
p-adic differential equations

18.787, Kiran S. Kedlaya, MIT, fall 2007

Formalism of differential algebra

In this lecture, we set up some formalism for dealing with differential equations. These
can be used for the start of an axiomatic treatment of differential algebra, but I will only
introduce the minimum for my needs.

Convention: My rings are commutative and unital unless otherwise specified. When I
say “noncommutative ring”, I really mean “not necessarily commutative ring”.

1 Differential modules

A differential ring is a ring R equipped with a derivation d : R → R, i.e., an additive map
satisfying the Leibniz rule

d(ab) = ad(b) + bd(a) (a, b ∈ R).

We expressly allow d = 0 unless otherwise specified; this will come in handy in some sit-
uations. A differential ring which is also a domain, field, etc., will be called a differential
domain, field, etc.

A differential module over a differential ring (R, d) is a module M equipped with an
additive map D : M → M satisfying

D(am) = aD(m) + d(a)m;

such a D will also be called a differential operator on M relative to d. For example, (R, d) is
a differential module over itself; any differential module isomorphic to a direct sum of copies
of (R, d) is said to be trivial. (If we refer to “the” trivial differential module, though, we
mean (R, d) itself.) A differential ideal of R is a differential submodule of R itself, i.e., an
ideal stable under d.

The kernel of the derivation d on R is a subring of R; if R is a field, then ker(d) is a
subfield. We call this the constant subring/subfield. For (M, D) a differential module, an
element of ker(D) is said to be horizontal. (This terminology makes sense if you consider
connections in differential geometry, where the differential operator is measuring the extent
to which a section of a vector bundle deviates from some prescribed “horizontal” direction
identifying points on one fibre with points on its neighbors.)

For (M, D) a differential module, define

H0(M) = ker(D), H1(M) = coker(D) = M/D(M).

The latter computes Yoneda extensions; see Lemma 1 below.
Convention: I will sometimes refer to the pair (R, d) as a differential ring, but in some

cases I will call R itself a differential ring when d is either evident from context or not
relevant. Similarly for differential modules.
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2 Differential modules and differential systems

Let R be a differential ring, and let M be a finite free differential module of rank n over R.
Let e1, . . . , en be a basis of M . Then for any v ∈ M , we can write v = v1e1 + · · · + vnen for
some v1, . . . , vn ∈ R, and then compute

D(v) = v1D(e1) + · · ·+ vnD(en) + d(v1)e1 + · · · + d(vn)en.

If we define the n × n matrix N over R by the formula

D(ej) =
n
∑

i=1

Dijei,

we then have

D(v) =

n
∑

i=1

(

d(vi) +
∑

j

Nijvj

)

ei.

That is, if we identify v with the column vector v = [v1, . . . , vn], then

D(v) = Nv + d(v).

Conversely, it is clear that given the underlying finite free R-module, any differential module
structure is given by such an equation.

In other words, differential modules are a coordinate-free version of differential systems.
If you are a geometer, you may wish to go further and think of differential bundles, i.e.,
vector bundles equipped with a differential operator. A differential operator on a vector
bundle is usually called a connection.

3 Operations on differential modules

Differential modules over a fixed differential ring R form a category in which the morphisms
(or homomorphisms) from M1 to M2 are additive maps f : M1 → M2 satisfying D(f(m)) =
f(D(m)). This category admits certain functors corresponding to some familiar functors on
the category of modules over an ordinary ring. (Beware that in the following notations, the
subscripted R in the above notations will often be suppressed when it is unambiguous.)

Given two differential modules M1, M2, the tensor product M1 ⊗R M2 in the category of
rings may be viewed as a differential module via the formula

D(m1 ⊗ m2) = D(m1) ⊗ m2 + m1 ⊗ D(m2).

Similarly, the exterior power ∧n
RM may be viewed as a differential module via the formula

D(m1 ∧ · · · ∧ mn) =
n
∑

i=1

m1 ∧ · · · ∧ mi−1 ∧ D(mi) ∧ mi+1 ∧ · · · ∧ mn;
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likewise for the symmetric power Symn
R M . The module of R-homomorphisms HomR(M1, M2)

may be viewed as a differential module via the formula

D(f)(m) = D(f(m)) − f(D(m));

the homomorphisms from M1 to M2 as differential modules are precisely the horizontal
elements of HomR(M1, M2). If M2

∼= R is trivial, we write R∨ for HomR(M1, R) and call it
the dual of M1; if M1 is finite projective (which is the same as finite locally free if R is a
noetherian ring), then HomR(M1, M2) ∼= M∨

1 ⊗M2 and the natural map M1 → (M∨

1 )∨ is an
isomorphism.

