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A little difference algebra

In this unit, we set up a bit of formalism for difference algebra, parallel to what we did
with differential algebra earlier.

1 Difference algebra

A difference ring/field is a ring/field R equipped with an endomorphism φ. A difference
module over R is an R-module M equipped with a map Φ : R → R which is additive and
φ-semilinear; the latter means that

Φ(rm) = φ(r)Φ(m) (r ∈ R, m ∈ M).

A difference submodule of R itself is also called a difference ideal.
If M is a finite difference module over R freely generated by e1, . . . , en, then we can

recover the action of Φ from the n × n matrix A defined by

Φ(ej) =
∑

i

Aijei.

Namely, if we use the basis to identify M with the space of column vectors of length n over
R, then

Φ(v) = Aφ(v).

Moreover, if we change to a new basis e′1, . . . , e
′
n, and let U be the change-of-basis matrix

(defined by e′j =
∑

i Uijei), then Φ acts on the new basis via the matrix

A′ = U−1Aφ(U).

We say M is dualizable if A is invertible. If M is dualizable, we define the dual M∨ as
the module-theoretic dual HomR(M, R) with Φ-action given on the dual basis by A−T (the
inverse transpose). Note that the property of dualizability, and the definition of the dual,
do not depend on the choice of the basis; hence they both extend to the case where M is
only locally free as an R-module.

We say that the difference ring R is inversive if φ is an automorphism. In this case,
we can define the opposite difference ring Ropp to be R again, but now equipped with the
endomorphism φ−1. If R is inversive and M is locally free, we define the opposite module
Mopp of M as the module-theoretic dual HomR(M, R) equipped with the pullback action
(i.e., on the dual basis, use the matrix AT for the action).

For M a difference module, write

H0(M) = ker(id−Φ), H1(M) = coker(id−Φ).
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If M1, M2 are difference modules with M1 dualizable, then H0(M∨
1 ⊗ M2) computes mor-

phisms from M1 to M2, and H1(M∨
1 ⊗ M2) computes extensions 0 → M2 → M → M1 → 0.

That is,

H0(M∨
1 ⊗ M2) = Hom(M1, M2), H1(M∨

1 ⊗ M2) = Ext(M1, M2).

2 Twisted polynomials

As in differential algebra, there is a relevant notion of twisted polynomials. For R a difference
ring, we define the twisted polynomial ring R{T} as the set of finite formal sums

∑∞

i=0 riT
i,

but with the multiplication this time obeying the rule Tr = φ(r)T . For any P ∈ R{T}, the
quotient R{T}/R{T}P is a difference module; if M is a difference module, we say m ∈ M
is a cyclic vector if there is an isomorphism M ∼= R{T}/R{T}P carrying m to 1.

If R is inversive, we again have a formal adjoint construction: given P ∈ R{T}, its
formal adjoint is obtained by pushing the coefficients to the right side of T . This may then
be viewed as an element of the opposite ring of R{T}, which we may identify with Ropp{T}.

It is not completely straightforward to analogize the cyclic vector theorem to difference
modules; see the exercises for one attempt to do so. Instead, we will use only the following
trivial observation.

Lemma 1. Any irreducible finite difference module over a difference field contains a cyclic
vector.

Proof. If F is a difference field, M is a finite difference module over F , and m ∈ M is nonzero,
then m, Φ(m), . . . generate a nonzero difference submodule of M . If M is irreducible, this
submodule must be all of M .

If φ is isometric to a norm | · | on F , then we have the usual definition of Newton
polygons and slopes for twisted polynomials. If R is inversive, then a twisted polynomial
and its adjoint have the same Newton polygon.

Applying the master factorization theorem yields the following.

Theorem 2. Let F be a difference field complete for a norm | · | under which F is isometric.
Then any monic twisted polynomial P ∈ F{T} admits a unique factorization

P = Pr1
· · ·Prm

for some r1 < · · · < rm, where each Pri
is monic with all slopes equal to ri. (If F is inversive,

the same holds with the factors in the opposite order.)

3 Difference-closed fields

We will say that a difference field F is weakly difference-closed if every dualizable finite
difference module over F is trivial. We say F is strongly difference-closed if F is inversive
and weakly difference-closed.
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Lemma 3. The difference field F is weakly difference-closed if and only if the following
conditions hold.

(a) Every nonconstant monic twisted polynomial P ∈ F{T} factors as a product of linear
factors.

(b) For every c ∈ F×, there exists x ∈ F× with φ(x) = cx.

