case, we can relate the ramification filtration to generic radius
of convergence for suitable differential modules, as follows. We will not give a proof here; see
the notes for attribution and references. (Also see the notes for discussion of what happens
for imperfect residue field case, and in mixed characteristic.)

Theorem 17.3.5. Assume that κK is perfect. Let V be a finite dimensional vector space
over K, and let τ : GκK((t)) → GL(V ) be a continuous homomorphism for the p-adic topology
on GL(V ), with finite local monodromy. Then for ρ ∈ (0, 1) sufficiently close to 1,

R(D†(V ) ⊗ Fρ) = ρb, b = max{i ≥ 1 : Gi
κK((t)) 6⊆ ker(τ)}.

Corollary 17.3.6. Let V1, . . . , Vm be the constituents of V , and let τj : GκK((t)) →
GL(Vj) be the corresponding homomorphisms. For ρ ∈ (0, 1) sufficiently close to 1, the
multiset of subsidiary radii of D†(V ) ⊗ Fρ consists of max{i ≥ 1 : GκK((t)),i 6⊆ ker(τj)} with
multiplicity dim(Vj), for j = 1, . . . , m.

Remark 17.3.7. One interpretation of Theorem 17.3.5 is that the decomposition of V by
ramification numbers matches up with the Christol-Mebkhout decomposition of D†(V )⊗R
provided by Theorem 11.5.4. While the latter was inspired by analogues for meromorphic
connections in the complex analytic setting, the analogy with wild ramification was antici-
pated somewhat before it was incarnated by Theorem 17.3.5.

Remark 17.3.8. Using the integrality properties of subsidiary radii, we may deduce that
for ρ ∈ (0, 1) sufficiently close to 1, the the product of the subsidiary radii is an integral
power of ρ; this amounts to verifying the Hasse-Arf theorem for V (integrality of the Artin
conductor).
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4. Unit-root Frobenius structures

Definition 17.4.1. If M is a differential module over E †, we say M is quasiconstant if
M ⊗ E†

L admits a basis of horizontal sections for some L.

The goal of this section is to prove the following theorem of Tsuzuki [Tsu98a]; see notes
for further discussion.

Theorem 17.4.2 (Tsuzuki). Let M be a finite differential module over E † admitting a
unit-root Frobenius structure for some absolute scalar-preserving Frobenius lift. Then M is
quasiconstant.

Note that we must assume that the Frobenius lift is absolute; this is needed in some
parts of the argument but not others, as we will attempt to illustrate.

In the course of proving Theorem 17.4.2, we will need to change Frobenius lifts; this is
facilitated by the following observation.

Lemma 17.4.3. Let M be a finite differential module over E † equipped with a unit-root
Frobenius structure for some scalar-preserving Frobenius lift. Then for any c > 0, there
exists a basis of M on which D acts via a matrix N with |N |1 < c.

Proof. If N is the matrix of action of D on the basis e1, . . . , en, then the matrix of
action of D on the basis φ(e1), . . . , φ(en) is (dφ(t)/dt)φ(N). Since |dφ(t)/dt|1 < 1, iterating
this construction eventually gives a basis of the desired form. �

Definition 17.4.4. Let M be a finite differential module over E † admitting a unit-root
Frobenius structure for some Frobenius lift. For c ∈ [0, 1), we say that a basis e1, . . . , en of
M is c-constant if Φ acts on this basis via a matrix A =

∑
iAit

i satisfying |A|1 = |A−1| = 1
and |A−A0|1 ≤ c.

Lemma 17.4.5. Let M be a finite differential module over E † admitting a unit-root Frobe-
nius structure for some Frobenius lift φ1. Suppose that e1, . . . , en is a c-constant basis. Then
the Frobenius structure corresponding to any other Frobenius lift φ2 is also unit-root, and
e1, . . . , en is again a c-constant basis.

Proof. This follows from the proof of Proposition 15.3.1, after first applying Lemma 17.4.3
to make the matrix of action of D sufficiently small. �

Remark 17.4.6. During the proof of Theorem 17.4.2, we will need to apply Remark 4.1.4
in the case where K ′ is a copy of K viewed as a K-algebra via a power of φ, then making finite
separable extensions of κK ′((t)) and deducing the conclusion of Theorem 17.4.2. In order to
recover the desired conclusion over K, one must note that any finite separable extension of
κK ′((t)) is induced by a finite separable extension of κK((t)): simply write down a defining
polynomial over κK ′((t)), then apply φ until the coefficients of this polynomial end up in
κK((t)).

Remark 17.4.7. As a followup to the previous remark, note that if κK is not perfect,
then not every finite separable extension of κK((t)) can be written as a field of formal Laurent
series; for instance, if c ∈ κK − κp

K , then

κK((t))[z]/(zp − z − ct−p)
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cannot be so written. However, if we are allowed to replace K by some K ′ as in Re-
mark 17.4.6, then this always becomes possible. To check this, it suffices to check for a
totally wildly ramified extension: any finite separable extension of κK((t)) can be written as
an unramified extension followed by a tamely ramified extension followed by a totally wildly
ramified extension, and there is no problem with either of the first two types. Moreover, any
totally wildly ramified extension is a tower of Artin-Schreier extensions (by Corollary 17.3.3
and some elementary group theory), so it suffices to check for an extension L of the form
κK((t))[z]/(zp −z−x) for some x =

∑
i xit

i ∈ κK((t)). The terms xi for i > 0 do not change
the extension, so we may assume they all vanish. Moreover, we can replace x by x+ yp − y
for some y so that the nonzero i for which xi 6= 0 all have the same p-adic valuation h. (If
there are no such i, then L is unramified and we are done.) Then for suitable K ′, the com-
positum of L and κK ′((t)) is generated over κK ′((t)) is generated by a root of the polynomial
zp − z − φ−h(x), in which φ−h(x) has t-adic valuation not divisible by p. Such an extension
can be written as a power series field.

Our next goal is to show that if M admits a c-constant basis for c sufficiently small, then
M is constant. For this, it will be convenient to eliminate positive powers of t.

Lemma 17.4.8. Let M be a finite differential module over E † admitting a unit-root Frobe-
nius structure for some scalar-preserving Frobenius lift φ for which φ(t) = tq. Suppose that
M admits a c-constant basis for some c < 1. Then there exists a c-constant basis e1, . . . , en

of M on which Φ, tD act via matrices A,N with entries in E † ∩KJt−1K.

Proof. We first put A in the desired form; this can be done using Theorem 2.2.2, or
explicitly as follows. Start with any basis, write the action of Φ as A =

∑
iAit

i, then replace
A by U−1Aφ(U) for

U = I −
∑

i>0

Ait
i.

If we repeat this process, the resulting sequence of basis changes converges in the weak
topology and puts A in the desired form.

To see that N is also in the desired form, consider the commutation relation

N = −t d
dt

(A)A−1 + qAφ(N)A−1.

This implies that the coefficient of ti in N vanishes for i positive and not divisible by q, then
for i positive and not divisible by q2, and so on. Hence N also has entries in E †∩oKJt−1K. �

We next treat an important special case of Theorem 17.4.2 which forms the heart of the
proof.

Lemma 17.4.9. Let M be a finite differential module over E † admitting a unit-root Frobe-
nius structure for a scalar-preserving Frobenius lift. Suppose that M admits a c-constant
basis for some c < p−1/(p−1). Then M is constant.

Proof. By Lemma 17.4.5, we may assume that φ(t) = tq. By forming a restriction of
scalars, we may assume that in fact q = p. By Remark 17.4.6, at any time we may replace
K by a copy K ′ of K viewed as a K-algebra via a power of φ.

By Lemma 17.4.8, we may assume that there is a c-constant basis on which Φ, tD act
via matrices A,N over E † ∩ oKJt−1K. Then A and N together represent a finite differential
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module over ∪α∈(0,1)K〈α/t〉 equipped with a unit-root Frobenius structure. Moreover, the

commutation relation NA + t d
dt

(A) = qAφ(N) and the fact that |A0| = |A−1
0 | = |A|1 =

|A−1|1 = 1 force N0 = 0 and |N |1 ≤ c; consequently, there exists α ∈ (0, 1) for which
|N |α ≤ 1.

We now proceed as in the proof of Lemma 16.2.3. As in that proof, we construct a matrix
V with entries in E †∩KJt−1K with |V −In|1 ≤ c and |V −In|α ≤ 1, for which A′ = V −1Aφ(V )
and N ′ = V −1NV + V −1t d

dt
(V ) have entries in E † ∩KJt−pK. After replacing K by some K ′

as above, we may take inverse images to obtain A′′ = φ−1(A′), N ′′ = p−1φ−1(N ′). Since A′′

and N ′′ again satisfy a commutation relation, we have |N ′′|1 ≤ c; that plus the estimate
|N ′|α ≤ 1 yields |N ′′|β ≤ 1 for

log β =
logα

p

(
log p

log c
+ 1

)
.

Since c < p−1/(p−1), we have (log p)/(log c) + 1 > −p, so β < α1+ǫ for some fixed ǫ > 0.
As a result, we can make α arbitrarily small; in particular, we can force α < p−1/(p−1).

Now let M ′ be the differential module on the disc of radius α−1 in the coordinate t−1 with
action of t−1 d

t−1 = −t d
dt

given by −N . The fact that |N |α ≤ 1 implies that the spectral

norm of d
dt−1 on M ′ is at most α. Hence the generic radius of convergence at radius α−1 is at

least p−1/(p−1)α−1 > 1, so Theorem 8.5.1 proves that the local horizontal sections at infinity
converge on a disc of radius at least 1. We may then restrict these to a basis of horizontal
sections of M . �

Lemma 17.4.10. Let V be a finite dualizable difference module over κK((t)). Then there
exists a positive integer m coprime to p such that V ⊗κK((t1/m)) can be written as a successive
quotient of difference modules defined over κK.

