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Convexity and monotonicity for subsidiary radii

In this unit, we prove some theorems governing the variation of the subsidiary radii of a
differential module on a disc or annulus.

1 Setup

Let M be a finite free differential module of rank n over K〈α/t, t/β〉, where 0 ≤ α ≤ β. We
are interested in the variation of the subsidiary radii of M ⊗ Fρ as ρ ranges over [α, β].

The properties we are interested in are more convenient to describe in logarithmic terms,
so we set notation as follows. For ρ ∈ [α, β], let R1(ρ), . . . , Rn(ρ) be the extrinsic subsidiary
radii of M ⊗ Fρ in increasing order, so that R1(ρ) = R(M ⊗ Fρ) is the generic radius of
convergence of M ⊗ Fρ. For r ∈ [− log β,− logα], define

fi(r) = − logRi(e
−r),

so that fi(r) ≥ r for all r. We will write fi(M, r) instead of fi(r) in case there is ambiguity
about which M we are considering.

2 Main results

We now state the main results of this unit.

Theorem 1. Let M be a finite free differential module of rank n over K〈α/t, t/β〉.

(a) (Linearity) For i = 1, . . . , n, the functions fi are continuous and piecewise affine.

(b) (Integrality) If i = n or fi(r0) > fi+1(r0), then the slopes of f1 + · · · + fi in some
neighborhood of r0 belong to Z. Consequently, the slopes of each fi belong to 1

1
Z∪ · · · ∪

1
n
Z.

(c) (Convexity) For i = 1, . . . , n, the function f1 + · · ·+ fi is convex.

(d) (Monotonicity) Suppose that α = 0. For i = 1, . . . , n, for any point r0 where fi(r0) >
r0, the slopes of f1 + · · · + fi are nonpositive in some neighborhood of r0. (Remember
that fi(r) = r for r sufficiently large.)

Note that we have integrality for the slopes of the fi but not for the values. Using the
integrality result for intrinsic generic radii proved in a previous unit, we can at least deduce
the following. (One can prove something similar for subsidiary radii, but the statement is a
bit more complicated.)
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Theorem 2. Set notation as in Theorem 1. Let h be a nonnegative integer and pick m ∈
{1, . . . , n}. Suppose that the following hold for some r0:

(a) fm(r0) = f1(r0);

(b) either m = n, or fm(r0) > fm+1(r0);

(c) f1(r0) − r0 >
p−h

p−1
log p.

Then for r in some neighborhood of r0,

f1(r) − r ∈
1

mph
v(K×) +

1

m
rZ.

In fact, one cannot do better than this; see §4.

3 Variation of Newton polygons

The formulation of Theorem 1 is motivated by the following result, which will also be used
in the proof. (Note that because of a sign discrepancy, convexity is traded for concavity in
(c), and nonpositive slopes are traded for nonnegative slopes in (d).)

Theorem 3. Let P ∈ K〈α/t, t/β〉[T ] be a polynomial of degree n. For r ∈ [− log β,− logα],
let f1(r), . . . , fn(r) be the slopes of the Newton polygon of P under | · |e−r, in increasing order.

(a) (Linearity) For i = 1, . . . , n, the functions fi are continuous and piecewise affine.

(b) (Integrality) If i = n or fi(r0) < fi+1(r0), then the slopes of f1 + · · · + fi in some
neighborhood of r belong to Z. Consequently, the slopes of each fi belong to 1

1
Z∪· · ·∪ 1

n
Z.

(c) (Concavity) Suppose that P is monic. For i = 1, . . . , n, the function f1 + · · · + fi is
concave.

(d) (Monotonicity) Suppose that P is monic and that α = 0. For i = 1, . . . , n, the slope of
f1 + · · ·+ fi is nonnegative.

Proof. Write P =
∑n

i=0 PiT
i with Pi ∈ K〈α/t, t/β〉. Write NPr(P ) for the Newton polygon

of P measured with respect to vr(·) = − log | · |e−r .
For s ∈ R and r ∈ [− log β,− logα], put

vs,r(P ) = min
i
{vr(Pi) + is};

that is, vs,r(P ) is the y-intercept of the supporting line of NPr(P ) of slope s.
The function vr(Pi) is continuous in r and piecewise affine with slopes in Z; by the

Hadamard three circles lemma, it is also concave. Since vs,r(P ) is the minimum of finitely
many continuous, piecewise affine, concave functions of r with slopes in Z, so then is vs,r(P ).
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Note also that vs,r(P ) is concave as a function of the pair (r, s), since each function (r, s) 7→
vr(Pi) + is has that property.