(c) For every c ∈ F×, there exists x ∈ F with φ(x) − x = c.

Proof. We first suppose that F is weakly difference-closed. To prove (a), it suffices to check
that if P ∈ F{T} is nonconstant monic with nonzero constant term, then P factors as P1P2

with P2 linear. The nonzero constant term implies that M = F{T}/F{T}P is a dualizable
finite difference module over F , so must be trivial by the hypothesis that F be weakly
difference-closed. In particular, there exists a short exact sequence 0 → M1 → M → M2 → 0
with M2 trivial; this corresponds to a factorization P = P1P2 with P2 linear.

To prove (b), note that F{T}/F{T}(T − c−1) must be trivial, which means there exists
x ∈ F× such that Tx − x = y(T − c−1) for some y ∈ F . Then y = φ(x) and yc−1 = x,
proving the claim.

To prove (c), form the φ-module V corresponding to the matrix

(

1 c
0 1

)

. By construction,

we have a short exact sequence 0 → V1 → V → V2 → 0 with V1, V2 trivial; since V must also
be trivial, this extension must split. That means that we can find x ∈ F with φ(x)− x = c,
proving the claim.

Conversely, suppose that (a), (b), (c) hold. Every nonzero dualizable finite difference
module over F admits an irreducible quotient. This quotient admits a cyclic vector by
Lemma 1, and so admits a quotient of dimnesion 1 by (a). That quotient in turn is trivial by
(b). By induction, we deduce that every dualizable finite difference module over F admits
a filtration whose successive quotients are trivial of dimension 1. This filtration splits by
(c).

Proposition 4. Let F be a separably (resp. algebraically) closed field of characteristic p > 0
equipped with a power of the absolute Frobenius. Then F is weakly (resp. strongly) difference-
closed.

Proof. For P =
∑m

i=0 PiT
m ∈ F{T} with m > 0, Pm = 1, and P0 6= 0, the polynomial

Q(x) =
∑m

i=0 Pix
qi

has degree qm ≥ 2, and x = 0 occurs as a root only with multiplicity
1. Moreover, the formal derivative of P is a constant polynomial, so has no common roots
with P ; hence P is a separable polynomial. Since F is separably closed, there must exist a
nonzero root x of Q; this implies criteria (a) and (b) of Lemma 3. To deduce (c), note that
for c ∈ F×, the polynomial xq − x − c is again separable, so has a root in F .

4 Difference algebra over a complete field

For the rest of this unit, let F be a difference field complete for a norm | · | with respect to
which φ is isometric. We do not assume that F is inversive; if not, then we can embed into
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F into an inversive difference field by forming the completion F ′ of the direct limit of the
system

F
φ
→ F

φ
→ · · · .

As in the differential case, we would like to classify finite difference modules over F by
the spectral norm of Φ (there is no truncation here); the following basic properties will help,
as long as we are mindful of the discrepancies between the differential and difference cases.

Lemma 5. Let V, V1, V2 be finite difference modules over F .

(a) For 0 → V1 → V → V2 → 0 a short exact sequence,

|Φ|sp,V = max{|Φ|sp,V1
, |Φ|sp,V2

}.

(b) We have
|Φ|sp,V1⊗V2

= |Φ|sp,V1
|Φ|sp,V2

.

(c) We have
|Φ|sp,V = |Φ|sp,V ⊗F ′.

Proof. Exercise.

The relationship between V and the dual V ∨ is more complicated.

Lemma 6. If V ∼= F{T}/F{T}P and P has only one slope r in its Newton polygon, then

|Φ|sp,V = e−r.

If F is inversive, then also
|Φ−1|sp,V = e−r.

Proof. By replacing F with F ′, we may reduce to the case where F is inversive. Pick a
positive integer d such that there exists λ ∈ F such that |λ| = e−rd. Then the basis of
F{T}/F{T}P given by (λ−1Φd)i(1) for i = 0, . . . , (dimF V ) − 1 has the property that

|Φd|V = e−rd.

We deduce that
|Φ|sp,V ≤ e−r;

since
|Φ−1|sp,V = |Φ|sp,V opp ,

and V opp ∼= F opp{T}/F{T}Q for Q the formal adjoint of P , we also have

|Φ−1|sp,V ≤ er.

Since
1 = |Φ|sp,V |Φ

−1|sp,V ≤ e−rer,

we obtain the desired equalities.
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Corollary 7. For any finite difference module V over F , either |Φ|sp,V = 0, or there exists
an integer m ∈ {1, . . . , dimF V } such that |Φ|msp,V ∈ |F×|.