Proof. We may assume V is irreducible. Pick v ∈ V nonzero, and write Φn(v) =∑n−1
i=0 ciΦ

i(v). By rescaling v by a suitable power of t1/(q−1), we can ensure that the minimum
t-adic valuation of the ci is 0. By Theorem 2.2.2, if c0 has positive valuation, then the
twisted polynomial T n−

∑n−1
i=0 ciT

i factors nontrivially in κK((t1/(q−1))){T}, so V has become
reducible, and we may reduce to cases of lower dimension. Otherwise, we have a basis of V
on which Φ acts via an invertible matrix over κKJt1/(q−1)K, in which case it is an exercise (as
in Lemma 17.4.8) to change basis so that Φ acts via an invertible matrix over κK . �

Lemma 17.4.11. Let M be a finite differential module over E † admitting a unit-root
Frobenius structure for some scalar-preserving Frobenius lift. Then for some positive integer
m coprime to p and some finite extension K ′ of K with the same residue field (admitting an
extension of φ), M ⊗ E†[t1/m] admits a c-constant basis for some c ∈ (0, 1).

Proof. Pick any basis ofM on which Φ acts via a matrix over oE† , then apply Lemma 17.4.10.
We get a new basis on which Φ acts a matrix over oE† whose reduction modulo mK is block
upper triangular. To fix this, we need to conjugate by a block diagonal matrix whose entries
have norms sufficiently close to 1; we can accomplish this after adjoining p1/h for some h
coprime to both p and the absolute ramification index of K. �

Remark 17.4.12. In the case of an absolute Frobenius lift, which is all that is covered
by Theorem 17.4.2, the proof given above is a bit of overkill; instead, one may simply invoke
Proposition 13.3.4.
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Here is the most crucial use of the absoluteness of the Frobenius lift.

Lemma 17.4.13. Let M be a finite differential module over E † admitting a unit-root
Frobenius structure for some absolute scalar-preserving Frobenius lift, and a c-constant basis
for some c ∈ (0, 1). For m a positive integer, let Km be a copy of K viewed as a K-algebra
via φm. Then for some m, there exists a finite separable extension L of κKm((t)) with the
following properties.

(a) The residue field κL is equal to the integral closure of κKm in L.

(b) There exists a uniformizer u ∈ κL so that φh(u) = uqh
for some positive integer h.

(c) There exists a c′-constant basis of M ⊗ E†
L for some c′ ∈ (0, c).

Proof. Let e1, . . . , en be a c-constant basis, and suppose Φ, tD act on this basis via the
matrices A,N . We may assume |A − A0|1 = c; choose λ ∈ K with |λ| = c. We may also
assume that each index i for which |Ai| = c is negative and not divisible by p (for this we
may need to pass from K to Km).

It suffices to exhibit an n× n matrix U over L, for suitable L, such that

UA− (φ(λ)/λ)Aφ(U) ≡ λ−1(A− A0) (mod mK).

This amounts to adjoining the roots of some separable polynomials to κK((t)); we can enforce
(a) and (b) as in Remark 17.4.7. �

Proof of Theorem 17.4.2. By Lemma 17.4.9, it suffices to exhibit a c-constant basis
of M ⊗ E†

L for some finite separable extension L of κK((t)) and some c < p−1/(p−1). By
Lemma 17.4.11, we can produce such for some c ∈ (0, 1) (after replacing K by a finite
extension, but this is harmless by Remark 4.1.4); by Lemma 17.4.13, we can reduce c by a
discrete multiplicative factor. Thus we eventually obtain the desired basis and complete the
proof. �

Notes

A more detailed survey of most of the material in this chapter is the article [Ked05a].
Ramification theory for a complete discrete nonarchimedean field with imperfect residue

field is substantially more complicated than in the case of a perfect residue field. On the other
hand, it is of interest in the study of finite covers of schemes of dimension greater than 1. A
satisfactory theory for abelian extensions was introduced by Kato [Kat89]. A generalization
to nonabelian extensions was later introduced by Abbes and Saito [AS02, AS03].

Theorem 17.3.5 was originally stated in its present form by Matsuda [Mat02, Corol-
lary 8.8]; a reformulation in the formalism of Tannakian categories was given by André
[And02, Complement 7.1.2]. However, thanks to the p-adic global index theorem of Chris-
tol and Mebkhout [CM00, Theorem 8.4–1], [CM01, Corollaire 5.0–12], this could have
already been deduced from a Grothendieck-Ogg-Shafarevich formula for unit-root overcon-
vergent F -isocrystals in rigid cohomology; such a formula was proved by Tsuzuki [Tsu98b,
Theorem 7.2.2] (by Brauer induction, as is possible in the ℓ-adic case) and Crew [Cre00,
Theorem 5.4] (using the Katz-Gabber theory of canonical extensions, as also is possible in
the ℓ-adic case). For a proof by direct computations and Brauer inductions (not using the
Christol-Mebkhout theory), see [Ked05a, Theorem 5.23].
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In the case of an imperfect residue field, it was originally suggested by Matsuda [Mat04]
to formulate an analogue of Theorem 17.3.5 relating the Abbes-Saito conductor to a suit-
able differential analogue. That differential analogue was described by Kedlaya [Ked07a];
the comparison with the Abbes-Saito conductor has been established by Chiarellotto and
Pulita [CP07] for one-dimensional representations, and by Xiao [Xia07] in the general case.
This has the side effect of establishing integrality of the Abbes-Saito conductor in equal
characteristic, which is not evident from the original construction.

In mixed characteristic, the appropriate analogue of the functor V 7→ D(V ) is provided by
the theory of (φ,Γ)-modules; see Chapter 21. It is distinctly less clear what sort of analogue
of Theorem 17.3.5 should exist in mixed characteristic. Even in the case of a perfect residue
field, where one is asking for a differential interpretation of the usual conductor, only a
partial answer is known, by a result of Marmora [Mar04].

Theorem 17.4.2 is due to Tsuzuki [Tsu98a, Theorem 5.1.1] in case κK is algebraically
closed; instead of proceeding as we have, one may instead deduce the general case from that
special case. An alternate exposition was given by Christol [Chr01], but Christol assumes
his Frobenius is always in the standard for t 7→ tp, and neglects to point out that this is
not stable under making extensions of κK((t)) (which we remedy by performing a change of
Frobenius). Yet another exposition may be inferred from [Ked07b, Theorem 4.5.2], where
a stronger result is proved (for purposes that we will not discuss here). We will discuss the
analogue of Theorem 17.4.2 for a nonabsolute scalar-preserving Frobenius lift in the next
chapter.

Exercises

(1) Prove that for any finite separable extension L of κK((t)), the kernel of d on E †
L is

the integral closure of K in E †
L.

(2) Suppose that K contains an element π with πp−1 = −p. Prove that K contains
a unique p-th root of unity ζp satisfying 1 − ζp ≡ π (mod π2). (Hint: reduce to
Hensel’s lemma.)

(3) Let φ be an endomorphism of κK((t)) of the form φ(
∑

i cit
i) =

∑
i φK(ci)t

qi, where
φK is an endomorphism of κK and q > 1. Prove that for any invertible matrix
A =

∑∞
i=0Ait

i over κKJtK, there is a unique matrix U =
∑∞

i=0 Uit
i over κKJtK with

U0 = In such that U−1Aφ(U) = A0.
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CHAPTER 18

The p-adic local monodromy theorem

In this chapter, we assert the p-adic local monodromy theorem, and sketch its proof. The
sketchiness arises because one must invoke one or the other of two facts too difficult to be
proved in this book: the p-adic index theorem of Christol-Mebkhout, or a slope filtration
theorem of Kedlaya for Frobenius modules over the Robba ring.

1. Statement of the theorem

Remark 18.1.1. Recall that we have defined the Robba ring to be

R = ∪α∈(0,1)K〈α/t, t}};
that is, R consists of formal sums

∑
cit

i which converge in some range α ≤ |t| < 1, but
need not have bounded coefficients. Unlike its subring E †, R is not a field; for instance, the
element

log(1 + t) =

∞∑

i=1

(−1)i−1

i
ti

is not invertible (because its Newton polygon has infinitely many slopes). More generally,
we have the following easy fact.

Lemma 18.1.2. We have R× = (E†)×.

Definition 18.1.3. Because R consists of series with possibly unbounded coefficients, it
does not carry a natural p-adic topology. The most useful topology on R is the LF topology,
which is the direct limit of the Fréchet topology on each K〈α/t, t}} defined by the | · |ρ for
ρ ∈ [α, 1).

In fact, the ring R is not even noetherian (this is related to an earlier exercise), but the
following useful facts are true; see notes.

Proposition 18.1.4. For an ideal I of R, the following are equivalent.

(a) The ideal I is closed in the LF topology.
(b) The ideal I is finitely generated.
(c) The ideal I is principal.

Proposition 18.1.5. Any finite free module on the half-open annulus with closed inner
radius α and open outer radius 1 is represented by a finite free module over K〈α/t, t}}, and
so corresponds to a finite free module over R. (The first part generalizes to half-open and
open annuli with arbitrary boundary radii.)

Definition 18.1.6. For L a finite separable extension of κK((t)), put

RL = R⊗E† E†
L.
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We say a finite differential module M over R is quasiconstant if there exists L such that
M⊗RL is trivial. We say M is quasiunipotent if it is a successive extension of quasiconstant
modules; it is equivalent to ask that M ⊗ E †

L be unipotent (i.e., an extension of trivial
differential modules) for some L (exercise).

Quasiunipotent differential modules have many useful properties. For instance, by Propo-
sition 17.2.7, they are all solvable at 1. Another important property is the following.

Proposition 18.1.7. Let M be a quasiunipotent differential module over R. Then the
spaces H0(M), H1(M) are finite dimensional, and there is a perfect pairing

H0(M) ×H1(M∨) → H1(M ⊗M∨) → H1(R) ∼= K
dt

t
.

Proof. This can be reduced to the unipotent case, for which it is an exercise. �

The following important theorem asserts that many naturally occurring differential mod-
ules, including Picard-Fuchs modules, are quasiunipotent. In the case of an absolute Frobe-
nius lift, it is due independently to André [And02], Kedlaya [Ked04a], and Mebkhout
[Meb02]. See the notes for further discussion.