Note that f1(r) + · · ·+ fi(r) is the difference between the y-coordinates of the points of
NPr(P ) of x-coordinates i− n and −n. That is,

f1(r) + · · ·+ fi(r) = sup
s
{vs,r(P ) − (n− i)s} − vr(Pn). (1)

Moreover, the supremum in (1) is achieved by some s whose denominator is bounded by n.
Consequently, f1(r) + · · ·+ fi(r) is continuous and piecewise affine, proving (a).

If i = n or fi(r0) > fi+1(r0), then the point of NPr0
(P ) of x-coordinate i− n is a vertex,

and likewise for r in some neighborhood of r0. In that case, for r near r0,

f1(r) + · · · + fi(r) = vr(Pn−i) − vr(Pn),

proving (b).
Assume hereafter that P is monic, so that Pn = 1 and (1) reduces to

f1(r) + · · ·+ fi(r) = sup
s
{vs,r(P ) − (n− i)s}.

It is not immediately clear from this that f1 + · · · + fr is concave, since we are taking the
supremum rather than the infimum of a collection of concave functions. To get around this,
pick r1, r2 ∈ [− log β,− logα] and put r3 = ur1 +(1−u)r2 for some u ∈ [0, 1]. For j ∈ {1, 2},
choose sj achieving the supremum in (1) for r = rj . Put s3 = us1 + (1 − u)s2; then using
the convexity of vs,r(P ) in both s and r, we have

f1(r3) + · · · + fi(r3) ≥ vs3,r3
(P ) − (n− i)s3

≥ u(vs1,r1
(P ) − (n− i)s1) + (1 − u)(vs2,r2

(P ) − (n− i)s2)

= u(f1(r1) + · · ·+ fi(r1)) + (1 − u)(f1(r2) + · · ·+ fi(r2)).

This yields concavity for f1 + · · · + fi, proving (c).
Assume finally that α = 0 (and P is still monic). Then each vr(Pi) is a nondecreasing

function of r, as then is each vs,r(P ). Since vr(Pn) = 0, f1 + · · ·+ fr is nondecreasing by (1),
proving (d).

4 Key differences

Having drawn an analogy between our original theorem and Theorem 3, we must now indicate
some respects in which the analogy falls short.

Besides having everything negated (flipping concavity to convexity), our target theorem
also has a boundary case that does not occur in the Newton polygon case. That is because
subsidiary radii can “max out” by achieving equality in the bound fi(r) ≥ r, at which one
has an abrupt change of behavior which undermines the nonpositivity property for slopes.
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Another important difference must be noted between Theorem 3 and our desired results.
In Theorem 3, the function f1 + · · · + fn is piecewise of the form mr + b where m ∈ Z, but
b is also constrained: it must belong to the additive value group of K. By contrast, this
need not be the case in Theorem 1 or 1, as demonstrated by the following example. (See
Theorem 2 for the best possible affirmative result.)

Pick λ ∈ K× and 0 < α ≤ β such that for ρ ∈ [α, β],

p1/(p−1) < |λ|ρ−p < pp/(p−1).

LetM be the differential module overK〈α/t, t/β〉 generated by v satisfyingD(v) = −pπλt−p−1.
For ρ ∈ [α, β], using the supremum norm on M ⊗ Fρ given by w, we compute

|D|M⊗Fρ
= p−p/(p−1)|λ|ρ−p−1 < ρ−1;

this tells us that |D|tsp,M⊗Fρ
≤ ρ−1 but nothing stronger.

To compute R(M⊗Fρ), we construct the module M ′ over K〈αp/tp, tp/βp〉 with generator
w and D′(w) = −πλ(tp)−2. In this case, we read off

|D′|M ′⊗F ′

ρ
= p−1/(p−1)|λ|ρ−2p > ρ−p

so this also computes |D′|tsp,M ′⊗F ′

ρ
. We thus have

R(M ′ ⊗ F ′
ρ) = |λ|−1ρ2p

R(M ⊗ Fρ) = |λ|−1/pρ2,

where the latter holds by the Frobenius antecedent theorem because M = φ∗(M ′). (More
precisely, we first find that R(M ⊗ Fρ) ≥ |λ|−1/pρ2 > p−1/(p−1)ρ, so M has a Frobenius
antecedent; we then note that R(M ′ ⊗ F ′

ρ) > p−p/(p−1)ρp, so the Frobenius antecedent of M

is forced to equal M ′. We then get R(M ⊗ Fρ) = |λ|−1/pρ2.)
In particular,

f1(r) = 2r +
1

p
log |λ|

has constant term which need not belong to the value group of K.