Let V be a nonzero finite difference module over F . We say that V is pure of norm s
if all of the Jordan-Hölder constituents of V have spectral norm s. Note that V is pure of
norm 0 if and only if ΦdimF V = 0.

Proposition 8. Let V be a finite difference module over F . Then V is pure of norm s > 0
if and only if

|Φ|sp,V ⊗F ′ = s, |Φ−1|sp,V ⊗F ′ = s−1. (1)

Proof. If V is pure of norm s, then (1) holds by Lemma 6. Conversely, if (1) holds and W
is a subquotient of V , then

|Φ|sp,W⊗F ′ ≤ |Φ|sp,V ⊗F ′, |Φ−1|sp,W⊗F ′ ≤ |Φ−1|sp,V ⊗F ′.

We thus have
1 ≤ |Φ|sp,W⊗F ′|Φ−1|sp,W⊗F ′ ≤ ss−1 = 1,

which forces |Φ|sp,W = |Φ|sp,W⊗F ′ = s.

Corollary 9. Let V1, V2 be finite difference modules over F which are pure of respective
norms s1, s2. Then V1 ⊗F V2 is pure of norm s1s2.

Proof. If s1s2 = 0, then it is easy to check that V1 ⊗ V2 is pure of norm 0. Otherwise, one
direction of Proposition 8 yields

|Φ|sp,V1⊗V2⊗F ′ = s1s2, |Φ−1|sp,V1⊗V2⊗F ′ = s−1
1 s−1

2 ,

so the other direction of Proposition 8 implies that V1 ⊗ V2 is pure of norm s1s2.

Corollary 10. Let V be a finite difference module over F . Then for any positive integer d,
V is pure of norm s if and only if V becomes pure of norm sd when viewed as a difference
module over (F, φd).

Proposition 11. Suppose that either:

(a) |Φ|sp,V < 1, or

(b) F is inversive and |Φ−1|sp,V < 1.

Then H1(V ) = 0.

Proof. In case (a), given v ∈ V , the series

w =

∞
∑

i=0

Φi(v)

converges to a solution of w − Φ(w) = v. In case (b), the series

w = −

∞
∑

i=0

Φ−i−1(v)

does likewise.
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Corollary 12. If V1, V2 are finite differential modules pure of norms s1, s2, and either:

(a) s1 < s2; or

(b) F is inversive and s1 > s2;

then any exact sequence 0 → V1 → V → V2 → 0 splits.

Proof. If s2 > 0, then by Corollary 9, V ∨
2 ⊗V1 is pure of norm s1/s2, so Proposition 11 gives

the desired splitting. Otherwise, we must be in case (b), so we can pass to the opposite ring
to make the same conclusion.

If F is inversive, we again get a decomposition theorem.

Theorem 13. Suppose that F is inversive, and let V be a finite difference module over F .
Then there exists a unique direct sum decomposition

V =
⊕

s≥0

Vs

of difference modules, in which each Vs is pure of norm s. (Note that V is dualizable if and
only if V0 = 0.)

Proof. This follows at once from Corollary 12.

Note that in case φ is trivial, this simply reproduces the decomposition of V in which
the generalized eigenspaces for all eigenvalues of a given modulus are grouped together.

If F is not inversive, we only get a filtration.

Theorem 14. Let V be a finite difference module over F . Then there exists a unique
filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V

of difference modules, such that each successive quotient Vi/Vi−1 is pure of some norm si,
and s1 > · · · > sl. (Note that V is dualizable if and only if V = 0 or sl > 0.)

Proof. Start with any filtration of V with irreducible successive quotients, and let s1 be
the largest norm which appears. By Corollary 12, we can change the filtration to move
the first appearance of s1 one step earlier; consequently, we can put all appearances of
s1 before all other slopes. Group these together to form V1, then repeat to construct the
desired factorization. Uniqueness follows by tensoring with F ′ and invoking the uniqueness
in Theorem 13.

The following alternate characterization of pureness may be useful in some situations.

Proposition 15. Let V be a finite difference module over F , and choose λ ∈ F×. Then V
is pure of norm |λ| if and only if there exists a basis of V on which Φ acts via λ times an
element of GLn(oF ).
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Note that whenever V is pure of positive norm, we can apply this result after replacing
Φ by some power of it, thanks to Corollary 7.

