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Decomposition by subsidiary radii

In this unit, we show that one can sometimes decompose a differential module on a disc
or annulus so as to separate the small and large subsidiary radii into different components.

1 Unit coefficients in Newton polygons

For any complete extension L of K and any µ ∈ oL, we write fµ : K〈t〉 → L〈t〉 for the map
t 7→ t + µ.

Lemma 1. For x ∈ K〈t〉, x is a unit if and only if for any L and µ, |fµ(x)|e−r is independent
of r. (By concavity, it suffices to check this for r in a neighborhood of 0.)

Proof. Write x =
∑

i xit
i. Then x is a unit if and only if |x0| > |xi| for all i > 0. If this

holds, then clearly |fµ(x)|e−r = |x0| for all µ, r. Otherwise, we can reduce x−1
0 x modulo mK

to get a nonconstant element of κK [t]; by making L large enough, we can choose µ to reduce
to a root of this polynomial, and then |fµ(x)|e−r will not be constant.

This immediately yields the following.

Theorem 2. Let P = T n +
∑n−1

i=0 PiT
i ∈ K〈t〉{T} be a monic twisted polynomial. Choose

j ∈ {1, . . . , n − 1} such that there is a vertex of the Newton polygon of P , measured with
respect to | · |1, with x-coordinate (−n + j), and that the first j slopes are all less than
− log |d|F1

. Then Pj is a unit in K〈t〉 if and only if for any L and µ, the sum of the first
j slopes of the Newton polygon of fµ(P ) = T n +

∑n−1
i=0 fµ(Pi)T

i, measured with respect to
| · |e−r , is independent of r. (By concavity, it suffices to check this for r in a neighborhood of
0.) Moreover, in this case (by the master factorization theorem), there is a factorization of
P separating the first j slopes.

For annuli, it is a bit more complicated to formulate the analogous results; here is a weak
but adequate formulation.

Lemma 3. For x ∈ ∪α∈(0,1)K〈α/t, t〉, x is a unit if and only if for any L and µ, |fµ(x)|e−r

is independent of r for r in a neighborhood of 0.)

Theorem 4. Let P = T n +
∑n−1

i=0 PiT
i ∈ (∪α∈(0,1)K〈α/t, t〉){T} be a monic twisted poly-

nomial. Choose j ∈ {1, . . . , n − 1} such that there is a vertex of the Newton polygon of P ,
measured with respect to | · |1, with x-coordinate (−n + j), and that the first j slopes are all
less than − log |d|F1

. Then Pj is a unit in ∪α∈(0,1)K〈α/t, t〉 if and only if for any L and µ,

the sum of the first j slopes of the Newton polygon of fµ(P ) = T n +
∑n−1

i=0 fµ(Pi)T
i, measured

with respect to | · |e−r , is independent of r for r in a neighborhood of 0. Moreover, in this
case (by the master factorization theorem), there is a factorization of P separating the first
j slopes.
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2 Decomposition over a disc

Retain notation as in the subharmonicity theorem from the previous unit.

Theorem 5. Let M be a finite differential module over K〈t/β〉 of rank n. Suppose that the
following conditions hold for some i ∈ {1, . . . , n − 1}.

(a) We have fi(− log β) > fi+1(− log β).

(b) The function f1 + · · · + fi is constant in a neighborhood of r = − log β.

(c) The i-th discrepancy of M is zero at r = − log β.

Then the decomposition of M ⊗ Fβ separating the first i subsidiary radii lifts to a decompo-
sition of M itself.

Before proving Theorem 5, we record a trivial but useful observation.

Lemma 6. Let R, S, T be subrings of a common ring U with S ∩ T = R. Let M be a finite
free R-module. Then the intersection (M ⊗S)∩ (M ⊗ T ) inside M ⊗U is equal to M itself.

This also holds when M is only locally free; see exercises. The immediate application is
to replace K by a complete extension L in Theorem 5; inside the completion of L(t) for the
1-Gauss norm, we have

F1 ∩ L〈t〉 = K〈t〉.

Thus obtaining matching decompositions of M ⊗ F1 and M ⊗ L〈t〉 gives a corresponding
decomposition of M itself.

Lemma 7. Theorem 5 holds if fi(− log β) > 1/(p − 1) log p − log β.

Proof. As in the previous unit, we may reduce to the case β = 1. (This requires enlarging
K, but as noted above, Lemma 6 renders this enlargement harmless.) Set notation as
in Lemma 6 from the previous unit. Then for r near 0, the sum of the first i slopes of
characteristic polynomial of N equals the sum of the first i slopes of the Newton polygon
of the twisted polynomial P , which is constant, and the i-th slope on either side is strictly
less than the (i + 1)-st slope. Moreover, this all remains true after replacing t by t + c for
any c of norm 1. Consequently, by Theorem 2, the coefficient of T n−i in the characteristic
polynomial of N is a unit in K〈t〉, and serves as a vertex of the Newton polygon for all r.
We may thus perform a slope decomposition in K〈t〉[T ] to separate the first i slopes.