5 Convexity of the generic radius

As a prelude to tackling Theorem 1, we give a quick proof of convexity of the function f1,
corresponding to the generic radius of convergence. This argument applies to both discs and
annuli, and can be (and historically was) used in place of the full strength of Theorem 1 for
many purposes.

Choose a basis of M , and let Ds be the basis via which Ds acts on M . Then recall that

R1(ρ) = min{ρ, p−1/(p−1) lim inf
s→∞

|Ds|
−1/s
ρ }.
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For each s, the function r 7→ − log |Ds|
−1/s
e−r is convex in r by the Hadamard three circles

lemma. This implies the convexity of

f1(r) = max{r,
1

p− 1
log p+ lim sup

s→∞

(− log |Ds|
−1/s
e−r )}.

To improve upon this result, one might like to try to read off the generic radius of
convergence, and maybe even the other subsidiary radii, from the Newton polygon of a
cyclic vector. In order to do this, we have to overcome two obstructions.

(a) Some of the subsidiary radii may be greater than p−1/(p−1)ρ, in which case Newton
polygons will not detect them.

(b) One can only construct cyclic vectors in general for differential modules over differential
fields, not over differential rings.

The first problem will be addressed using Frobenius descendants. The second problem will
be addressed by first using a cyclic vector over a fraction field to establish linearity and
integrality. We will then compare to a carefully chosen lattice to deduce convexity and
monotonicity.

6 Twisted polynomials and Newton polygons

Throughout this section, let F be a complete nonarchimedean differential field. We need a
way to detect truncated spectral norms of differential modules over F without writing down
cyclic vectors.

Lemma 4 (Decomposition lemma). Let R be a complete subring of F . Let V be a finite
differential module over F . Let e1, . . . , en be a basis of V via which D acts via a matrix N
which has the same Newton and Hodge slopes less than − log |d|F , namely r1, . . . , ri. Then
in the decomposition of V by spectral norm, the component of spectral norm s has dimension
equal to the number of i such that s = e−ri.

Proof. If N has no Hodge slopes less than − log |d|F , then |D|tsp,V ≤ |D|V ≤ |d|F and so
we have nothing to check. We thus assume instead that the least Hodge slope of N is
r < − log |d|F ; it suffices to check that we can separate off a component of V accounting for
that slope, by making a change of basis over oF .

By the Hodge-Newton decomposition, we can find a matrix U ∈ GLn(oF ) such that
U−1NU splits as a block diagonal matrix, with the top left block accounting for the slope
r. Put N1 = U−1NU + d(U)U−1; since |d(U)U−1| ≤ |d|F , using the perturbation theorem
for characteristic polynomials, we see that the matrix N1 = U−1NU + d(U)U−1 again has
the same Newton and Hodge slopes less than − log |d|F , and moreover they agree with the
corresponding slopes of N .

It is possible to repeat this process so as to obtain a convergent sequence of change-of-
basis matrices; we will make this calculation in detail in the next unit.
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In order to apply Lemma 4, we need to produce good bases of V . We can do this using
twisted polynomials as follows. (We made a similar calculation in a previous unit, in the
case where P had only one slope.)

Proposition 5. Let P = T n +
∑n−1

i=0 PiT
i ∈ F{T} be a monic twisted polynomial, and put

V = F{T}/F{T}P . Let r1 ≤ · · · ≤ rn be the slopes of the Newton polygon of P , and suppose
that there exist λi ∈ F of norm e−ri. Let N be the matrix via which D acts on the basis

λ−1
n · · ·λ−1

n−i+1T
i (i = 0, . . . , n− 1).

Then the Hodge slopes of N are also r1, . . . , rn; in particular, the Hodge slopes less than
− log |d|F compute truncated spectral norms of constituents of V .

Proof. Put µi = λ1 · · ·λn−i−1 for i = 0, . . . , n− 1; then

N =











0 · · · 0 µ−1
0 P0

λn−1 · · · 0 µ−1
1 P1

. . .
...

0 · · · λ1 µ−1
n−1Pn−1











.

For i = 1, . . . , n− 1, we have

|µ−1
i Pi| = eri+···+rn−i−1 |Pi|

≤ er1+···+rn−1−1e−r1−···−rn−i

≤ e−rn−i = |λn−i|.