Proof. If such a basis exists, then Proposition 8 implies that V is pure of norm |λ|. Con-
versely, if V is irreducible of spectral norm |λ|, then Lemma 6 provides a basis of the desired
form. Otherwise, we proceed by induction on dimF V . Suppose we are given a short exact
sequence 0 → V1 → V → V2 → 0 in which V1, V2 admit bases of the desired form. Let
e1, . . . , em ∈ V form such a basis for V1, and let em+1, . . . , en ∈ V lift such a basis for V2.
Then for µ ∈ F of sufficiently small norm,

e1, . . . , em, µem+1, . . . , µen

will form a basis of V of the desired form.

5 Hodge and Newton polygons

Let V be a finite difference module over F equipped with a norm defined as the supremum
norm for some basis e1, . . . , en. Let A be the basis via which Φ acts on this basis; define the
Hodge polygon of V as the Hodge polygon of the matrix A. Given the choice of the norm
on V , this definition is independent of the choice of the basis: we can only change basis by
a matrix U ∈ GLn(oF ), which replaces A by U−1Aφ(U), and φ being an isometry ensures
that φ(U) ∈ GLn(oF ) also. As in the linear case, we list the Hodge slopes sH,i, . . . , sH,n in
increasing order.

Define the Newton polygon of V to have slopes sN,1, . . . , sN,n such that r appears with
multiplicity equal to the dimension of the quotient in Theorem 14 of norm e−r.

Lemma 16. Let V be a finite difference module over F . We have

sH,1 + · · ·+ sH,i = − log |Φ|∧iV (i = 1, . . . , n)

sN,1 + · · ·+ sN,i = − log |Φ|sp,∧iV (i = 1, . . . , n).

Proof. The first assertion follows from the corresponding fact in the linear case. The second
assertion reduces to the fact that if V is irreducible of dimension n and spectral norm s,
then ∧iV has spectral norm si for i = 1, . . . , n; this may be read off from the basis used in
the proof of Lemma 6.

Corollary 17 (Newton above Hodge). We have

sN,1 + · · ·+ sN,i ≥ sH,1 + · · · + sH,i (i = 1, . . . , n)

with equality for i = n.
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Beware that the Newton polygon, unlike the Hodge polygon, cannot be directly read off
from the matrix via which Φ acts on some basis; see exercises for a counterexample. On the
other hand, this works if the matrix of Φ is a companion matrix, i.e., a matrix of the form











0 0 · · · 0 a0

1 0 · · · 0 a1

...
. . .

...
0 0 · · · 1 an−1











with 1s on the subdiagonal, arbitrary entries in the last column, and zeroes elsewhere; this
is a restatement of the following fact.

Proposition 18. If V ∼= F{T}/F{T}P , then the Newton polygon of V coincides with that
of P .

Proof. This reduces to Lemma 6.

6 The Dieudonné-Manin classification theorem

For λ ∈ F and d a positive integer, let Vλ,d be the difference module over F with basis
e1, . . . , ed such that

Φ(e1) = e2, . . . , Φ(ed−1) = ed, Φ(ed) = λe1.

Lemma 19. Suppose λ ∈ F× and the positive integer d are such that there is no i ∈
{1, . . . , d − 1} such that |λ|i/d ∈ |F×|. Then Vλ,d is irreducible.

Proof. Note that
Φdei = φi−1(λ)ei (i = 1, . . . , n).

Hence by Proposition 15, Vλ,d is pure of norm λ1/d, as then is any submodule. But if the
submodule were proper and nonzero, we would have a violation of Corollary 7.

Theorem 20. Let F be a complete discretely valued field equipped with an isometric endo-
morphism φ, such that κF is strongly difference-closed. Then every dualizable finite difference
module over F can be split (non-uniquely) as a direct sum of submodules, each of the form
Vλ,d for some λ, d. Moreover, for π any fixed uniformizer of F , we can force each λ to be a
power of π.

Proof. We first check that if V is pure of norm 1, then V is trivial. We must show that for
any A ∈ GLn(oF ), there exists a convergent sequence U1, U2, · · · ∈ GLn(oF ) such that

U−1
m Aφ(Um) ≡ In (mod πm).
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Specifically, we will insist that Um+1 ≡ Um (mod πm). Finding U1 amounts to trivializing a
dualizable difference module of dimension m over κF . For m > 1, given Um, we must have
Um+1 = Um(In + πmXm) for some m, and

(In + πmXm)−1(U−1
m Aφ(Um))(In + πmXm) ≡ In (mod πm+1).