Theorem 18.1.8 (p-adic local monodromy theorem). Let M be a finite differential mod-
ule over R admitting a Frobenius structure for some scalar-preserving Frobenius lift. Then
M is quasiunipotent.

Remark 18.1.9. One can show that if the conclusion of Theorem 18.1.8 holds for a
given M after replacing K by a finite extension K ′, then it holds without that replacement.
Namely, let L be a finite separable extension of κK((t)). Let λ be the maximal separable
subextension of κL/κK . Let K1 be the unramified extension of K with κK1 = λ. Suppose
that M is nonzero and that K ′ is a finite extension of K1 such that M ⊗R RL ⊗K1 K is
quasiunipotent. (Note that our hypotheses so far ensure that RL ⊗K1 K is again a Robba
ring.) By Remark 4.1.4,

H0(M ⊗R RL) ⊗K1 K
′ = H0(M ⊗R RL ⊗K1 K

′);

since the latter is nonzero, H0(M ⊗R RL) 6= 0. Hence M ⊗R RL contains a nontrivial
constant submodule; by repeating the argument, we deduce that M⊗RRL is unipotent, and
so M is quasiunipotent.

With a slightly more involved argument, replacing Remark 4.1.4 by a suitable use of
linear compactness, one can make the same argument for any complete extension K ′ of K.
See the proof of [Ked04a, Proposition 6.11] for a brutally elementary description of the
technique.

Remark 18.1.10. Using Remark 18.1.9, we may safely make finite separable extensions
L of κK((t)) without worrying about whether RL will still be a Robba ring; namely, we may
apply the technique of Remark 17.4.7 to fix this by making a suitable extension of K.

2. An example

It may be worth seeing what Theorem 18.1.8 says in an explicit example. This example
was originally considered by Dwork [Dwo74]; the analysis given here is due to Tsuzuki
[Tsu98c, Example 6.2.6], and was cited in the introduction of [Ked04a].
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Example 18.2.1. Let p be an odd prime, put K = Qp(π) with πp−1 = −p. Let M be
the differential module of rank 2 over R with the action of D on a basis e1, e2 given by

N =

(
0 t−1

π2t−2 0

)
.

Then M admits a Frobenius structure; this was shown by explicit calculation in [Dwo74],
but can also be derived by consideration of a suitable Picard-Fuchs module. Define the
tamely ramified extension L of κK((t)) by adjoining u such that 4u2 = t, and put

u± = 1 +

∞∑

n=1

(±1)n (2n)!2

(32π)nn!3
un ∈ K{{u}}.

Define the matrix

U =

(
u+ u−

u d
du

(u+) + (1
2
− πu−1)u+ u d

du
(u−) + (1

2
+ πu−1)u−

)

and use it to change basis; then the action of d
du

on the new basis e+, e− of M ⊗RL is via
the matrix (

−1
2

y−1 + πy−2 0
0 −1

2
y−1 − πy−2.

)
.

That is, M ⊗ RL splits into two differential submodules of rank 1. To render these quasi-
constant, we must adjoin to L to L a square root of y (to eliminate the terms −1

2
y−1) and a

root of the polynomial zp−z = y−1 (which by Example 17.2.10 eliminates the terms ±πy−2).
By further analysis (carried out in [Tsu98c, Example 6.2.6]), one determines that in this

example, the generic Newton slopes are 0 and log p, while the special Newton slopes are both
1
2
log p.

3. The monodromy theorem in rank 1

In Theorem 18.1.8, the case rank(M) = 1 occupies a special role. On one hand, it
is somewhat more approachable than the general case. On the other hand, depending on
the approach one takes to proving Theorem 18.1.8 in full, one is either obliged or strongly
recommended to understand the rank 1 case first.

One approach to the rank 1 case, using only properties of differential modules and some
explicit calculations, has been described by Mebkhout [Meb02, Théorème 2.0–1]; we give
only a sketch here.

Lemma 18.3.1 (Mebkhout). Let M be a differential module of rank 1 over R which is
solvable at 1. Then M can be written as the tensor product of a quasiconstant module and a
module on which tD acts via a scalar in K.

Sketch of proof. By Lemma 11.5.2, there exists a nonnegative integer b such that
IR(M ⊗ Fρ) = ρb for ρ ∈ (0, 1) sufficiently close to 1. We proceed by induction on b; it
suffices to find a quasiunipotent module M ′ of rank 1 for which IR(M ⊗M ′ ⊗ Fρ) > ρb for
ρ ∈ (0, 1) sufficiently close to 1. These can be produced by considering D(V ) for characters
V of GκK((t)); see [Meb02, Théorème 2.0–1] for the full calculation. �
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Remark 18.3.2. Using Lemma 18.3.1, in order to prove Theorem 18.1.8 in rank 1, it
suffices to prove that any rank 1 module on which tD acts via a scalar in K is quasiconstant.
If λ is this scalar, then the presence of a q-power Frobenius action forces qλ = λ, so λ ∈ Zp∩Q
and adjoining a (q − 1)-st root of t suffices to render the module constant.

A second approach, which uses the Frobenius action more directly, can be inferred from
some results of Crew [Cre87].

Lemma 18.3.3. Let M be a differential module of rank 1 over R equipped with a Frobenius
structure. Then for any generator v of M , we have Φ(v) = av and tD(v) = nv for some
a, n ∈ E†.

Proof. Since a must be a unit in R, it is forced to be in E †. To check n ∈ E†, we may
switch to a Frobenius lift φ with φ(t) = tq. The compatibility between the Frobenius and
differential structures in this case amounts to the equality na + tda

dt
= qaφ(n), or

(18.3.3.1) n− qφ(n) =
t

a

da

dt
.

The right side belongs to E †, so we can choose c > 0 for which | t
a

da
dt
|1 < c. Write n =∑

i∈Z nit
i; we claim that |ni| ≤ c for all i > 0. We establish this by induction on i. Compare

the coefficients of ti on both sides of (18.3.3.1): if i is not divisible by q this yields |ni| ≤ c
directly, otherwise it yields |ni − qφ(ni/q)| ≤ c. Since we have by the induction hypothesis
|qφ(ni/q)| < |φ(ni/q)| = |ni/q| ≤ c, in either case we deduce |ni| ≤ c.

Since |ni| is automatically bounded for i ≤ 0, we deduce that |ni| is bounded over all i,
whence n ∈ E†. �

Lemma 18.3.4 (Crew). Let M be a differential module of rank 1 over E †. Then there
exists a positive integer m such that M⊗m admits a generator on which tD acts via a scalar
in K.

Proof. Let v be a generator of M , and define n ∈ E † by tD(v) = nv; then for any
m, v⊗m is a generator of M⊗m and (tD)(v⊗m) = mnv. Write n =

∑
i∈Z nit

i and put

v =
∑

i6=0(ni/i)t
i ∈ E†, so that tdv

dt
= n− n0.

If we take m to be a sufficiently large power of p, we will then have |mv|ρ < p−1/(p−1)

for ρ in some range of the form [α, 1]. For such m, we can form u = exp(−mv) ∈ E †, and
m(n−n0)u+tdu

dt
= 0. Consequently, the generator w = uv⊗m of M satisfies D(w) = n0w. �

Corollary 18.3.5. Let M be a differential module of rank 1 over R admitting a Frobe-
nius structure. Then there exists a positive integer m such that M⊗m is constant.

Proof. By Lemma 18.3.3, M is the base extension of a differential module over E †. By
Lemma 18.3.4, there exists a positive integer m0 such that M⊗m0 admits a generator on
which tD acts via a scalar in K. As in Remark 18.3.2, this implies that M⊗m is constant
for m = m0(q − 1). �

One now easily reduces the rank 1 case of Theorem 18.1.8 to the following lemma.

Lemma 18.3.6. Let M be a differential module of rank 1 over R admitting a Frobenius
structure, such that M⊗p is constant. Then M is quasiconstant.
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Proof. We may assume φ(t) = tq and ζp ∈ K (the latter thanks to Remark 18.1.9). Let
v be a generator of M . As in Lemma 18.3.3, we have Φ(v) = av and tD(v) = nv for some
a, n ∈ E† satisfying (18.3.3.1). Note that we may twist M by rescaling the Φ-action by a
factor in K× without changing n. We may thus ensure |a|1 = 1, and then (18.3.3.1) forces
|n|1 ≤ 1 (since |n− qφ(n)|1 = |n|1 once we know n ∈ E†).

The fact that M⊗p is constant means that there exists u ∈ E† such that

pn =
t

u

du

dt
,

ap

λ
=
φ(u)

u
for some λ ∈ K. After replacing K by a finite extension, we may reduce to the case λ = 1.

We now make a series of changes of the choice of the generator v. Let u, a denote the
image of u, a in κK((t)). Then u = φ(u)/ap implies that the t-adic valuations vu, va of u, a
satisfy vu = pvu − pva, or (p− 1)vu = pva. Consequently, va is divisible by p− 1, so we may
change generators to force va = vu = 0. We may then force the reduction of a modulo t to
be equal to 1 (by twisting M), then change generators to force a = u = 1.

Write a =
∑

i ait
i and u =

∑
i uit

i. After replacing K by a finite extension, we may
change generators to force u0 = 1. Put c = |u− 1|1, so that |φ(u)/u− 1|1 = c also. Suppose
c > p−p/(p−1); then |ap−1|1 = c, so |a−1|1 = c1/p and |ap−1−(a−1)p| ≤ p|a−1|1 = pc1/p < c.
In other words, modulo quantities of norm less than c, (a− 1)p is congruent to φ(u)/u− 1,
which in turm is congruent to

∑
i φ(ui)t

qi −∑i uit
i.

We deduce that modulo quantities of norm less than c, ui vanishes if i is not divisible by
p, and otherwise it is congruent to a p-th power. In other words, u is congruent to a p-th
power, with which we can change generators to force |u− 1|1 < c.

We may repeat this process until |u − 1|1 ≤ p−p/(p−1). If |u − 1|1 < p−p/(p−1), then u
has a p-th root and so M is already constant. Otherwise, let π satisfy πp−1 = −p; then one
checks (using Example 17.2.10) that M ⊗RL is constant for L equal to the Artin-Schreier
extension

κK((t))[z]/


zp − z −

∑

i6≡0 (p)

ni/iπ


 .