Thus by using column operations over oF (so as not to change the Hodge polygon), we can
clear everything in the right column except µ−1

0 P0. By permuting rows and columns, we end
up with a diagonal matrix with entries of norm e−r1, . . . , e−rn . This proves the claim.

7 Measuring small subsidiary radii

We are now almost ready to prove the components of Theorem 1 concerning large subsidiary
radii. We postpone the proof of one more key lemma until we can illustrate how it will be
needed.

Lemma 6. Fix c0 > 1/(p− 1) log p, and define

f ′
i(r) = max{fi(r), c0}.

(a) (Linearity) For i = 1, . . . , n, the functions f ′
i are continuous and piecewise affine.

(b) (Integrality) If i = n or f ′
i(r0) > max{f ′

i+1(r0), r0 + c0}, then in a neigborhood of r0,

f ′
1(r) + · · ·+ f ′

i(r) ∈ v(K×) + rZ.

Consequently, the slopes of each f ′
i belong to 1

1
Z ∪ · · · ∪ 1

n
Z.
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(c) (Convexity) For i = 1, . . . , n, the function f ′
1 + · · ·+ f ′

i is convex.

(d) (Monotonicity) Suppose that α = 0. For i = 1, . . . , n, the slopes of f ′
1 + · · · + f ′

i are
nonpositive at any point r where f ′

i(r) > r + c0.

Proof. Put F = FracK〈α/t, t/β〉. Choose a cyclic vector forM⊗F to obtain an isomorphism
M ⊗ F ∼= F{T}/F{T}P for some monic twisted polynomial P over F . We may then apply
Theorem 3 to deduce (a) and (b).

To deduce (c) and (d), we may work in a neighborhood of a single value r0 of r. There
is no harm in enlarging K, so we may assume v(K×) = R. Then we may reduce to the case
r0 = 0 by replacing t by λt for some λ ∈ K×.

Apply Proposition 5 to construct λr,1, . . . , λr,n ∈ K such that the basis of M ⊗Fe−r given
by

λ−1
r,n · · ·λ

−1
r,n−i+1T

i (i = 0, . . . , n− 1)

satisfies the conclusion of the proposition. By Lemma 7 below, for any particular c > 1, we
may construct a basis m1, . . . , mn of M such that the supremum norm defined by this basis
differs from the supremum norm defined by the chosen basis of M ⊗ F1 by a multiplicative
factor of at most c. By continuity, for r sufficiently close to 0, the supremum norm defined
by m1, . . . , mn differs from the supremum norm defined by the chosen basis of M ⊗ Fe−r by
a multiplicative factor of at most c2.

Let N be the matrix via which D acts on m1, . . . , mn. For r close to 0, by the previous
paragraph, we can construct a change of basis matrix Ur between m1, . . . , mn and the chosen
basis of M ⊗ Fe−r , such that |Ur|, |U

−1
r | ≤ c2. For c sufficiently close to 1 (and r corre-

spondingly close to 0), we may conclude that the Newton polygons of N and N + d(Ur)U
−1
r

coincide in slopes less than −r. The latter has the same Newton polygon as its conjugate
U−1

r NUr + U−1
r d(Ur); by Lemma 4, we may conclude that for r near 0, the Newton polygon

of N under | · |r computes subsidiary radii less than p−1/(p−1)e−r. We may thus deduce (c)
and (d) from Theorem 3.

In the previous proof, we needed to approximate a basis of M ⊗ F1 with a basis of M ;
the following lemma allows us to do this.

Lemma 7 (Lattice lemma). Let R be a complete K-subalgebra of F1 (e.g., K〈α/t, t/β〉 with
1 ∈ [α, β]), and put R′ = R ∩ oF1

. Let M be a finite free R-module of rank n, and let | · |M
be a norm on M ⊗ F1 compatible with | · |1. Assume that either:

(a) c > 1 and the value group of K is not discrete; or

(b) c ≥ 1, the value group of K is discrete, and the value group of M is the same as that
of K.

Then there exists a norm | · |′M on M ⊗ F1 such that {m ∈ M : |m|′M ≤ 1} is a finite free
R′-module of rank n, and c−1|m|M ≤ |m|′M ≤ c|m|M for all m ∈M .
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Although we will only need to apply this when | · | is the supremum norm associated to
some basis, we need the extra generality in order to carry out the induction in the proof (at
least in case (a)).