Since already U−1
m Aφ(Um) ≡ In (mod πm), this amounts to solving

−Xm + π−m(U−1
m Aφ(Um) − In) + φ(Xm) ≡ 0 (mod π),

which we solve by applying criterion (c) from Lemma 3.
By similar (but easier) arguments, we also show that:

• φ is surjective on oF , so F is inversive;

• if V is trivial, then H1(V ) = 0.

In particular, we may apply Theorem 13 to reduce the desired result to the case where V is
pure of norm s > 0.

Let d be the smallest positive integer such that sd = |πm| for some integer m. Then the
first paragraph implies that π−mΦd fixes some nonzero element of V ; this gives us a nonzero
map from Vπm,d to V . By Lemma 19, this map must be injective. Repeating this argument,
we write V as a successive extension of copies of Vπm,d. However, V ∨

πm,d ⊗ Vπm,d is pure of
norm 1, so has trivial H1 as above. Thus V splits as a direct sum of copies of Vπm,d, as
desired.

By Proposition 4, Theorem 20 has the following immediate corollary.

Corollary 21. Let F be a complete discretely valued field, normalized so that the additive
value group is Z, such that κF is algebraically closed of characteristic p > 0. Let φ : F → F
be an isometric automorphism lifting a power of the absolute Frobenius on κF . Then every
dualizable finite difference module over F can be split (non-uniquely) as a direct sum of
difference submodules, each of the form Vλ,d for some λ ∈ F× and some positive integer d
coprime to the valuation of λ. Moreover, for π any fixed uniformizer of F , we can force each
λ to be a power of π.

The case in which k is an algebraically closed field of characteristic p, W (k) is the ring
of p-typical Witt vectors (i.e., the unique complete discrete valuation ring with residue field
k and maximal ideal (p)), F = Frac(W (k)), and φ is the Witt vector Frobenius is the
Dieudonné-Manin theorem, i.e., the classification theorem of rational Dieudonné modules
over an algebraically closed field.
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7 Notes

The parallels between difference and differential algebra are quite close, enough so that
a survey of references for difference algebra strongly resembles its differential counterpart.
An older, rather dry reference is [Coh65]; a somewhat more lively modern reference, which
develops difference Galois theory under somewhat restrictive conditions, is [SvdP97]. We
again mention [And01] as a unifying framework for difference and differential algebra.

In the special case of the difference field Frac(W (k)), with k perfect of characteristic
p > 0, most of the results of this section appear in [Kat79] in some form, but it is awkward
to give direct references since we have organized our presentation rather differently.

Proposition 4 can be found in SGA7 [DK73, Exposé XXII, Corollaire 1.1.10], wherein
Katz attributes it to Lang. Indeed, it is a special case of the nonabelian Artin-Schreier
theory associated to an algebraic group over a field of positive characteristic (in our case
GLn), via the Lang torsor ; see [Lan56].

For the original classification of rational Dieudonné modules over an algebraically closed
field, see Manin’s original paper [Man63] or the book of Demazure [Dem72].

8 Exercises

1. Let F be a difference field of characteristic zero containing an element x such that
φ(x) = λx for some λ fixed by φ. Prove that every finite difference module for M
admits a cyclic vector. (Hint: under these hypotheses, one can readily imitate the
proof of the cyclic vector theorem for differential modules.)

2. Let F be the completion of Qp(t) for the 1-Gauss norm, viewed as a difference field for
φ equal to the substitution t 7→ tp. Let V be the difference module corresponding to
the matrix

A =

(

1 t
0 p

)

.

Prove that there is a nonsplit short exact sequence 0 → V1 → V → V2 → 0 with V1, V2

pure of slopes s1, s2 with s1 < s2.

3. Here is a beautiful example from [Kat79, §1.3] (attributed to B. Gross). Let p be
a prime congruent to 3 modulo p, put F = Qp(i) with i2 = −1, and let φ be the
automorphism i 7→ −i of F over Qp. Define a difference module M of rank 2 over F
using the matrix

A =

(

1 − p (p + 1)i
(p + 1)i p − 1

)

.

Compute the Newton polygons of A and M and verify that they do not coincide. (Hint:
find another basis of M on which Φ acts diagonally.)

4. Prove that every difference field can be embedded into a difference-closed field. (This
requires your favorite equivalent of the axiom of choice, e.g., Zorn’s lemma.)
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