Lemma 1. Let M, N be differential modules with M finite projective. Then the group
H1(M∨ ⊗ N) is canonically isomorphic to the Yoneda extension group Ext(M, N).

Proof. The group Ext(M, N) consists of equivalence classes of exact sequences 0 → N →
P → M → 0 under the relation that this sequence is equivalent to a second sequence
0 → N → P ′ → M → 0 if there is an isomorphism P ∼= P ′ that induces the identity maps
on M and N . The addition is to take two such sequences and return the Baer sum 0 →
N → (P ⊕P ′)/∆ → M → 0, where ∆ = {(n,−n) : n ∈ N}. The identity element is the split
sequence 0 → N → M ⊕N → M → 0. The inverse of a sequence 0 → N → P → M → 0 is
the sequence 0 → N → P → M → 0 with the map N → P negated.

Given an extension 0 → N → P → M → 0, tensor with M∨ to get 0 → M∨ ⊗ N →
M∨ ⊗ P → M∨ ⊗ P → 0, and apply the connecting homomorphism H0(M∨ ⊗ M) →
H1(M∨ ⊗ N) from the snake lemma to the trace (the element of M∨ ⊗ M corresponding
to the identity map in Hom(M, M)) to get an element of H1(M∨ ⊗ N). This is the desired
map Ext(M, N) → H1(M∨ ⊗ N). To construct its inverse, given an element H1(M∨ ⊗ N)
represented by x ∈ M∨ ⊗ N , form the sequence

0 → N →
M ⊕ N

(m, 〈m, x〉)
→ M → 0

where 〈·, ·〉 represents the natural map M × (M∨ ⊗ N) → N .

4 Cyclic vectors

Let R be a differential ring, and let M be a finite free differential module of rank n over R.
A cyclic vector for M is an element m ∈ M such that m, D(m), . . . , Dn−1(m) form a basis
of M .

Theorem 2 (Cyclic vector theorem). Let R be a differential field of characteristic zero with
nonzero derivation. Then every finite differential module over R has a cyclic vector.

For a comment on characteristic p, see the exercises.
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Proof. This is a folklore result, that is, it is old enough that giving a proper attribution is
difficult. Many proofs are possible; here is the proof from [DGS, Theorem III.4.2].

We start by normalizing the derivation. For u ∈ R×, given one differential module (M, D)
over (R, d), we get another differential module (M, uD) over (R, ud), and m is a cyclic vector
for one if and only if it is a cyclic vector for the other (because the image of m under (uD)j

is in the span of u, D(u), . . . , Dj(u)). We may thus assume (thanks to the assumption that
the derivation is nontrivial) that there exists an element x ∈ R such that d(x) = x.

Let M be a differential module of dimension n, and choose m ∈ M so that the dimension
µ of the span of m, D(m), . . . is as large as possible. We derive a contradiction under the
hypothesis µ < n.

For z ∈ M and λ ∈ Q, we now have

(m + λz) ∧ D(m + λz) ∧ · · · + Dµ(m + λz) = 0

in the exterior power ∧µ+1M . If we write this expression as a polynomial in λ, it vanishes
for infinitely many values, so must be identically zero. Hence each coefficient must vanish
separately, including the coefficient of λ1, which is

µ
∑

i=0

m ∧ · · · ∧ Di−1(m) ∧ Di(z) ∧ Di+1(m) · · · ∧ Dµ(m). (1)

Pick s ∈ Z, substitute xsz for z in (1), divide by xs, and set equal to zero. We get

µ
∑

i=0

siΛi(m, z) = 0 (s ∈ Z) (2)

for

Λi(m, z) =

µ−i
∑

j=0

(

i + j

i

)

m ∧ · · · ∧ Di+j−1(m) ∧ Dj(z) ∧ Di+j+1(m) ∧ · · · ∧ Dµ(m).

Again because we are in characteristic zero, we may conclude that (2), viewed as a polynomial
in s, has all coefficients equal to zero; that is, Λi(m, z) = 0 for all m, z ∈ M .

We now take i = µ to obtain

(m ∧ · · · ∧ Dµ−1(m)) ∧ z = 0 (m, z ∈ M);

since µ < n, we may use this to deduce

m ∧ · · · ∧ Dµ−1(m) = 0 (m ∈ M).