Proof. We induct on n. Pick any m1 ∈M belonging to a basis of M , so that M1 = M/Rm1

is also free. Using (a) or (b), we can rescale m1 by an element of K to force 1 ≤ |m1|M ≤ c2/3.
Equip M1 with the quotient norm

|x1|M1
= inf

x∈M :x+M1=x1

{|x|M};

this is a norm because M1 is a closed subspace of M . Moreover, the infimum is always
achieved in case (b). Apply the induction hypothesis to choose a basis m2,1, . . . , mn,1 of
M1 such that the supremum norm | · |′M1

defined by m2,1, . . . , mn,1 satisfies c−1/3|x1|M1
≤

|x1|
′
M1

≤ c1/3|x1|M1
for all x1 ∈ M1. For i = 2, . . . , n, choose mi ∈ M lifting mi,1 such that

|mi|M ≤ c1/3|mi,1|M1
≤ c2/3.

Let | · |′M be the supremum norm defined by m1, . . . , mn. For a1, . . . , an ∈ R′, we have

|a1m1 + · · ·+ anmn|M ≤ max
1≤i≤n

{|ai||mi|M} ≤ c2/3 ≤ c.

On the other hand, ifm ∈M satisfies |m|M ≤ 1, we can uniquely writem = a1m1+· · ·+anmn

with ai ∈ R. By definition of the quotient norm, |m|M1
≤ 1, so |m|′M1

≤ c1/3. In other words,
|a2|, . . . , |an| ≤ c1/3, so

|a2m2 + · · ·+ anmn|M ≤ max
2≤i≤n

{|ai||mi|M} ≤ c1/3c2/3 = c.

Since |m|M ≤ 1 ≤ c, we have |a1m1|M ≤ c. Since |m1|M ≥ 1, we have |a1| ≤ c. This proves
the desired inequalities.

8 Application of Frobenius

We now prove parts (a), (b), (c) of Theorem 1 without any lower bound restriction on the
values of fi. Again, it suffices to work in a neighborhood of r = 0.

We first prove an analogue of Lemma 6 in which c0 can be replaced by any positive
value. We will accomplish this using Frobenius descendants; if we tried to use Frobenius
antecedents instead, we would encounter trouble in the boundary case fi(r) = 1/(p−1) log p
and in the case where f1(r) > 1/(p− 1) log p but fi(r) < 1/(p− 1) log p.

Lemma 8. Fix anonnegative integer j, and fix cj > p−j/(p− 1) log p. Define

f ′
i(r) = max{fi(r), cj}.

(a) (Linearity) For i = 1, . . . , n, the functions f ′
i are continuous and piecewise affine.
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(b) (Integrality) If i = n or f ′
i(r0) > max{f ′

i+1(r0), r0 + cj}, then in a neigborhood of r0,

f ′
1(r) + · · ·+ f ′

i(r) ∈ v(K×) + rZ.

Consequently, the slopes of each f ′
i belong to 1

1
Z ∪ · · · ∪ 1

n
Z.

(c) (Convexity) For i = 1, . . . , n, the function f ′
1 + · · ·+ f ′

i is convex.

Proof. We proceed by induction on j, the case j = 0 being Lemma 6. Let R′
1(ρ

p), . . . , R′
n(ρp)

be the subsidiary radii of ϕ∗M ⊗ F ′
ρ in increasing order. (The normalization is chosen this

way because the series variable in F ′
ρ is tp, which has norm ρp.) Put gi(r) = − logR′

i(e
−r).

By the Frobenius descendant theorem, the list g1(pr), . . . , gpn(pr) consists of

n
⋃

i=1

{

{pfi(r), pr + p
p−1

log p (p− 1 times)} fi(r) ≤ r + 1/(p− 1) log p

{log p+ (p− 1)r + fi(r) (p times)} fi(r) ≥ r + 1/(p− 1) log p.

Thus we may deduce (a) from the induction hypothesis.
To check (b) and (c), it suffices to handle cases where i = n or fi(0) > max{fi+1(0), cj}.

(We may linearly interpolate to establish convexity in the other cases.) In these cases, we
have either fi(0) > 1/(p− 1) log p, in which case in some neighborhood of r = 0 we have

g1(pr) + · · ·+ gpi(pr) = p(f1(r) + · · · + fi(r)) + pi log p+ (p− 1)ipr, (2)

or fi+1(0) < 1/(p− 1) log p or i = n, in which case in some neighborhood of r = 0 we have

g1(pr) + · · ·+ gpi+(p−1)(n−i)(pr) = p(f1(r) + · · · + fi(r)) + pn log p+ (p− 1)npr. (3)