�

Remark 18.3.7. In the case of an absolute Frobenius lift, a third approach is to simply
observe (using Lemma 18.3.3) that the rank 1 case of Theorem 18.1.8 is a special case of
Tsuzuki’s theorem (Theorem 17.4.2.

4. The differential approach

With the rank 1 case of Theorem 18.1.8 under control, it is time to consider the general
case. There are two general strategies available to prove this. The first of these, which we
consider in this section, is that used by André [And02] and Mebkhout [Meb02]; it is to
array as many results as possible about differential modules over R which are solvable at 1,
and make minimal use of the Frobenius structure. One advantage of this approach is that it
requires essentially no change for the case where the Frobenius lift is not absolute.

We will not be able to give a complete proof of Theorem 18.1.8 using this approach; the
reason is that the one result we need which involves Frobenius (outside of the rank 1 case,
as addressed in the previous section) is beyond the scope of this course.
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Theorem 18.4.1 (Christol-Mebkhout). Let M be a finite differential module over R
admitting a Frobenius structure for some scalar-preserving Frobenius lift. Suppose that
IR(M ⊗ Fρ) = 1 for ρ ∈ (0, 1) sufficiently close to 1 (that is, M satisfies the Robba condi-
tion near 1). Then there exists a positive integer m coprime to p such that M ⊗R[t1/m] is
unipotent.

Proof. This follows from the p-adic Fuchs theorem for annuli, which was stated but not
proved earlier (Theorem 12.6.1). �

Using this result as a black box, one may prove Theorem 18.1.8 as follows.

Lemma 18.4.2. Let V be an indecomposable differential module over Fρ of rank n, such
that IR(V ) ∈ |F×| and IR(V ) < p−1/(p−1). Then for any positive integer j coprime to p,
IR(∧jV ) = IR(V ).

Proof. By Proposition 5.2.11, we may construct a basis e1, . . . , en of V such that the
corresponding supremum norm satisfies |D|V = |D|sp,V . Let N be the matrix via which D
acts on this basis; then the eigenvalues λ1, . . . , λn of N all have norm |D|sp,V . Let e∗1, . . . , e

∗
n

be the dual basis of V ∨, and use e∗i ⊗ ej for i, j = 1, . . . , n as a basis of V ∨ ⊗ V ; then D acts
on this basis via the matrix IN ⊗N −N ⊗ In, with eigenvalues λj − λi for i, j = 1, . . . , n.

Let V ′ be the differential module of rank 1 with the action of D on a generator v given
by D(v) = −λ1v. Since V is indecomposable, so is V ′ ⊗ V . However, by Theorem 5.6.1,
this means that the intrinsic subsidiary radii of V ′ ⊗ V must all be equal to each other; in
particular, either all of them are equal to IR(V ) or none of them are. By Theorem 5.7.4,
the number of intrinsic subsidiary radii of V ′ ⊗ V equal to IR(V ) is equal to the number of
j ∈ {1, . . . , n} for which |λj −λ1| = |λ1|. Since j = 1 does not have this property, we deduce
that |λj − λ1| < |λ1| for j = 2, . . . , n also.

If we now form a basis for ∧jV using exterior products of e1, . . . , en, then D will act on
this basis via a matrix whose eigenvalues are the j-fold sums of λ1, . . . , λn. By what we have
shown (and the fact that j is coprime to p), these sums all have norm |λ1|; by Theorem 5.7.4
once more, |D|sp,∧jV = |D|sp,V as desired. �

Lemma 18.4.3. Assume that Theorem 18.1.8 is true for modules of rank 1. Let M be a
finite differential module over R admitting a Frobenius structure for some scalar-preserving
Frobenius lift, of rank j coprime to p. Then there exists a finite separable extension L of
κK((t)) and a finite extension K ′ of K such that M ⊗R RL ⊗K K ′ is either unipotent or
decomposable.

Proof. Invoking the hypothesis that Theorem 18.1.8 is known for the rank 1 module
∧jM , we may choose L such that (∧jM) ⊗ RL is trivial as a differential module. For
notational simplicity, we assume hereafter that L = κK((t)).

If M itself is decomposable, we are done. Otherwise, by Theorem 11.5.4, there exists
b ≥ 0 such that for ρ sufficiently close to 1, the intrinsic subsidiary radii of M ⊗ Fρ are all
equal to ρb. If b = 0, then we can render M unipotent by Theorem 18.4.1, so assume b > 0.
By Theorem 11.5.4 plus Theorem 18.4.1, for ρ sufficiently close to 1 and K ′ a finite totally
extension of K,

H0((M∨ ⊗M) ⊗K K ′) = H0((M∨ ⊗M ⊗ Fρ) ⊗K K ′).
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(Namely, we may replaceM∨⊗M by its component of ramification number 0, whose structure
we can describe using Theorem 18.4.1.)

Pick some ρ in the prime-to-p divisible closure of |K×| for which:

• ∧jM ⊗ Fρ is trivial;
• IR(M ⊗ Fρ) = ρb;
• H0((M∨ ⊗M) ⊗K K ′) = H0(((M∨ ⊗M) ⊗ Fρ) ⊗K K ′) for any K ′;

• ρb 6= p−p−m/(p−1) for any nonnegative integer m.

By replacing M by a suitable Frobenius antecedent, we may reduce to the case ρb < p−1/(p−1).
Since ρb is still in the divisible closure of |K×|, we can choose K ′ so that p−1/(p−1), |ρb| ∈
|(K ′)×|. If M⊗KK

′ were indecomposable (i.e., if the not necessarily commutative K ′-algebra
H0((M∨ ⊗M) ⊗K K ′) had no nontrivial idempotents), then so would be (M ⊗ Fρ) ⊗K K ′;
however, Lemma 18.4.2 would then imply

ρb = IR(M ⊗ Fρ) = IR(∧j(M ⊗ Fρ)) = 1,

contradiction. Hence M ⊗K K ′ is decomposable, as desired. �

Remark 18.4.4. The statement of Lemma 18.4.3 is not so surprising if one thinks of
linear representations of a finite p-group on an algebraically closed field, as these must have
dimensions which are powers of p.

Proof of Theorem 18.1.8. As noted in Remark 18.1.9, it suffices to check that M
becomes unipotent after finitely many operations of the following forms: replace κK((t))
by a finite separable extension, or replace K by a finite extension. We will refer to these
operations simply as “replacing” in what follows.

We proceed by induction on n = rank(M), with the base case n = 1 known by the
arguments of the previous section. If n is greater than 1 and prime to p, by Lemma 18.4.3,
M becomes decomposable after replacing, so the induction hypothesis applies.

If n is divisible by p, we note that M∨ ⊗M decomposes as the direct sum of a trivial
submodule (the trace submodule) and a complement (the trace zero submodule). The latter
of these has rank n2−1, which is not divisible by p. Hence after replacing, M∨⊗M acquires
a subobject of rank 1, which by the induction hypothesis can be rendered trivial by replacing
again.

If M is reducible, we may again invoke the induction hypothesis. Otherwise, D =
H0(M∨⊗M) is a division algebra of finite dimension over K. It is a standard algebra result
that there exists a finite extension K ′ of K such that D ⊗K K ′ is isomorphic to a matrix
algebra Mn×n(K ′). (It suffices to check this for K ′ = Kalg instead. The key observation
is that for any element of D ⊗K Kalg, one can subtract some element of Kalg to get a
noninvertible element; namely, pick any eigenvalue of the action of D ⊗K Kalg on itself by
left multiplication.) Consequently, after replacing, M becomes isomorphic to a direct sum
of rank 1 modules, so again the induction hypothesis applies. �

5. The difference approach: absolute case

The second strategy available for proving Theorem 18.1.8 is that used in the absolute
case by Kedlaya [Ked04a]. It is to first analyze the structure of difference modules over the
Robba ring closely, then only later make reference to differential modules.
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We will not be able to give a complete proof of Theorem 18.1.8 using this approach either;
the reason is that the main result of [Ked04a] (Theorem 18.5.1) below is beyond the scope
of this course, aside from the discussion in Remark 18.5.2.

Theorem 18.5.1 (Slope filtration theorem). Let M be a finite free difference module over
R. Then there exists a unique filtration 0 = M0 ⊂ · · · ⊂ Ml = M by difference submodules
with the following properties.

(a) Each successive quotient Mi/Mi−1 is finite free, and is the base extension of a dif-
ference module over E † which is pure of some norm si.

(b) We have s1 > · · · > sl.

Remark 18.5.2. Theorem 18.5.1 was first proved by Kedlaya in [Ked04a] for an absolute
Frobenius lift; a second, somewhat simpler proof (establishing a stronger result which we
will not describe) appears in [Ked05b]. The form given above is from [Ked07c]; although
the proof there is even more streamlined than the previous ones, it is still too involved to
discuss in detail here. Instead, we give a brief summary of the two stages of the proof.

(a) Construct a suitable “difference closure” R̃ of R, over which one has an analogue of
the Dieudonné-Manin classification (Corollary 13.6.4). To obtain the classification,
one first shows that every difference module over R̃ admits a filtration with pure
quotients, then rearranges this filtration until it is no longer possible, at which point
everything splits. (This is very loosely analogous to Grothendieck’s classification of
vector bundles on the projective line; indeed, much of the theory of slope filtrations
is analogous to the theory of vector bundles on smooth projective curves.)

(b) Use faithfully flat descent to show that given a difference module over R, the slope

filtration obtained over R̃ by applying (a) descends to R. One must also show that
the property of being pure of a given norm also descends. (In earlier proofs, a more
complicated Galois descent was used instead.)

In the case of an absolute Frobenius lift, one can use Theorem 18.5.1 to reduce Theo-
rem 18.1.8 to Theorem 17.4.2. However, one must make the following two verifications.

Lemma 18.5.3. Let M be a finite differential module over R equipped with a Frobenius
structure. Then the steps of the filtration of Theorem 18.5.1 are differential modules, not
just difference modules.

