$p$-adic differential equations

### 18.787, Kiran S. Kedlaya, MIT, fall 2007

## A little difference algebra

In this unit, we set up a bit of formalism for difference algebra, parallel to what we did with differential algebra earlier.

## 1 Difference algebra

A difference ring/field is a ring/field $R$ equipped with an endomorphism $\phi$. A difference module over $R$ is an $R$-module $M$ equipped with a map $\Phi: R \rightarrow R$ which is additive and $\phi$-semilinear; the latter means that

$$
\Phi(r m)=\phi(r) \Phi(m) \quad(r \in R, m \in M)
$$

A difference submodule of $R$ itself is also called a difference ideal.
If $M$ is a finite difference module over $R$ freely generated by $e_{1}, \ldots, e_{n}$, then we can recover the action of $\Phi$ from the $n \times n$ matrix $A$ defined by

$$
\Phi\left(e_{j}\right)=\sum_{i} A_{i j} e_{i}
$$

Namely, if we use the basis to identify $M$ with the space of column vectors of length $n$ over $R$, then

$$
\Phi(v)=A \phi(v)
$$

Moreover, if we change to a new basis $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$, and let $U$ be the change-of-basis matrix (defined by $e_{j}^{\prime}=\sum_{i} U_{i j} e_{i}$ ), then $\Phi$ acts on the new basis via the matrix

$$
A^{\prime}=U^{-1} A \phi(U)
$$

We say $M$ is dualizable if $A$ is invertible. If $M$ is dualizable, we define the dual $M^{\vee}$ as the module-theoretic dual $\operatorname{Hom}_{R}(M, R)$ with $\Phi$-action given on the dual basis by $A^{-T}$ (the inverse transpose). Note that the property of dualizability, and the definition of the dual, do not depend on the choice of the basis; hence they both extend to the case where $M$ is only locally free as an $R$-module.

We say that the difference ring $R$ is inversive if $\phi$ is an automorphism. In this case, we can define the opposite difference ring $R^{\text {opp }}$ to be $R$ again, but now equipped with the endomorphism $\phi^{-1}$. If $R$ is inversive and $M$ is locally free, we define the opposite module $M^{\text {opp }}$ of $M$ as the module-theoretic dual $\operatorname{Hom}_{R}(M, R)$ equipped with the pullback action (i.e., on the dual basis, use the matrix $A^{T}$ for the action).

For $M$ a difference module, write

$$
H^{0}(M)=\operatorname{ker}(\operatorname{id}-\Phi), \quad H^{1}(M)=\operatorname{coker}(\mathrm{id}-\Phi)
$$

If $M_{1}, M_{2}$ are difference modules with $M_{1}$ dualizable, then $H^{0}\left(M_{1}^{\vee} \otimes M_{2}\right)$ computes morphisms from $M_{1}$ to $M_{2}$, and $H^{1}\left(M_{1}^{\vee} \otimes M_{2}\right)$ computes extensions $0 \rightarrow M_{2} \rightarrow M \rightarrow M_{1} \rightarrow 0$. That is,

$$
H^{0}\left(M_{1}^{\vee} \otimes M_{2}\right)=\operatorname{Hom}\left(M_{1}, M_{2}\right), \quad H^{1}\left(M_{1}^{\vee} \otimes M_{2}\right)=\operatorname{Ext}\left(M_{1}, M_{2}\right)
$$

## 2 Twisted polynomials

As in differential algebra, there is a relevant notion of twisted polynomials. For $R$ a difference ring, we define the twisted polynomial ring $R\{T\}$ as the set of finite formal sums $\sum_{i=0}^{\infty} r_{i} T^{i}$, but with the multiplication this time obeying the rule $\operatorname{Tr}=\phi(r) T$. For any $P \in R\{T\}$, the quotient $R\{T\} / R\{T\} P$ is a difference module; if $M$ is a difference module, we say $m \in M$ is a cyclic vector if there is an isomorphism $M \cong R\{T\} / R\{T\} P$ carrying $m$ to 1 .

If $R$ is inversive, we again have a formal adjoint construction: given $P \in R\{T\}$, its formal adjoint is obtained by pushing the coefficients to the right side of $T$. This may then be viewed as an element of the opposite ring of $R\{T\}$, which we may identify with $R^{\mathrm{opp}}\{T\}$.

It is not completely straightforward to analogize the cyclic vector theorem to difference modules; see the exercises for one attempt to do so. Instead, we will use only the following trivial observation.

Lemma 1. Any irreducible finite difference module over a difference field contains a cyclic vector.