By applying the lattice lemma from the previous unit (again with K suitably large) to
both factors of the decomposition, we obtain a matrix U1 ∈ GLn(K〈t〉) with |U1|, |U1|

−1 ≤ c
such that U−1

1 NU1 is a block diagonal matrix, with the first i Newton slopes in the first
block and the rest in the second block.

Put N1 = U−1
1 N0U1 + U−1

1 d(U1). Let sH,1, . . . , sH,n be the Hodge slopes of N1; they
differ from the corresponding Newton slopes by at most 4 log c. We now repeat the following
operation to produce N2, N3, . . . . Suppose we have

Nl =

(

Al Bl

Cl Dl

)
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with Al having Hodge slopes sH,1, . . . , sH,i, and |Bl|, |Cl|, |Dl| ≤ e−sH,iδ for some δ < 1.
(These hold for l = 1 if we take c small enough.) Put

Ul+1 =

(

Ii 0
ClA

−1
l In−i

)

.

Note that |A−1
l | ≤ esH,i by Cramer’s rule, so |Ul+1 − In| ≤ δ < 1. In particular, Ul+1 is

invertible. Set
Nl+1 = U−1

l+1NlUl+1 + U−1
l+1d(Ul+1).

In block form,

Nl+1 =

(

Al − BlClA
−1
l Bl

−ClA
−1
l BlClA

−1
l + DlClA

−1
l + d(ClA

−1
l ) −ClA

−1
l Bl + Dl

)

,

so

max{|Bl+1|, |Dl+1|} ≤ e−sH,iδ

|Cl+1| ≤ max{esH,i, δ}|Cl|.

Since max{esH,i, δ} < 1, Cl → 0 and so Ul → In.
In the limit, we get a basis of M on which D acts by a block upper triangular matrix;

this shows that the first component of the decomposition of M ⊗ F1 separating the first i
subsidiary radii from the others lifts to M . Repeating the argument with M replaced by M∨

shows that the second component also lifts (because its annihilator in M∨ ⊗ F1 lifts).

To prove Theorem 5 in general, we must reduce the problem for M to the problem for
ϕ∗M . If M ′

1⊕M ′

2 is the corresponding decomposition of ϕ∗M , then this might not be induced
by a decomposition of M1, because some factors of subsidiary radius p−p/(p−1) that are needed
in M ′

2 are instead grouped into M ′

1. To fix this, consider instead the decomposition

((M ′

1 ⊗ W0) ∩ · · · ∩ (M ′

1 ⊗ Wp−1)) ⊕ ((M ′

2 ⊗ W0) + · · ·+ (M ′

2 ⊗ Wp−1));

this is induced by the desired decomposition of M1.

3 Decomposition over a closed annulus

A similar argument works for annuli, to prove the following.

Theorem 8. Let M be a finite differential module over K〈α/t, t/β〉 of rank n. Suppose that
the following conditions hold for some i ∈ {1, . . . , n − 1}.

(a) We have fi(r) > fi+1(r) for − log β ≤ r ≤ − log α.

(b) The function f1 + · · · + fi is affine on [− log β,− log α].
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(c) The i-th discrepancy of M is zero at both r = − log β and r = − log α.

Then there is a decomposition of M inducing, for each ρ ∈ [α, β], the decomposition of
M ⊗ Fρ separating the first i subsidiary radii from the others.

In the following proof, we will skip some details which proceed as in the disc case.

Proof. By the patching theorem for finite free modules over K〈α/t, t/β〉, it suffices to show
that we can cover the interval [α, β] with finitely many closed subintervals [γ, δ] of positive
length, such that the desired conclusion holds for M ⊗ K〈γ/t, t/δ〉. Since the interval [α, β]
is compact, it suffices to check that each ρ ∈ [α, β] occurs as the endpoint of such a good
interval.

Note that condition (b) implies that the i-th discrepancy of M is zero for all r ∈
(− log β,− log α). That means that we may relabel things so that ρ becomes an endpoint
of the interval, without losing our hypotheses. That is, it suffices to check that there exists
γ ∈ [α, β) such that the desired decomposition exists for M ⊗ 〈γ/t, t/β〉.

Using Lemma 6, we may enlarge K and then reduce to the case β = 1. Moreover,
using Frobenius descendants as in the proof of Theorem 5, we may reduce to the case where
fi(0) > 1/(p − 1) log p.

Again, set notation as in Lemma 6 from the previous unit. This time, hypotheses (a)
and (c) plus Theorem 4 imply that for γ ∈ [α, 1) sufficiently close to 1, the coefficient of
T n−i in the characteristic polynomial of N is a unit in K〈γ/t, t〉, and serves as a vertex of
the Newton polygon for all r. We may thus perform a slope decomposition in K〈γ/t, t〉[T ]
to separate the first i slopes, and continue as in Lemma 7.

4 Decomposition over an open disc or annulus

If we are willing to lose information at the endpoints of our given interval, we can drop
condition (c) from Theorem 8.

Theorem 9. Let M be a finite differential module over K〈t/β〉 of rank n. Suppose that the
following conditions hold for some i ∈ {1, . . . , n − 1}.