Proof. It suffices to check for M1, as then we may quotient by M1 and repeat the

argument. Note that the composition M1
D→ M → M/M1 is R-linear, since D(rv) =

rD(v)+d(r)v and the second term gets killed in the quotient. Hence it suffices to check that
M1 → M/M1 is the zero map.

This in turn follows from the following fact: if N1, N2 are finite free difference modules
over R which are pure of slopes s1, s2 with s1 > s2, then Hom(N1, N2) = 0. (Namely, this
implies that the map M1 → M/Ml−1 vanishes, so we get a map M1 → Ml−1; but the induced
map M1 → Ml−1/Ml−2 vanishes, et cetera.) By replacing N1, N2 with R, N∨

1 ⊗N2, we may
rewrite the claim as follows: if N is a finite free difference module over R pure of some slope
s < 1, then H0(N) = 0.

By Proposition 13.5.8, we may choose a basis for N on which Φ acts via a matrix A
over E† of norm at most 1. Let N0 be the E †-span of this basis; then H0(N) = H0(N0) by

164



Lemma 18.5.6 below. However, H0(N0) = 0 because we are now working over a difference
field, where there cannot exist any maps between pure modules of different norms. �

This lemma generalizes Lemma 18.3.3 to arbitrary rank.

Lemma 18.5.4. Let M be a finite free unit-root difference module over E † such that M⊗R
admits a compatible differential structure. Then this structure is induced by a corresponding
differential structure on M itself.

Proof. Let N,A be the matrices via which D, φ act on a basis of M . Write the com-
mutation relation between N,A in the form N − ptp−1Aφ(N)A−1 = d

dt
(A)A−1. We deduce

from Lemma 18.5.6 below that N has entries in E †. �

Remark 18.5.5. The proof of Lemma 18.5.3 uses the fact that if M is a finite free
difference module over R which is pure of norm s < 1, then H0(M) = 0. The same is not in
general true if s > 1, illustrating another way that R fails to behave like a difference field.
For instance, if φ is the Frobenius lift for which φ(1 + t) = (1 + t)p, and M = Rv with
Φ(v) = p−1v, then

log(1 + t)v ∈ H0(M);

this example is in fact critical for p-adic Hodge theory.

Lemma 18.5.6. Let A be an n×n matrix over oE†, and suppose v ∈ Rn, w ∈ (E †)n satisfy
v − Aφ(v) = w. Then v ∈ (E †)n.

Proof. Exercise, or see [Ked07c, Proposition 1.2.6]. �

6. The difference approach: general case

Unfortunately, it seems difficult to generalize the proof of Theorem 17.4.2 to the case
of a nonabsolute Frobenius lift (the main difficulty being Lemma 17.4.13). However, it
is nonetheless possible to give a proof of Theorem 18.1.8 that uses slope filtrations (via
Theorem 18.5.1) in lieu of p-adic exponents (via Theorem 12.6.1). That is because one can
use Theorem 18.5.1 to give a second proof of Theorem 18.4.1, and then proceed as in the
differential approach.

To be more specific, using Theorem 18.5.1 and Lemma 18.5.3, it suffices to check The-
orem 18.4.1 in the case of a unit-root Frobenius structure. This amounts to the following
lemma.

Lemma 18.6.1. Let M be a differential module over R with IR(M ⊗ Fρ) = 1 for ρ
sufficiently close to 1, equipped with a unit-root Frobenius structure. Then for some positive
integer m coprime to p, M ⊗R[t1/m] is constant.

Proof. By Lemma 18.5.4, we can write M ∼= M0⊗R for some finite differential module
M0 over E† equipped with a unit-root Frobenius. By Lemma 17.4.5, we may replace the
Frobenius lift with one satisfying φ(t) = tq. By Lemma 17.4.11, for some positive integer m
coprime to p, we can choose a basis e1, . . . , en of M ⊗R[t1/m] on which Φ acts via a matrix
A with |A− A0|1 < 1. For notational simplicity, we will assume m = 1. By Lemma 17.4.8,
we can rechoose this basis so that A has entries in E † ∩KJt−1K.

Let N be the matrix of action of tD on e1, . . . , en. As in the proof of Lemma 17.4.9,
use A and N to define a differential module M ′ over K〈α/t〉 for some α ∈ (0, 1) such that
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IR(M ⊗Fα) = 1. Then Theorem 8.5.1 implies that M ′ has a basis of horizontal sections on
the open disc of radius α−1 in the t−1-line, so M is constant. �

Remark 18.6.2. It would be interesting to know whether one can prove Theorem 18.4.1
without using either p-adic exponents or slope filtrations, but instead simply using the fact
that the hypothesis forces M to extend across the entire punctured open unit disc (by pasting
together Frobenius antecedents).

7. Applications of the monodromy theorem

The original area of application of the p-adic local monodromy theorem (in its original
form, with only an absolute Frobenius lift) was in the subject of rigid cohomology; the name
comes from the fact that it plays a role analogous to the ℓ-adic local monodromy theorem
of Grothendieck in the subject of étale cohomology. See Chapter 20 for further discussion.
In particular, Crew [Cre98] showed that Theorem 18.1.8 implies the finite dimensionality
of the rigid cohomology of a curve with coefficients in an overconvergent F -isocrystal; this
was later generalized to arbitrary varieties by Kedlaya [Ked06a].

Another area of application of the p-adic local monodromy theorem (in both the absolute
and nonabsolute forms) is in p-adic Hodge theory. See Chapter 21 for further discussion.

Theorem 18.1.8 is also needed for the proofs of some more mundane facts about differ-
ential modules; it can often be used in lieu of Dwork’s trick (Corollary 15.2.4) when working
over an annulus instead of a disc. Here is a typical example; see notes for further discussion.

Theorem 18.7.1. Let M be a finite differential module over R = KJtK0 or E† admitting
a Frobenius structure for an absolute Frobenius lift. Then

H0(M) = H0(M ⊗R E).

Proof. For the case R = E †, it is shown in [Ked04b] that any F -invariant horizontal
section of M ⊗R E belongs to M . Here is a quick sketch of the argument. One first uses
a technique of de Jong [dJ98a] to show that if v ∈ H0(M ⊗R E), then the induced F -
equivariant horizontal map ψ : M∨ → E has the property that ψ−1(E†) 6= 0, and that
the generic slopes of M∨/ψ−1(E†) has all slopes negative. (This argument uses only the
Frobenius structure, not the differential structure.) One then uses Theorem 18.1.8 (plus
some additional considerations) to show that the short exact sequence

0 → ker(ψ) → ψ−1(E†) → ψ−1(E†)/ ker(ψ) → 0

must split. This yields ψ(M) = E †, forcing v ∈ H0(M).
To check the claim at hand in the case R = E †, we may enlarge K to have algebraically

closed residue field; then Corollary 13.6.4 implies that H0(M ⊗R E) is spanned by one-
dimensional fixed subspaces for the Frobenius action. The previous argument shows that
any generator of one of these subspaces belongs to M , proving the claim.

For the case R = KJtK0, we may use the previous argument to reduce to checking that
H0(M) = H0(M ⊗R E†). Since KJtK0 = K{{t}}∩E† inside R, this is equivalent to checking
that H0(M ⊗R K{{t}}) = H0(M ⊗R R). However, this is evident because M ⊗R K{{t}} is
a trivial differential module by Dwork’s trick (Corollary 15.2.4). �
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Notes

Proposition 18.1.4 is the essential content of a paper of Lazard [Laz62]. Note that it
depends on K being spherically complete, and is false otherwise; however, we have assumed
in this part that K is discretely valued, so we are safe.

The p-adic local monodromy theorem (Theorem 18.1.8) was originally formulated and
proved only in the absolute case. In this case, it is often referred to in the literature as “Crew’s
conjecture”, because it emerged from the work of Crew [Cre98] on finite dimensionality
of rigid cohomology with coefficients in an overconvergent F -isocrystal. Crew’s original
conjecture was somewhat more limited still, as it only concerned modules such that the
differential and Frobenius structures were both defined over E †; this form was restated in a
more geometric form by de Jong [dJ98b]. A closer analysis of Crew’s conjecture was then
given by Tsuzuki [Tsu98c], who explained (using Theorem 17.4.2) how Theorem 18.1.8 in
the absolute case would follow from a slope filtration theorem [Tsu98c, Theorem 5.2.1].

The relevance of allowing a nonabsolute Frobenius lift in Theorem 18.1.8 is that this
situation occurs in the context of relative p-adic Hodge theory. Namely, Berger and Colmez
[BC07] use the full strength of Theorem 18.1.8 to prove an analogue of Fontaine’s conjecture
on potential semistability of de Rham representations (Corollary 21.4.5) for a family of de
Rham representations parametrized by an affinoid base space.

The analysis made by Mebkhout in the rank 1 case is actually somewhat more general
than Lemma 18.3.1; it applies to any irreducible module whose highest ramification number
is an integer. In this case, one still shows that the ramification number can be reduced by
twisting with a suitable quasiconstant module; however, the new ramification number is not
itself guaranteed to be an integer. Consequently, Mebkhout must account for this possibility
elsewhere in the proof of Theorem 18.1.8.

The analysis made by Crew in the rank 1 case does not include Lemma 18.3.3; that is
because Crew only considered cases where the conclusion of this lemma was already known. It
also does not include Lemma 18.3.6; instead, Crew (who only considers the case of an absolute
Frobenius lift) makes an argument similar to that used in the proof of Theorem 17.4.2.

The differential approach to Theorem 18.1.8 presented here is close to that given by
Mebkhout [Meb02]. It is less apparently similar to that of André [And02], who uses an
approach couched in the language of Tannakian categories.

Some readers may be disappointed that we did not include a fuller treatment of the slope
filtration theorem (Theorem 18.5.1). Our defenses are that the material used to prove the
theorem is somewhat orthogonal to the other material in the book, and that we have little
to add to the treatment in [Ked07c].

The case of Theorem 18.7.1 with R = E † was originally conjectured by Tsuzuki [Tsu02,
Conjecture 2.3.3]. The case with R = KJtK0 is an older result of de Jong [dJ98a]; the
arguments in [Ked04b] are closely modeled on those of [dJ98a], with the key addition
being the substitution of Theorem 18.1.8 for Dwork’s trick.