Proof. If $F$ is a difference field, $M$ is a finite difference module over $F$, and $m \in M$ is nonzero, then $m, \Phi(m), \ldots$ generate a nonzero difference submodule of $M$. If $M$ is irreducible, this submodule must be all of $M$.

If $\phi$ is isometric to a norm $|\cdot|$ on $F$, then we have the usual definition of Newton polygons and slopes for twisted polynomials. If $R$ is inversive, then a twisted polynomial and its adjoint have the same Newton polygon.

Applying the master factorization theorem yields the following.
Theorem 2. Let $F$ be a difference field complete for a norm $|\cdot|$ under which $F$ is isometric. Then any monic twisted polynomial $P \in F\{T\}$ admits a unique factorization

$$
P=P_{r_{1}} \cdots P_{r_{m}}
$$

for some $r_{1}<\cdots<r_{m}$, where each $P_{r_{i}}$ is monic with all slopes equal to $r_{i}$. (If $F$ is inversive, the same holds with the factors in the opposite order.)

## 3 Difference-closed fields

We will say that a difference field $F$ is weakly difference-closed if every dualizable finite difference module over $F$ is trivial. We say $F$ is strongly difference-closed if $F$ is inversive and weakly difference-closed.

Lemma 3. The difference field $F$ is weakly difference-closed if and only if the following conditions hold.
(a) Every nonconstant monic twisted polynomial $P \in F\{T\}$ factors as a product of linear factors.
(b) For every $c \in F^{\times}$, there exists $x \in F^{\times}$with $\phi(x)=c x$.
(c) For every $c \in F^{\times}$, there exists $x \in F$ with $\phi(x)-x=c$.

Proof. We first suppose that $F$ is weakly difference-closed. To prove (a), it suffices to check that if $P \in F\{T\}$ is nonconstant monic with nonzero constant term, then $P$ factors as $P_{1} P_{2}$ with $P_{2}$ linear. The nonzero constant term implies that $M=F\{T\} / F\{T\} P$ is a dualizable finite difference module over $F$, so must be trivial by the hypothesis that $F$ be weakly difference-closed. In particular, there exists a short exact sequence $0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0$ with $M_{2}$ trivial; this corresponds to a factorization $P=P_{1} P_{2}$ with $P_{2}$ linear.

To prove (b), note that $F\{T\} / F\{T\}\left(T-c^{-1}\right)$ must be trivial, which means there exists $x \in F^{\times}$such that $T x-x=y\left(T-c^{-1}\right)$ for some $y \in F$. Then $y=\phi(x)$ and $y c^{-1}=x$, proving the claim.

To prove (c), form the $\phi$-module $V$ corresponding to the matrix $\left(\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right)$. By construction, we have a short exact sequence $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ with $V_{1}, V_{2}$ trivial; since $V$ must also be trivial, this extension must split. That means that we can find $x \in F$ with $\phi(x)-x=c$, proving the claim.

Conversely, suppose that (a), (b), (c) hold. Every nonzero dualizable finite difference module over $F$ admits an irreducible quotient. This quotient admits a cyclic vector by Lemma 1, and so admits a quotient of dimnesion 1 by (a). That quotient in turn is trivial by (b). By induction, we deduce that every dualizable finite difference module over $F$ admits a filtration whose successive quotients are trivial of dimension 1. This filtration splits by (c).

Proposition 4. Let $F$ be a separably (resp. algebraically) closed field of characteristic $p>0$ equipped with a power of the absolute Frobenius. Then $F$ is weakly (resp. strongly) differenceclosed.
Proof. For $P=\sum_{i=0}^{m} P_{i} T^{m} \in F\{T\}$ with $m>0, P_{m}=1$, and $P_{0} \neq 0$, the polynomial $Q(x)=\sum_{i=0}^{m} P_{i} x^{q^{i}}$ has degree $q^{m} \geq 2$, and $x=0$ occurs as a root only with multiplicity 1. Moreover, the formal derivative of $P$ is a constant polynomial, so has no common roots with $P$; hence $P$ is a separable polynomial. Since $F$ is separably closed, there must exist a nonzero root $x$ of $Q$; this implies criteria (a) and (b) of Lemma 3. To deduce (c), note that for $c \in F^{\times}$, the polynomial $x^{q}-x-c$ is again separable, so has a root in $F$.

## 4 Difference algebra over a complete field

For the rest of this unit, let $F$ be a difference field complete for a norm $|\cdot|$ with respect to which $\phi$ is isometric. We do not assume that $F$ is inversive; if not, then we can embed into
$F$ into an inversive difference field by forming the completion $F^{\prime}$ of the direct limit of the system

$$
F \xrightarrow{\phi} F \xrightarrow{\phi} \cdots .
$$

As in the differential case, we would like to classify finite difference modules over $F$ by the spectral norm of $\Phi$ (there is no truncation here); the following basic properties will help, as long as we are mindful of the discrepancies between the differential and difference cases.