Moreover, fi(0) > cj if and only if gpi(0) > cj−1 for cj−1 = pcj .
If fi(0) > 1/(p− 1) log p, apply (2) and the induction hypothesis to write piecewise

f1(r) + · · ·+ fi(r) = p−1(g1(pr) + · · · + gpi(pr) + pi log p+ (p− 1)ipr)

= p−1(m(pr) + ∗)

= mr + p−1∗

for some m ∈ Z. (Note that ∗ is not guaranteed to be in p ·v(K×); this explains the example
of §4.) If fi(0) ≤ 1/(p− 1) log p, then fi+1(0) < 1/(p− 1) log p, so we may apply (3) to write
piecewise

f1(r) + · · ·+ fi(r) = p−1(g1(pr) + · · · + gpi+(p−1)(n−i)(pr) + pn log p+ (p− 1)npr)

= p−1(m(pr) + ∗)

= mr + p−1∗

for some m ∈ Z. (Here it was important that the domains of applicability of (2) and (3)
overlap: if fi(0) = 1/(p − 1) log p, then (2) may not remain applicable when we move from
r = 0 to a nearby value.)
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To finish proving (a), (b), (c) of Theorem 1, we must check them in a neighborhood of
0 under the hypothesis that fi(0) = 0; note that (b) will follow immediately from (a) given
that (a),(b), (c) are now known in a neighborhood of any r for which fi(r) > r.

We first check continuity. By Lemma 8, for any ǫ > 0, we can find 0 < δ < ǫ such that

|max{fi(r), ǫ/4}| < ǫ/2 (|r| < δ).

For such r, −ǫ < −δ < fi(r) < ǫ; this yields continuity.
We next check piecewise affinity by induction on i. Given that f1, . . . , fi−1 are linear

in a one-sided neighborhood of r = 0, say [−δ, 0], and given fi(0) = 0, it suffices to check
linearity of fi(r)−r in some [−δ′, 0]. From what we know already, in a neighborhood of each
r ∈ [−δ, 0] where fi(r) − r > 0, fi(r) − r is convex and piecewise affine with slopes in 1

n!
Z.

Note that none of these slopes can be nonnegative, otherwise fi(r) − r would thereafter be
nondecreasing and could not have limit 0 at r = 0. By the same argument, if fi(r0)− r0 = 0
for some r0 ∈ [−δ, 0), then the slope of fi(r)−r at any point r ∈ (r0, 0) with fi(r)−r > 0 must
simultaneously be positive and negative; since this cannot occur, we must have fi(r)− r = 0
for all r ∈ [r0, 0].

If fi(r) − r = 0 for some r < 0, we are then done, as fi(r) − r is constant in a one-sided
neighborhood of 0. Otherwise, the slopes of fi(r) − r in [−δ, 0) form a sequence of discrete
values which are negative and nondecreasing. This sequence must then stabilize, so fi(r)− r
is linear in a one-sided neighborhood of 0.

We finally check convexity by induction on i. Given that f1 + · · · + fi−1 is convex and
that fi(0) = 0, it suffices to check that fi(r) − r is convex in a neighborhood of 0. But
we already know that fi(r) − r is continuous and piecewise affine near 0; it must then have
nonpositive left slope and nonnegative right slope, and so must be convex near 0.

9 Monotonicity

We still must prove (d) of Theorem 1. Note that we have the desired statement as part
of Lemma 6 but not Lemma 8; that is because the Frobenius descendant has a pole at
t = 0, throwing off the bound on slopes. To fix this, we must use the off-centered Frobenius
descendant theorem.

Lemma 9. If α = 0 and fi(0) > 0, then the slope in a right neighborhood of r = 0 is
nonpositive.

Proof. We proceed as in the proof of Lemma 8, but using the off-centered Frobenius ψ instead
of ϕ. Let R′′

1(ρ
p), . . . , R′′

n(ρp) be the subsidiary radii of ψ∗M ⊗ F ′′
ρ in increasing order. Put

gi(r) = − logR′′
i (e

−r). By the Frobenius descendant theorem, if fi(0) > 1/(p− 1) log p, then

g1(pr) + · · · + gpi(pr) = p(f1(r) + · · ·+ fi(r)) + pi log p,

whereas if fi+1(0) ≤ 1/(p− 1) log p or i = n, then

g1(pr) + · · ·+ gpi+(p−1)(n−i)(pr) = p(f1(r) + · · · + fi(r)) + pn log p.
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Moreover, fi(0) > cj if and only if gpi(0) > cj−1 for cj−1 = pcj. Again, we deduce the claim
from the corresponding claim about ψ∗M ; this sets up an induction with base case treated
by Lemma 6.