In the case of a unit-root Frobenius structure, Theorem 18.7.1 was known prior to the
availability of Theorem 18.1.8. It figures in the work of Cherbonnier-Colmez [CC98], which
we will discuss in Chapter 21 (see Remark 21.2.6); it was also established by Tsuzuki [Tsu96,
Proposition 4.1.1].
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Exercises

(1) Show that if M is unipotent, then there exists a basis of M on which the derivation
corresponding to t d

dt
acts via a matrix over K. Then prove Proposition 18.1.7 in

case M is unipotent.
(2) Prove Lemma 18.5.6. (Hint: reduce to the case where |A|ρ ≤ 1 for ρ ∈ [α, 1).

Then show that |v|ρ is bounded for ρ ∈ [α, 1), by comparing |v|ρ with |v|ρ1/q using
Lemma 15.2.1.)
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Areas of application





CHAPTER 19

Picard-Fuchs modules

In this chapter, we revisit the territory of Chapter 0, briefly discussing how Picard-Fuchs
modules give rise to differential equations with Frobenius structures, and what this has to
do with zeta functions.

1. Picard-Fuchs modules

Definition 19.1.1. Let t be a coordinate on P1
K . Let f : X → P1

K be a proper, flat,
generically smooth morphism of algebraic varieties. Let S ⊂ P1

K be a zero-dimensional
subscheme containing ∞ (for convenience) and all points over which f is not smooth. The
Picard-Fuchs modules on P1

K \S associated to f are finite locally free differential modules Mi

for i = 0, . . . , 2 dim(f) over R = Γ(P1
K \ S,O) with respect to the derivation d

dt
; it also has

regular singularities at each point of S. For λ /∈ S, the fibre of Mi at λ can be canonically
identified with the i-th de Rham cohomology of the fibre f−1(λ).

Although the classical construction of the Picard-Fuchs module is analytic (it involves
viewing f as an analytically locally trivial fibration and integrating differentials against
moving homology classes), there is an algebraic construction due to Katz and Oda [KO68],
involving a Leray spectral sequence for the algebraic de Rham cohomology of the total space.

As originally noticed by Dwork by explicitly calculating some examples, Picard-Fuchs
modules often carry Frobenius structures. A systematic explanation of this is given by
p-adic cohomology; here is an explicit statement.

Theorem 19.1.2. With notation as above, suppose that f extends to a proper morphism
X → P1

oK
such that the intersection of P1

k with the nonsmooth locus is contained in the
intersection of P1

k with the Zariski closure of S (i.e., the morphism is smooth over all points
of P1

k which are not the reductions of points in S). Let Mi be the i-th Picard-Fuchs module
for f , and let φ : P1

oK
→ P1

oK
be a Frobenius lift (e.g., t 7→ tp) that acts on oK as a lift of the

absolute Frobenius. Then for some α ∈ (0, 1), there exists an isomorphism φ∗(Mi) ∼= Mi over
a ring R which is the Fréchet completion of Γ(P1

K \ S,O) for (for ρ ∈ [α, 1)) the ρ−1-Gauss
norm and the Gauss norms |t− λ| = ρ for λ ∈ S.

Remark 19.1.3. Geometrically, the Frobenius structure is defined on the complement
in P1

K of a union of discs around the points of S, each of radius less than 1 (where a disc
of radius less than 1 around ∞ corresponds to the complement of a disc of radius greater
than 1 around 0). In particular, by working in a unit disc not containing any points of S, we
obtain a differential module with Frobenius structure over KJtK0. In a unit disc containing
one or more points of S, we only obtain a differential module with Frobenius structure over
∪α>0K〈α/t, tK0. (If the disc contains exactly one point of S and the exponents at that point
are all 0, we can also get a differential module with Frobenius structure over KJtK0 for the
derivation t d

dt
, provided that φ fixes that point.)
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Example 19.1.4. For example, for the Legendre family of elliptic curves y2 = x(x −
1)(x− λ), we take S = {0, 1,∞} and obtain a module corresponding to the hypergeometric
equation discussed in the introduction. For p 6= 2, that equation admits a Frobenius structure
by Theorem 19.1.2. (For p = 2, we cannot make the reduction modulo p generically smooth
without changing the defining equation.)

2. Relationship with zeta functions

The Frobenius structure on a Picard-Fuchs equation can be used to compute zeta func-
tions. (The condition on λ allows for a unique choice in each residue disc, by Lemma 14.2.2.)

Theorem 19.2.1. Retain notation as in Theorem 19.1.2, and assume now that κK = Fq

with q = pa, and that φ is a q-power Frobenius lift on P1
oK

. Suppose that λ ∈ oK satisfies
φ(t−λ) ≡ 0 (mod t−λ), and suppose that f extends smoothly over the residue disc containing
λ. Then

ζ(f−1(λ), T ) =

2 dim(f)∏

i=0

det(1 − TΦ, (Mi)λ)
(−1)i+1

.

This suggests an interesting strategy for computing zeta functions, advanced by Alan
Lauder.

Remark 19.2.2. Suppose you have in hand the differential module, plus the matrix of
the action of Φ on some individual (Mi)λ. If you view the equation

NA +
dA

dt
=
dφ(t)

dt
Aφ(N)

as a differential equation with initial condition provided by (Mi)λ, you can then solve for A,
and then evaluate at another λ.

More explicitly, let’s say for simplicity that λ = 0 is the starting value. In the open unit
disc around 0, you can compute U such that

U−1NU + U−1dU

dt
= 0

and then write down
A = UA0φ(U−1).

This only gives you a power series representation around 0 with radius of convergence 1,
which does not give you any way to specialize to, say, λ = 1.

However, Theorem 19.1.2 implies that the entries of A can be written as uniform limits of
rational functions with limited denominators. Once you recover a sufficiently good rational
function approximation to A, you can specialize at λ = 1. For more detailed references
discussing this technique, see the notes.

Remark 19.2.3. One can recover the example of Dwork discussed in Chapter 0 from
Theorem 19.2.1. What is going on in that example is that one is separating the Picard-
Fuchs module, which has rank 2, into a unit-root component and a component of slope log p.
For this to be possible, one must be in the situation of Theorem 14.3.4; this fails precisely
at the residue discs at which the Igusa polynomial vanishes, which is why one must invert
the Igusa polynomial in the course of the computation.
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Notes

The differential operator on a Picard-Fuchs module is also called a Gauss-Manin connec-
tion. Lauder’s strategy (also called the deformation method) was introduced in [Lau04]; it
has been worked out in detail for hyperelliptic curves by Hubrechts [Hub07]. (Hubrechts
implemented the resulting algorithm in version 2.14 of the computer algebra system Magma.)
A version for hypersurfaces has been described by Gerkmann [Ger07].
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CHAPTER 20

Rigid cohomology

In this chapter, we introduce a bit of the theory of rigid p-adic cohomology, as developed
by Berthelot and others. In particular, we illustrate the role played by the p-adic local
monodromy theorem in a fundamental finiteness problem in the theory.

1. Isocrystals on the affine line

In this section, we recall Crew’s interpretation [Cre98] of overconvergent F -isocrystals
on the affine line and their cohomology.

Definition 20.1.1. Let k be a perfect (for simplicity) field of characteristic p > 0. Let K
be a complete discrete (again for simplicity) nonarchimedean field of characteristic zero with
κK = k. An overconvergent F -isocrystal on the affine line over k (with coefficients in K) is
a finite differential module with Frobenius structure on the ring A = ∪β>1K〈t/β〉, for some
absolute Frobenius lift φ; as in Proposition 15.3.1, the resulting category is independent of
the choice of the Frobenius lift.

Definition 20.1.2. Let M be an overconvergent F -isocrystal on the affine line over k.
Let R be a copy of the Robba ring with series parameter t−1, so that we can identify A as
a subring of R. Define

H0(A1
k,M) = ker(D,M)

H1(A1
k,M) = coker(D,M)

H0
loc(A

1
k,M) = ker(D,M ⊗A R)

H1
loc(A

1
k,M) = coker(D,M ⊗A R)

H1
c (A1

K ,M) = ker(D,M ⊗A (R/A))

H2
c (A1

K ,M) = coker(D,M ⊗A (R/A)).

By taking kernels and cokernels in the short exact sequence

0 →M → M ⊗A R →M ⊗A (R/A) → 0

and applying the snake lemma, we get an exact sequence

0 → H0(A1
k,M) → H0

loc(A
1
k,M) → H1

c (A1
k,M) → H1(A1

k,M) → H1
loc(A

1
k,M) → H2

c (A1
k,M) → 0.

Remark 20.1.3. Crew shows [Cre98] that in this construction, H i computes the rigid
cohomology of M , H i

c computes the rigid cohomology with compact supports, and H i
loc com-

putes some sort of local cohomology at ∞.

Crew’s main result in this setting is the following.

175



Theorem 20.1.4 (Crew). The spaces H i(A1
k,M), H i

c(A
1
k,M), H i

loc(A
1
K ,M) are all finite

dimensional over K. Moreover, the Poincaré pairings

H i(A1
k,M) ×H2−i

c (A1
k,M

∨) → H2
c (A1

k,A) ∼= K

H i
loc(A

1
k,M) ×H1−i

loc (A1
k,M

∨) → H1
loc(A

1
K ,A) ∼= K

are perfect.

The key ingredient is the fact thatM⊗R is quasiunipotent by the p-adic local monodromy
theorem (Theorem 18.1.8), which implies finiteness of H i

loc(A
1
k,M). This implies the finite

dimensionalities except for H1
c (A1

k,M) and H1(A1
k,M); however, these are related by a map

with finite dimensional kernel and cokernel. Moreover, they carry incompatible topologies:
the former is a Fréchet space, while the latter is dual to a Fréchet space. This incompatibility
can only be resolved by both spaces being finite dimensional.