Lemma 5. Let $V, V_{1}, V_{2}$ be finite difference modules over $F$.
(a) For $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ a short exact sequence,

$$
|\Phi|_{\mathrm{sp}, V}=\max \left\{|\Phi|_{\mathrm{sp}, V_{1}},|\Phi|_{\mathrm{sp}, V_{2}}\right\} .
$$

(b) We have

$$
|\Phi|_{\mathrm{sp}, V_{1} \otimes V_{2}}=|\Phi|_{\mathrm{sp}, V_{1}}|\Phi|_{\mathrm{sp}, V_{2}}
$$

(c) We have

$$
|\Phi|_{\mathrm{sp}, V}=|\Phi|_{\mathrm{sp}, V \otimes F^{\prime}}
$$

Proof. Exercise.
The relationship between $V$ and the dual $V^{\vee}$ is more complicated.
Lemma 6. If $V \cong F\{T\} / F\{T\} P$ and $P$ has only one slope $r$ in its Newton polygon, then

$$
|\Phi|_{\mathrm{sp}, V}=e^{-r}
$$

If $F$ is inversive, then also

$$
\left|\Phi^{-1}\right|_{\mathrm{sp}, V}=e^{-r}
$$

Proof. By replacing $F$ with $F^{\prime}$, we may reduce to the case where $F$ is inversive. Pick a positive integer $d$ such that there exists $\lambda \in F$ such that $|\lambda|=e^{-r d}$. Then the basis of $F\{T\} / F\{T\} P$ given by $\left(\lambda^{-1} \Phi^{d}\right)^{i}(1)$ for $i=0, \ldots,\left(\operatorname{dim}_{F} V\right)-1$ has the property that

$$
\left|\Phi^{d}\right|_{V}=e^{-r d}
$$

We deduce that

$$
|\Phi|_{\mathrm{sp}, V} \leq e^{-r}
$$

since

$$
\left|\Phi^{-1}\right|_{\mathrm{sp}, V}=|\Phi|_{\mathrm{sp}, V \text { opp }}
$$

and $V^{\text {opp }} \cong F^{\text {opp }}\{T\} / F\{T\} Q$ for $Q$ the formal adjoint of $P$, we also have

$$
\left|\Phi^{-1}\right|_{\mathrm{sp}, V} \leq e^{r}
$$

Since

$$
1=|\Phi|_{\mathrm{sp}, V}\left|\Phi^{-1}\right|_{\mathrm{sp}, V} \leq e^{-r} e^{r}
$$

we obtain the desired equalities.

Corollary 7. For any finite difference module $V$ over $F$, either $|\Phi|_{\mathrm{sp}, V}=0$, or there exists an integer $m \in\left\{1, \ldots, \operatorname{dim}_{F} V\right\}$ such that $|\Phi|_{\mathrm{sp}, V}^{m} \in\left|F^{\times}\right|$.

Let $V$ be a nonzero finite difference module over $F$. We say that $V$ is pure of norm $s$ if all of the Jordan-Hölder constituents of $V$ have spectral norm $s$. Note that $V$ is pure of norm 0 if and only if $\Phi^{\operatorname{dim}_{F} V}=0$.

Proposition 8. Let $V$ be a finite difference module over $F$. Then $V$ is pure of norm $s>0$ if and only if

$$
\begin{equation*}
|\Phi|_{\mathrm{sp}, V \otimes F^{\prime}}=s, \quad\left|\Phi^{-1}\right|_{\mathrm{sp}, V \otimes F^{\prime}}=s^{-1} \tag{1}
\end{equation*}
$$

Proof. If $V$ is pure of norm $s$, then (1) holds by Lemma 6. Conversely, if (1) holds and $W$ is a subquotient of $V$, then

$$
|\Phi|_{\mathrm{sp}, W \otimes F^{\prime}} \leq|\Phi|_{\mathrm{sp}, V \otimes F^{\prime},}, \quad\left|\Phi^{-1}\right|_{\mathrm{sp}, W \otimes F^{\prime}} \leq\left|\Phi^{-1}\right|_{\mathrm{sp}, V \otimes F^{\prime}} .
$$

We thus have

$$
1 \leq|\Phi|_{\mathrm{sp}, W \otimes F^{\prime}}\left|\Phi^{-1}\right|_{\mathrm{sp}, W \otimes F^{\prime}} \leq s s^{-1}=1,
$$

which forces $|\Phi|_{\mathrm{sp}, W}=|\Phi|_{\mathrm{sp}, W \otimes F^{\prime}}=s$.
Corollary 9. Let $V_{1}, V_{2}$ be finite difference modules over $F$ which are pure of respective norms $s_{1}, s_{2}$. Then $V_{1} \otimes_{F} V_{2}$ is pure of norm $s_{1} s_{2}$.