(a) For r in a neighborhood of − log β, f1 + · · ·+ fi is constant.

(b) For r ∈ (− log β,∞) sufficiently small, fi(r) > fi+1(r). (We do not require the in-
equality for r = − log β.)

Then for any δ < β, M ⊗ K〈t/δ〉 admits a unique decomposition separating the first i
subsidiary radii.

Proof. It suffices to check this for a sequence of values of δ approaching β. To do this, note
that by subharmonicity, the ith discrepancy of M can only be nonzero at a value of r where
the function f1 + · · · + fi has a change of slope. In particular, those values occur discretely
in any interval, so for δ < β sufficiently close to β, − log δ is not such a value. We may then
apply Theorem 5 to conclude.
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We have a similar result for annuli; the proof is similar, so we omit it.

Theorem 10. Let M be a finite differential module over K〈α/t, t/β〉 of rank n. Suppose
that the following conditions hold for some i ∈ {1, . . . , n − 1}.

(a) We have fi(r) > fi+1(r) for − log β < r < − log α. (We do not require the inequality
for r = − log β or r = − log α.)

(b) The function f1 + · · · + fi is affine on [− log β,− log α].

Then for any α < γ ≤ δ < β, M ⊗ K〈γ/t, t/δ〉 admits a unique decomposition separating
the first i subsidiary radii.

5 Modules solvable at a boundary

Let M be a finite differential module on the half-open annulus with closed inner radius α
and open outer radius β. We say M is solvable at β if R(M ⊗ Fρ) → β as ρ → β−, or
equivalently, if IR(M ⊗ Fρ) → 1 as ρ → β−.

Lemma 11. Let M be a finite differential module on the half-open annulus with closed inner
radius α and open outer radius β, which is solvable at β. There exist b1 ≥ · · · ≥ bn ∈ [0,∞)
such that for ρ ∈ [α, β) sufficiently close to β, the intrinsic subsidiary radii of M ⊗ Fρ are
(ρ/β)b1, . . . , (ρ/β)bn. Moreover, if i = n or bi > bi+1, then b1 + · · ·+ bi ∈ Z.

Proof. Define f1(r), . . . , fn(r) as before. For r → (− log β)+, f1 + · · ·+ fi − ir is convex with
slopes in a discrete subset of R and has limit 0; this implies that the slopes are all positive.
However, the slopes lie in a discrete subgroup of R, so they must eventually stabilize. We
deduce that each fi is linear in a neighborhood of − log β, and we may infer the desired
conclusions from the known properties of the fi.

The quantities b1, . . . , bn are called the (differential) slopes of M at β. We will have a
closer look at these numbers in a later unit.

We now recover a decomposition theorem of Christol-Mebkhout; see notes.

Theorem 12 (Christol-Mebkhout). Let M be a finite differential module on the half-open
annulus with closed inner radius α and open outer radius β, which is solvable at β. Then
for some γ ∈ [α, β), the restriction of M to the annulus with closed inner radius α and
open outer radius β splits as a direct sum ⊕b∈[0,∞)Mb, such that for each b ∈ [0,∞), for all
ρ ∈ [γ, β), the intrinsic subsidiary radii of Mb ⊗ Fρ are all equal to (ρ/β)b.

Proof. By Lemma 11, we are in a case where Theorem 10 may be applied.

The condition of solvability at a boundary is often established by exhibiting a Frobenius
structure for the differential equation. We will explain what this means in a later unit.
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6 Notes

Our results on modules solvable at a boundary are originally due to Christol and Mebkhout
[CM00], [CM01]. In particular, Lemma 11 for the generic radius is [CM00, Théorème 4.2.1],
and the decomposition theorem (which implies Lemma 11 in general) is [CM01, Corol-
laire 2.4–1]. The proof technique of Christol and Mebkhout is significantly different from
ours: they construct the decomposition by exhibiting convergent sequences for a certain
topology on the ring of differential operators.

Note that Christol and Mebkhout do not obtain quantitative results; that is, they do
not control the range over which the decomposition occurs. We are not sure whether this
is really a limitation of their method, or whether they did not bother to exert such control
because they did not have an application in mind for it. (Remember that for the quantitative
results here, it was crucial to use Frobenius descendants, which do not appear previously
elsewhere.)

Note also that Christol and Mebkhout work directly with a differential module on an open
annulus as a ring-theoretic object; this requires a freeness result of the following form. If K is
spherically complete, any finite free module on the half-open annulus with closed inner radius
α and open outer radius β is induced by a finite free module over the ring ∩ρ∈[α,β)K〈α/t, t/ρ〉.
(That is, any locally free coherent sheaf on this annulus is freely generated by global sections.)
For a proof, see for instance [Ked05, Theorem 3.14]. A result of Lazard [Laz62] implies that
this property, even when restricted to modules of rank 1, is in fact equivalent to spherical
completeness of K.

7 Exercises

1. Prove the analogue of Lemma 6 where M is only locally free. This is [Ked07b,
Lemma 1.2.7].

6