2. Consequences in rigid cohomology

The previous construction extends, with some work, to a theory of rigid cohomology
with/without compact supports on arbitrary varieties over k, with coefficients in overconver-
gent F -isocrystals. For constant coefficients, it was shown by Berthelot [Brt97a, Brt97b]
that this theory has all of the desired properties of a Weil cohomology: finite dimension-
ality, Poincaré duality, Künneth formula, cycle class maps, etc. Using a relative version of
Theorem 20.1.4, one can extend these to nonconstant coefficients [Ked06a].

The analogy with étale cohomology with ℓ-adic coefficients is tempting, and indeed mo-
tivates most of the preceding development, but remains somewhat imperfect. Most notably,
overconvergent F -isocrystals in rigid cohomology are analogous only to lisse (smooth) ℓ-adic
sheaves, whereas for most serious computations one needs also constructible sheaves (or some
appropriate derived category thereof). There is a proposed theory of arithmetic D-modules
that would play the appropriate p-adic role, but this theory remains underdeveloped; see
[Brt02].

Nonetheless, in the interim, one can still carry many good properties of ℓ-adic cohomology
to the p-adic setting, e.g., Laumon’s Fourier-theoretic reinterpretation of Deligne’s second
proof of the Weil conjectures [Ked06b]. It is hoped that one can go further, establishing
some properties in p-adic cohomology that are only conjectural in ℓ-adic cohomology, such
as Deligne’s weight-monodromy conjecture.

3. Machine computations

In recent years, interest has emerged in explicitly computing the zeta functions of alge-
braic varieties defined over finite fields. Some of this interest has come from cryptography,
particularly the use of Jacobians of elliptic (and later hyperelliptic) curves over finite fields
as “black box abelian groups” for certain public-key cryptography schemes (Diffie-Hellman,
ElGamal).

For elliptic curves, a good method for doing this was proposed by Schoof [Sch85]. It
amounts to computing the trace of Frobenius on the ℓ-torsion points, otherwise known as the
étale cohomology with Fℓ-coefficients, for enough small values of ℓ to determine uniquely the
one unknown coefficient of the zeta function within the range prescribed by the Hasse-Weil
bound.
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It turns out to be somewhat more difficult to execute Schoof’s scheme for curves of higher
genus, as discovered by Pila [Pil90]. One is forced to work with higher division polynomials
in order to compute torsion of the Jacobian of the curve; the interpretation in terms of étale
cohomology is of little value because the definition of étale cohomology is not intrinsically
computable. (It is easy to write down cohomology classes, but it is difficult to test two such
classes for equality.)

It was noticed by several authors that rigid cohomology is intrinsically more computable,
and so lends itself better to this sort of task. Specifically, Kedlaya [Ked01] proposed an
algorithm using rigid cohomology (in its guise for smooth affine varieties, known as Monsky-
Washnitzer cohomology) for computing the zeta function of a hyperelliptic curve over a finite
field of small odd characteristic. The limitation to odd characteristic was lifted by Denef
and Vercauteren [DV06]; the limitation to small characteristic was somewhat remedied
by Harvey [Har07], who improved the dependence on the characteristic p from O(p) to
O(p1/2+ǫ).

More recently, interest has emerged in considering also higher-dimensional varieties,
partly come from potential applications in the study of mirror symmetry for Calabi-Yau
varieties. In this case, étale cohomology is of no help at all, since there is no geometric inter-
pretation of H i

et for i > 1 analogous to the interpretation for i = 1 in terms of the Jacobian.
Rigid cohomology should still be computable, but relatively little progress has been made in
making these computations practical (one exception being the treatment of smooth surfaces
in projective 3-space in [AKR07]). It may be necessary to combine these techniques with
Lauder’s deformation method (see Remark 19.2.2) for best results.

Notes

Until recently, while there were some useful survey articles about rigid cohomology
(e.g., Berthelot’s [Brt86]), and some fragmentary foundational materials (e.g., Berthelot’s
[Brt96]), there was no comprehensive introductory text on the subject. That state of affairs
has been remedied by the appearance of the book of le Stum [leS07]; this book may be
particularly helpful for those interested in machine calculations.

Crew’s work, and subsequent work which builds on it (e.g., [Ked06a]), makes essential
use of nonarchimedean functional analysis, as is evident in the discussion of Theorem 20.1.4.
We recommend Schneider’s book [Sch02] as a friendly introduction to this topic.

As a companion to our original paper on hyperelliptic curves [Ked01], we recommend
Edixhoven’s course notes [Edi06]; some discussion is also included in [FvdP04, Chapter 7].
We gave a high-level summary of the general approach in [Ked04c].
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CHAPTER 21

p-adic Hodge theory

In this chapter, we describe an analogue of the construction of Chapter 17 for p-adic
representations of the absolute Galois group of a mixed characteristic local field. Beware
that our presentation is historically inaccurate; see the notes.

Hypothesis 21.0.1. Throughout this chapter, letK be a finite extension of Qp, let V be a
finite dimensional Qp-vector space, and let τ : GK → GL(V ) be a continuous homomorphism
for the p-adic topology on V .

1. A few rings

Definition 21.1.1. Put Kn = K(ζpn) and K∞ = ∪nKn. Let F = FracW (κK) and F ′

be the maximal subfields of K and K∞, respectively, which are unramified over Qp. Put
HK = GK∞

and ΓK = GK∞/K = GK/HK .

Definition 21.1.2. Put o = oCp. Let Ẽ+ be the inverse limit of the system

· · · → o/po → o/po

in which each map is the p-power Frobenius (which is a ring homomorphism). More explicitly,

the elements of Ẽ+ are sequences (x0, x1, . . . ) of elements of o/po for which xp
n+1 = xn for

all n. In particular, for any nonzero x ∈ Ẽ+, the quantity pnvp(xn) is the same for all n
for which xn 6= 0; we call this quantity v(x), and put conventionally v(0) = +∞. Choose
ǫ = (ǫ0, ǫ1, . . . ) ∈ Ẽ+ with ǫ0 = 1 and ǫ1 6= 1.

The following observations were made by Fontaine and Wintenberger [FW79].

Proposition 21.1.3. The following are true.

(a) The ring Ẽ+ is a domain in which p = 0, with fraction field Ẽ = Ẽ+[ǫ−1].

(b) The function v : Ẽ+ → [0,+∞] extends to a valuation on Ẽ, under which Ẽ is

complete and o
Ẽ

= Ẽ+.

(c) The field Ẽ is the algebraic closure of κK((ǫ − 1)). (The embedding of κK((ǫ − 1))

into Ẽ exists because v(ǫ− 1) = p/(p− 1) > 0.)

Definition 21.1.4. Let Ã be the ring of Witt vectors of Ẽ, i.e., the unique complete
discrete valuation ring with maximal ideal p and residue field Ẽ. The uniqueness follows from
the fact that Ẽ is algebraically closed, hence perfect. In particular, the p-power Frobenius
on Ẽ lifts to an automorphism φ of Ã.

Definition 21.1.5. Each element of Ã can be uniquely written as a sum
∑∞

n=0 p
n[xn],

where xn ∈ Ẽ and [xn] denotes the Teichmüller lift of xn (the unique lift of xn that has a

pm-th root in Ã for all positive integers m); note that φ([x]) = [xp] = [x]p. We may thus
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equip Ã with a weak topology, in which a sequence xm =
∑∞

n=0 p
n[xm,n] converges to zero if

for each n, v(xm,n) → ∞ as m → ∞. Let AQp be the completion of Zp[([ǫ] − 1)±] in Ã for
the weak topology; as a topological ring, it is isomorphic to the ring oE defined over the base
field Qp with its own weak topology. It is also φ-stable because φ([ǫ]) = [ǫ]p.

Definition 21.1.6. Let A be the completion of the maximal unramified extension of
AQp, viewed as a subring of Ã. Put

AK = AHK ,

where the right side makes sense because we have made all the rings so far in a functorial
fashion, so that they indeed carry a GK-action. Note that AK can be written as a ring of
the form oE , but with coefficients in K ′ rather than in Qp.

Definition 21.1.7. For any ring denoted with a boldface A so far, define the correspond-
ing ring with A replaced by B by tensoring over Zp with Qp. For instance, B̃ = Ã ⊗Zp Qp

is the fraction field of Ã.

2. (φ,Γ)-modules

We are now ready to describe the mechanism, introduced by Fontaine, for converting
Galois representations into modules over various rings equipped with much simpler group
actions.

Definition 21.2.1. Recall that V is a finite-dimensional vector space equipped with a
continuous GK-action. Put

D(V ) = (V ⊗Qp B)HK ;

by Hilbert’s Theorem 90, D(V ) is a finite dimensional BK-vector space, and the natural
map D(V ) ⊗BK

B → V ⊗Qp B is an isomorphism. Since we only took HK-invariants, D(V )
retains a semilinear action of GK/HK = ΓK ; it also inherits an action of φ from B. That is,
D(V ) is a (φ,Γ)-module over BK , i.e., a finite free BK-module equipped with semilinear φ
and ΓK-actions which commute with each other. It is also étale, which is to say the φ-action
is étale (unit-root); as in Definition 17.2.5, this is because one can find a GK-invariant lattice
in V .

Theorem 21.2.2 (Fontaine). The functor D, from the category of continuous represen-
tations of GK on finite dimensional Qp-vector spaces to the category of étale (φ,Γ)-modules
over BK, is an equivalence of categories.

Proof. From D(V ), one can recover

V = (D(V ) ⊗BK
B)φ=1.

�

Theorem 21.2.2 was refined by Cherbonnier and Colmez as follows [CC98].

Definition 21.2.3. Let B†
Qp

be the image of E † under the identification of E (with

coefficients in Qp) with BQp sending t to [ǫ] − 1. Let B†
K be the integral closure of B†

Qp
in

BK . Again, B†
K carries actions of φ and ΓK .
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Definition 21.2.4. Let A† be the set of x =
∑∞

n=0 p
n[xn] ∈ A such that lim infn→∞{v(xn)/n} >

−∞. Define
D†(V ) = (V ⊗Qp B†)HK ;

it is an étale (φ,Γ)-module over B†
K .

The following is the main result of [CC98].