But that means that the dimension of the span of m, D(m), . . . is always at most µ − 1,
contradicting the definition of µ.

If R is not a field, then one obstruction to having a cyclic vector is that M itself might
not be a finite free R-module. But even if it is, there is no reason to expect in general that
cyclic vectors exist; this will create complications for us later.
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5 Differential polynomials

Let (R, d) be a differential ring. The ring of twisted polynomials R{T} over R in the variable
T is the additive group

R ⊕ (R · T ) ⊕ (R · T 2) ⊕ · · · ,

with noncommuting multiplication given by the formula
(

∞
∑

i=0

aiT
i

)(

∞
∑

j=0

bjT
j

)

=
∞
∑

i,j=0

j
∑

h=0

(

j

h

)

aid
h(bj)T

i+j−h.

In other words, you impose the relation

Ta = aT + d(a) (a ∈ R)

and check that you get a sensible noncommutative ring.
We define the degree of a twisted polynomial in the usual way, as the exponent of the

largest power of T with a nonzero coefficient. (Pick your favorite convention for the degree
of the zero polynomial.)

Proposition 3 (Ore). For R a differential field, the ring R{T} admits a left division al-
gorithm. That is, if f, g ∈ R{T} and g 6= 0, then there exist unique q, r ∈ R{T} with
deg(r) < deg(g) and f = gq + r. (There is also a right division algorithm.)

Proof. Exercise.

Using the Euclidean algorithm, this yields the following consequence as in the untwisted
case.

Theorem 4 (Ore). Let R be a differential field. Then R{T} is both left principal and right
principal; that is, any left ideal (resp. right ideal) has the form R{T}f (resp. fR{T}) for
some f ∈ R{T}.

Note that the opposite ring to R{T}, i.e., the ring with left and right reversed, is again
a twisted polynomial ring, but for the derivation −d. Given f ∈ R{T}, we define the formal
adjoint of f as the element f in the opposite ring. This operation looks a bit less formal
if you also push the coefficients over to the other side, giving what we will call the adjoint
form of f . For instance, the adjoint form of T 3 + aT 2 + bT + c is

T 3 + T 2a + T (b − 2d(a)) + d(d(a)) − d(b) + c.

The twisted polynomial ring is rigged up precisely so that for any differential module M
over R, we get an action of R{T} on M under which T acts like D. In particular, R{T}
acts on R itself with T acting like d. In fact, the category of differential modules over R is
equivalent to the category of left R{T}-modules. Moreover, if M is a differential module,
any cyclic vector m ∈ M corresponds to an isomorphism M ∼= R{T}/R{T}f for some monic
twisted polynomial f , where the isomorphism carries m to the class of 1. (You might want
to think of f as a sort of “characteristic polynomial” for M , except that it depends strongly
on the choice of the cyclic vector.)
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6 Differential equations

You may have been wondering when differential equations will appear, those supposedly
being the objects of study of this course. If so, your wait is over.

A differential equation of order n over the differential ring (R, d) is an equation of the
form

(and
n + · · · + a1d + a0)y = b,

with a0, . . . , an, b ∈ R, and y indeterminate. We say the equation is homogeneous if b = 0
and inhomogeneous otherwise.

Using our setup, we may write this equation as f(d)y = b for some f ∈ R{T}. Similarly,
we may view systems of differential equations as being equations of the form f(D)y = b
where b lives in some differential module (M, D). By the usual method (of introducing
extra variables corresponding to derivatives of y), we can convert any differential system
into a first-order system Dy = b. We can also convert an inhomogeneous system into a
homogeneous one by adding an extra variable, with the understanding that we would like
the value of that last variable to be 1 in order to get back a solution of the original equation.

Here is a more explicit relationship between adjoint polynomials and solving differential
equations. Say you start with the cyclic differential module M ∼= R{T}/R{T}f and you
want to find a horizontal element. That means that you want to find some g ∈ R{T} such
that Tg ∈ R{T}f ; we may as well assume that deg(g) < deg(f). Then by comparing degrees,
we see that in fact Tg = rf for some r ∈ R. Write f in adjoint form as f0 + Tf1 + · · ·+ T n;
then

rf ≡ rf0 − d(r)f1 + d2(r)f2 − · · · ± dn(f) mod TR{T}.

In this manner, finding a horizontal element becomes equivalent to solving a differential
equation.