10 Subharmonicity

It is also worth noting the following harmonicity result. For µ ∈ κalg
K , let µ be a lift of µ in

some complete extension L of K. If α ≤ 1 ≤ β, let Tµ : K〈α/t, t/β〉 → L〈α/t, t/β〉 be the
map t 7→ t+ µ.

Let s∞,i be the left slope of f1(M, r) + · · ·+ fi(M, r) at r = 0. Let sµ,i be the right slope
of f1(T

∗
µM, r) + · · · + fi(T

∗
µM, r) at r = 0. Define the i-th discrepancy of M at r = 0 to be

the sum
disci(M, 0) = −

∑

µ6=0

sµ,i;

it is always nonnegative by Theorem 1(d). (Note that if we extend K to some larger field and
consider µ transcendental over the original residue field, then sµ,i = 0; that is, the definition
of discrepancy is impervious to extending K.) We may extend the definition to other values
of r by rescaling t.

Theorem 10 (Subharmonicity). Assume that κK is algebraically closed and that 1 ∈ (α, β).
Fix i ∈ {1, . . . , n} such that fi(0) > 0. Then

s0,i − s∞,i ≥ disci(M, 0),

with equality if i = n.

Proof. By applying ϕ∗ as needed, we can force fi(r) > 1/(p−1) log p. Then this follows from
an argument analogous to Lemma 6, but with Lemma 11 below used in place of Theorem 3.

Lemma 11. Assume that κK is algebraically closed and that 1 ∈ (α, β). For f ∈ K〈α/t, t/β〉
nonzero, put vr(f) = − log |f |e−r for r ∈ [− log β,− logα]. Let s∞ be the left slope of vr(f)
at r = 0. Let sµ be the right slope of vr(Tµ(f)) at r = 0. Then

s∞ =
∑

µ

sµ.

Proof. Without loss of generality, we may assume that |f |1 = 1. The quotient of oF1
∩

K〈α/t, t/β〉 by the ideal generated by mF is isomorphic to κK [t, t−1]; let f be the image of
f in this quotient. Then sµ is the order of vanishing of f at µ, whereas s∞ is the negative
of the order of vanishing of f at ∞. This gives the desired equality.

Since discrepancy is nonnegative, Theorem 10 includes the convexity inequality s∞,i ≤ s0,i

from Theorem 1(c). One can turn things around to get the following corollary.
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Corollary 12. With notation as in Theorem 10, if s∞,i = s0,i, then sµ,i = 0 for all µ 6= 0.

We also have a corollary that says that for a finite differential module over K〈α/t, t/β〉,
the generic radius of convergence can be computed at any point in all but finitely many
residue discs, not just in a generic residue disc.

Corollary 13. With notation as in Theorem 10, sµ,i = 0 for all but finitely many µ.

Proof. The sµ,i lie in the discrete subgroup 1
n!

Z of R and are nonpositive, so their sum can
only be bounded below if all but finitely many of them are zero.

11 Radius and generic radius

We can now interpret the radius of convergence of a differential module on a disc in terms
of the function f1.

Proposition 14. Let M be a differential module over K〈t/β〉 for some β > 0. Then
the radius of convergence of M equals e−r, for r the smallest value such that f1(r) = r.
Consequently, f(r′) = r′ for all r′ ≥ r.

Proof. By a result from a previous unit, the radius of convergence of M is at least the generic
radius of convergence of M ⊗ Fe−r , which by hypothesis equals e−r. On the other hand, if
λ > e−r, then by hypothesis f1(− log λ) > − log λ, or in other words R(M ⊗ Fλ) < λ. This
means that M ⊗ K〈t/λ〉 cannot be trivial, so the radius of convergence cannot exceed λ.
This proves the desired result.

Corollary 15. Let M be a differential module over K〈t/β〉 for some β > 0. Then the radius
of convergence of M belongs to the divisible closure of the multiplicative value group of K.

Proof. By Theorem 1 and Theorem 2, the function f1(r) is piecewise of the form ar+ b with
a ∈ Q and b in the divisible closure of the additive value group of K. By Proposition 14,
the radius of convergence of M equals e−r for r the smallest value such that f1(r) = r. To
the left of this r, f1 must be piecewise affine with slope 6= 1; by comparing the left and right
limits at r, we deduce that r = ar + b for some a 6= 1 rational and some b in the divisible
closure of the additive value group of K. Since this gives r = b/(a − 1), we deduce the
claim.

One should be able to better control the denominators, as in the following question.