Theorem 21.2.5 (Cherbonnier-Colmez). The functor D†, from the category of contin-
uous representations of GK on finite dimensional Qp-vector spaces to the category of étale

(φ,Γ)-modules over B†
K, is an equivalence of categories.

Remark 21.2.6. By Theorem 21.2.2, it suffices to check that the base extension functor
from étale (φ,Γ)-modules over B†

K to étale (φ,Γ)-modules over BK is an equivalence. The
full faithfulness of this functor is elementary; it follows from Lemma 18.5.6. The essential
surjectivity is much deeper; it amounts to the fact that the natural map

D†(V ) ⊗
B

†
K

B† → V ⊗Qp B†

is an isomorphism. Verifying this requires developing an appropriate analogy to Sen’s theory
of decompletion; this analogy has been developed into a full abstract Sen theory by Berger
and Colmez [BC07].

A further variant was proposed by Berger [Brg02].

Definition 21.2.7. Using the identification B†
Qp

∼= E†, put

B†
rig,K = B†

K ⊗
B

†
Qp

R.

Note that B†
rig,K admits continuous extensions (for the LF-topology) of the actions of φ and

ΓK . Define
D†

rig(V ) = D†(V ) ⊗
B

†
K

B†
rig,K ;

it is an étale (φ,Γ)-module over B†
rig,K .

Theorem 21.2.8 (Berger). The functor D†
rig, from the category of continuous represen-

tations of GK on finite dimensional Qp-vector spaces to the category of étale (φ,Γ)-modules

over B†
rig,K, is an equivalence of categories.

Remark 21.2.9. The principal content in Theorem 21.2.8 is that the base extension
functor from étale φ-modules over E † to étale φ-modules over R is fully faithful; this is
elementary (see exercises). The essential surjectivity of the functor is almost trivial, since
étaleness of the φ-action is defined over the Robba ring by base extension from E †. One
needs only check that the ΓK-action also descends to any étale lattice, but this is easy (it is
similar to Lemma 18.5.4).

3. Galois cohomology

Since the functor D and its variants lose no information about Galois representations, it
is unsurprising that they can be used to recover basic invariants of a representation, such as
Galois cohomology.
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Definition 21.3.1. Assume for simplicity that ΓK is procyclic; this only eliminates the
case where p = 2 and {±1} ⊂ Γ, for which see Remark 21.3.2 below. Let γ be a topological
generator of Γ. Define the Herr complex over BK associated to V as the complex (with the
first nonzero term placed in degree zero)

0 → D(V ) → D(V ) ⊕D(V ) → D(V ) → 0

with the first map being m 7→ ((φ− 1)m, (γ − 1)m) and the second map being (m1, m2) →
(γ − 1)m1 − (φ − 1)m2. (The fact that this is a complex follows from the commutativity

between φ and γ.) Similarly, define the Herr complex over B†
K or B†

rig,K by replacing D(V )

by D†(V ) or D†
rig(V ), respectively.

Remark 21.3.2. A more conceptual description, which also covers the case where ΓK

need not be profinite, is that one takes the total complex associated to

0 → C ·(ΓK , D(V ))
φ−1→ C ·(ΓK , D(V )) → 0.

One might think of this as the “monoid cohomology” of ΓK × φZ≥0 acting on D(V ).

Theorem 21.3.3. The cohomology of the Herr complex computes the Galois cohomology
of V .

Proof. For BK , the desired result was established by Herr [Her98]. The argument
proceeds in two steps. One first takes cohomology of the Artin-Schreier sequence

0 → Qp → B
φ−1→ B → 0

after tensoring with V . This reduces the claim to the fact that the inflation homomorphisms

H i(ΓK , D(V )) → H i(GK , V ⊗Qp B)

are bijections; this is proved by adapting a technique introduced by Sen.
For B†

K and B†
rig,K , the desired result was established by Liu [Liu07]; this proceeds by

comparison with the original Herr complex rather than by imitating the above argument,
though one could probably do that also. �

Remark 21.3.4. As is done in [Her98, Liu07], one can make Theorem 21.3.3 more
precise. For instance, the construction of Galois cohomology is functorial; there is also an
interpretation in the Herr complex of the cup product in cohomology.

Remark 21.3.5. One can also use the Herr complex to recover Tate’s fundamental theo-
rems about Galois cohomology (finite dimensionality, Euler-Poincaré characteristic formula,
local duality). This was done by Herr in [Her01].

4. Differential equations from (φ,Γ)-modules

One of the original goals of p-adic Hodge theory was to associate finer invariants to p-adic
Galois representations, so as for instance to distinguish those representations which arose
in geometry (i.e., from the étale cohomology of varieties over K). This was originally done
using a collection of “period rings” introduced by Fontaine; more recently, Berger’s work has
demonstrated that one can reproduce these constructions using (φ,Γ)-modules. Here is a
brief description of an example that shows the relevance of p-adic differential equations to
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this study. We will make reference to Fontaine’s rings BdR,Bst without definition, for which
see [Brg04].

Definition 21.4.1. Let χ : ΓK → Z×
p denote the cyclotomic character; that is, for all

nonnegative integers m and all γ ∈ ΓK ,

γ(ζpm) = ζ
χ(γ)
pm .

For γ ∈ ΓK sufficiently close to 1, we may compute

∇ =
log(γ)

logχ(γ)

as an endomorphism of D(V ), using the power series for log(1 + x). The result does not
depend on γ.

Remark 21.4.2. If one views ΓK as a one-dimensional p-adic Lie group over Zp, then ∇
is the action of the corresponding Lie algebra.

Definition 21.4.3. Note that ∇ acts on B†
rig,K with respect to

f 7→ [ǫ] log[ǫ]
df

d[ǫ]
.

As a result, it does not induce a differential module structure with respect to d
dt

on D(V ),

but only on D(V )⊗B†
rig,K [(log[ǫ])−1]. We say that V is de Rham if there exists a differential

module with Frobenius structure M over B†
rig,K and an isomorphism

D(V ) ⊗B†
rig,K [(log[ǫ])−1] →M ⊗ B†

rig,K [(log[ǫ])−1]

of differential modules with Frobenius structure.

One then has the following results of Berger [Brg02].

Theorem 21.4.4 (Berger). (a) The representation V is de Rham if and only if it is
de Rham in Fontaine’s sense, i.e., if

DdR(V ) = (V ⊗Qp BdR)GK

satisfies
DdR(V ) ⊗K BdR

∼= V ⊗Qp BdR.

(b) Suppose that V is de Rham. Then V is semistable in Fontaine’s sense, i.e.,

Dst(V ) = (V ⊗Qp Bst)
GK

satisfies
Dst(V ) ⊗F Bst

∼= V ⊗Qp Bst,

if and only if there exists M as in Definition 21.4.3 which is unipotent.

Applying Theorem 18.1.8 then yields the following corollary, which was previously a
conjecture of Fontaine [Fon94, 6.2].

Corollary 21.4.5 (Berger). Every de Rham representation is potentially semistable,
i.e., becomes semistable upon restriction to GL for some finite extension L of K.
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Remark 21.4.6. The term “de Rham” is meant to convey the fact that if V = H i
et(X×K

Kalg,Qp) forX a smooth proper variety overK, then V is de Rham and you can use the afore-
mentioned constructions to recover H i

dR(X,K) functorially from V (solving Grothendieck’s
“problem of the mysterious functor”). See [Brg04] for more of the story.

5. Beyond Galois representations

The category of arbitrary (φ,Γ)-modules over B†
rig,K turns out to have its own representation-

theoretic interpretation; it is equivalent to the category of B-pairs introduced by Berger
[Brg07a]. One can associate “Galois cohomology” to such objects using the Herr complex;
it has been shown by Liu [Liu07] that the analogues of Tate’s theorems (see Remark 21.3.5)

still hold. These functors can be interpreted as the derived functors of Hom(D†
rig(V0), ·) for

V0 the trivial representation [Ked07f, Appendix].

One may wonder why one should be interested in (φ,Γ)-modules over B†
rig,K if ultimately

one has in mind an application concerning only Galois representations. One answer is that
converting Galois representations into (φ,Γ)-modules exposes extra structure that is not
visible without the conversion.

Definition 21.5.1 (Colmez). We say V is trianguline if D†
rig(V ) is a successive extension

of (φ,Γ)-modules of rank 1 over B†
rig,K . The point is that these need not be étale, so V need

not be a successive extension of representations of dimension 1.

The trianguline representations have the dual benefits of being relatively easy to classify,
and somewhat commonplace. On one hand, Colmez [Col07] classified the two-dimensional
trianguline representations of GQp; the classification includes a parameter (the L-invariant)
relevant to p-adic L-functions. On the other hand, a result of Kisin [Kis03] shows that the
Galois representations associated to many classical modular forms are trianguline.

Notes

Our presentation here is largely a summary of Berger’s [Brg04], which we highly recom-
mend.

A variant of the theory of (φ,Γ)-modules was introduced by Kisin [Kis06], using the
Kummer tower K(p1/pn

) instead of the cyclotomic tower K(ζpn). This leads to certain
advantages, particularly when studying crystalline representations. Kisin’s work is based on
an earlier paper of Berger [Brg07b]; both of these use slope filtrations (as in Theorem 18.5.1)
to recover a theorem of Colmez-Fontaine classifying semistable Galois representations in
terms of certain linear algebraic data.

After [Brg02] appeared, Fontaine succeeded in giving a direct proof of Corollary 21.4.5
(i.e., not going through p-adic differential equations). We do not have a reference for this.

Exercises

(1) (Compare [Tsu96, Proposition 2.2.2].) Let A be an n × n matrix over oE† , and
suppose v ∈ En, w ∈ (E †)n satisfy Av − φ(v) = w. Then v ∈ (E †)n. This gives a
direct proof of some cases of Theorem 18.7.1, in the spirit of Lemma 18.5.6. (Hint:
reduce to the case where |A|ρ ≤ 1 for some ρ ∈ (0, 1) for which |w|ρ <∞. Then use
|w|ρ to bound the terms of v =

∑
i vit

i for which |vi| ≥ c.)
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