7 Cyclic vectors: a mixed blessing

The reader may at this point be wondering why so many points of view are necessary, since
the cyclic vector theorem can be used to transform any differential module into a differential
equation, and ultimately differential equations are the things one writes down and wants to
solve. Permit me to interject here a countervailing opinion.

In ordinary linear algebra (or in other words, when considering differential modules for
the trivial derivation), one can pass freely between linear transformations on a vector space
and square matrices if one is willing to choose a basis. The merits of doing this depend
on the situation, so it is valuable to have both the matricial and coordinate-free viewpoints
well in hand. One can then pass to the characteristic polynomial, but not all information is
retained (one loses information about nilpotency), and even information that in principle is
retained is sometimes not so conveniently accessed. In short, no one would seriously argue
that one can dispense with studying matrices because of the existence of the characteristic
polynomial.
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The situation is not so different in the differential case. The difference between a differen-
tial module and a differential system is merely the choice of a basis, and again it is valuable
to have both points of view in mind. However, the cyclic vector theorem may seduce one into
thinking that collapsing a differential system into a differential polynomial is an operation
without drawbacks, and this is far from the case. For instance, determining whether two
differential polynomials correspond to the same differential system is not straightforward.

More seriously for our purposes, the cyclic vector theorem only applies over a differential
field. Many differential modules are more naturally defined over some ring which is not a
field, e.g., those coming from geometry which should be defined over some sort of ring of
functions on some sort of geometric space. Working with differential modules instead of
differential polynomials has a tremendously clarifying effect over rings.

We find it unfortunate that much of the literature on complex ordinary differential equa-
tions, and nearly all of the literature on p-adic ordinary differential equations, is mired in
the language of differential polynomials. By instead switching between differential modules
and differential polynomials as appropriate, we will be able to demonstrate strategies that
lead to a more systematic development of the p-adic theory.

8 Taylor series

Let R be a topological differential ring, i.e., a ring equipped with a topology and a derivation
such that all operations are continuous. Assume also that R is a Q-algebra. Let M be a
topological differential module over R, i.e., a differential module such that all operations are
continuous.

For r ∈ R and m ∈ M , We define the Taylor series T (r, m) as the infinite sum

∞
∑

i=0

ri

i!
Di(m)

whenever the sum converges absolutely (i.e., all rearrangements converge to the same value).
This map is additive whenever possible: if m1, m2 ∈ M , then

T (r, m1) + T (r, m2) = T (r, m1 + m2)

whenever all three terms make sense. Also, the map T (r, ·) : R → R is a ring homomorphism
whenever it is defined. That is, if s1, s2 ∈ R, then (by the Leibniz rule)

T (r, s1)T (r, s2) = T (r, s1s2)

whenever all three terms make sense. More generally, if s ∈ R, m ∈ M , then

T (r, s)T (r, m) = T (r, sm)

whenever all three terms make sense. Loosely put, the map T (r, ·) on M is semilinear for
the map T (r, ·) on R.
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9 Notes

The subject of differential algebra is rather well-developed; a classic treatment is the book
of Ritt [Rit50]. As in abstract algebra in general, development of differential algebra was
partly driven by differential Galois theory, i.e., the study of when solutions of differential
equations can be expressed in terms of solutions to ostensibly simpler differential equations.
A good introduction to the latter is [SvdP03].

Twisted polynomials were introduced by Ore [Ore33]. They are actually somewhat
more general than we have discussed; for instance, one can also twist by an endomorphism
τ : R → R by imposing the relation Ta = τ(a)T . (This enters the realm of the analogue
of differential algebra called difference algebra.) Moreover, one can twist by both an endo-
morphism and a derivation if they are compatible in an appropriate way, and one can even
study differential/difference Galois theory in this setting. A unifying framework for doing
so, which is also suitable for considering multiple derivations and automorphisms, is given
by André [And01].

10 Exercises

1. Prove that if M is a locally free differential module over R of rank 1, then M∨ ⊗M is
trivial (as a differential module).

2. Check that in characteristic p > 0, the cyclic vector theorem holds for modules of rank
less than p, but may fail for modules of rank p.

3. Give a counterexample to the cyclic vector theorem for a differential field of character-
istic zero with trivial derivation.

4. Verify that R{T} is indeed a noncommutative ring; the content in this is to check
associativity of multiplication.

5. Prove the division algorithm (Proposition 3).
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