Question 16. Let M be a differential module over K〈t/β〉 for some β > 0. Does there
necessarily exist j ∈ {1, . . . , rank(M)} such that the j-th power of the radius of convergence
of M belongs to the p-divisible closure of the multiplicative value group of K?

We also have a criterion for when the radius of convergence equals the generic radius.

Corollary 17. Let M be a differential module over K〈t/β〉 for some β > 0, such that for
some α ∈ (0, β), R(M⊗Fρ) is constant for ρ ∈ [α, β]. Then R(M) = R(M⊗Fρ). (A similar
statement holds for the product of the first i subsidiary radii, for i = 1, . . . , rank(M).)
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12 Subsidiary radii as radii of convergence

The generic radii of subsidiary convergence can be interpreted as the radii of convergence of
a well-chosen basis of local horizontal sections at a generic point.

Theorem 18 (after Young). Let (V,D) be a differential module over Fρ of dimension n with
subsidiary radii s1 ≤ · · · ≤ sn. Choose a basis e1, . . . , en of local horizontal sections of V at
a generic point η. For i = 1, . . . , n, let ρi be the radius of convergence of ei, and suppose
that ρ1 ≤ · · · ≤ ρn. Then ρi ≤ si for i = 1, . . . , n; moreover, there exists a choice of basis
for which ρi = si for i = 1, . . . , n.

Proof. We first produce a basis for which ρi = si for i = 1, . . . , n. For this, we may apply the
strong decomposition theorem to decompose V into components each with a single subsidiary
radius, and thus reduce to the case s1 = · · · = sn = s. By the geometric interpretation of
generic radius, each Jordan-Hölder constituent of V admits a basis of local horizontal sections
on a generic disc of radius s. By a prior lemma, the same is true for V itself.

For the remaining inequality, we induct on n. Let m be the largest integer such that
s1 = sm. Let V1 be the component of V of subsidiary radius s1, so that dim V1 = m. We
will check that no local horizontal section of V1 at a generic point η can have radius of
convergence strictly greater than s1.

Suppose the contrary; then there would exist a local horizontal section of V1 at η which
converges on a closed disc of radius λ for some λ ∈ (s1, ρ). This would mean that V1⊗L〈(t−
η)/λ〉 would have a trivial submodule, and so would have λ as one of its subsidiary radii.
However, by arguing as in Theorem 10, we see that the product of the subsidiary radii of
V1 ⊗L〈(t− η)/λ〉 is equal to sm

1 for λ slightly smaller than ρ; by Theorem 1(c) and (d), the
equality holds for all λ ∈ (s1, ρ). This yields a contradiction.

We conclude that any local horizontal section of V that projects nontrivially onto V1 has
radius strictly greater than s1. We can divide the given basis into m sections that project
onto a basis of V1, and n − m sections that project onto a basis of the complementary
component. The first m sections have radius of convergence at most s1 by above; the others
have radii of convergence bounded by sm+1, . . . , sn by the induction hypothesis. This yields
the desired result.

A basis of local horizontal sections for which ρi = si for i = 1, . . . , n is sometimes called
an optimal basis.

13 Notes

For f1, Christol and Dwork established convexity [CD04, Proposition 2.4] (using essentially
the same short proof given here) and continuity at endpoints [CD04, Théorème 2.5]. All
other results in this unit are original.

We again remind the reader that subharmonicity, as a property of suitable functions on
Berkovich spaces, is addressed in the work of Thuillier [Thu05].
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When restricted to intrinsic subsidiary radii less than p−1/(p−1), Theorem 18 is a result
of Young [You92, Theorem 3.1]. Young’s proof is an explicit calculation using twisted poly-
nomials; it was limited to small radii because the Frobenius antecedent theorem was not
available at the time.

14 Exercises

1. Given an example to show that in Theorem 3, f2 need not be concave (even though f1

and f2 are concave).

2. Here is a result of Dwork related to the example in § 4. Suppose π ∈ K satisfies
πp−1 = −p. Prove that the power series E(t) = exp(πt−πtp) has radius of convergence
strictly greater than 1. (By contrast, the series exp(πt) has radius of convergence 1.)
Optional: prove that the radius of convergence is equal to p(p−1)/p2

.

3. Prove that ifK is discretely valued, then oK〈t〉 is noetherian. It isn’t otherwise, because
then oK itself is not noetherian.

4. Prove that each maximal ideal of oK〈t〉 is generated by mK together with some P ∈
oK [t] whose reduction modulo mK is irreducible in κK [t].
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