Proof. If $s_{1} s_{2}=0$, then it is easy to check that $V_{1} \otimes V_{2}$ is pure of norm 0 . Otherwise, one direction of Proposition 8 yields

$$
|\Phi|_{\mathrm{sp}, V_{1} \otimes V_{2} \otimes F^{\prime}}=s_{1} s_{2}, \quad\left|\Phi^{-1}\right|_{\mathrm{sp}, V_{1} \otimes V_{2} \otimes F^{\prime}}=s_{1}^{-1} s_{2}^{-1}
$$

so the other direction of Proposition 8 implies that $V_{1} \otimes V_{2}$ is pure of norm $s_{1} s_{2}$.
Corollary 10. Let $V$ be a finite difference module over $F$. Then for any positive integer $d$, $V$ is pure of norm $s$ if and only if $V$ becomes pure of norm $s^{d}$ when viewed as a difference module over $\left(F, \phi^{d}\right)$.

Proposition 11. Suppose that either:
(a) $|\Phi|_{\mathrm{sp}, V}<1$, or
(b) $F$ is inversive and $\left|\Phi^{-1}\right|_{\mathrm{sp}, V}<1$.

Then $H^{1}(V)=0$.
Proof. In case (a), given $v \in V$, the series

$$
w=\sum_{i=0}^{\infty} \Phi^{i}(v)
$$

converges to a solution of $w-\Phi(w)=v$. In case (b), the series

$$
w=-\sum_{i=0}^{\infty} \Phi^{-i-1}(v)
$$

does likewise.

Corollary 12. If $V_{1}, V_{2}$ are finite differential modules pure of norms $s_{1}, s_{2}$, and either:
(a) $s_{1}<s_{2}$; or
(b) $F$ is inversive and $s_{1}>s_{2}$;
then any exact sequence $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ splits.
Proof. If $s_{2}>0$, then by Corollary $9, V_{2}^{\vee} \otimes V_{1}$ is pure of norm $s_{1} / s_{2}$, so Proposition 11 gives the desired splitting. Otherwise, we must be in case (b), so we can pass to the opposite ring to make the same conclusion.

If $F$ is inversive, we again get a decomposition theorem.
Theorem 13. Suppose that $F$ is inversive, and let $V$ be a finite difference module over $F$. Then there exists a unique direct sum decomposition

$$
V=\bigoplus_{s \geq 0} V_{s}
$$

of difference modules, in which each $V_{s}$ is pure of norm s. (Note that $V$ is dualizable if and only if $V_{0}=0$.)

Proof. This follows at once from Corollary 12.
Note that in case $\phi$ is trivial, this simply reproduces the decomposition of $V$ in which the generalized eigenspaces for all eigenvalues of a given modulus are grouped together.

If $F$ is not inversive, we only get a filtration.
Theorem 14. Let $V$ be a finite difference module over $F$. Then there exists a unique filtration

$$
0=V_{0} \subset V_{1} \subset \cdots \subset V_{l}=V
$$

of difference modules, such that each successive quotient $V_{i} / V_{i-1}$ is pure of some norm $s_{i}$, and $s_{1}>\cdots>s_{l}$. (Note that $V$ is dualizable if and only if $V=0$ or $s_{l}>0$.)

Proof. Start with any filtration of $V$ with irreducible successive quotients, and let $s_{1}$ be the largest norm which appears. By Corollary 12, we can change the filtration to move the first appearance of $s_{1}$ one step earlier; consequently, we can put all appearances of $s_{1}$ before all other slopes. Group these together to form $V_{1}$, then repeat to construct the desired factorization. Uniqueness follows by tensoring with $F^{\prime}$ and invoking the uniqueness in Theorem 13.

The following alternate characterization of pureness may be useful in some situations.
Proposition 15. Let $V$ be a finite difference module over $F$, and choose $\lambda \in F^{\times}$. Then $V$ is pure of norm $|\lambda|$ if and only if there exists a basis of $V$ on which $\Phi$ acts via $\lambda$ times an element of $\mathrm{GL}_{n}\left(\mathfrak{o}_{F}\right)$.

Note that whenever $V$ is pure of positive norm, we can apply this result after replacing $\Phi$ by some power of it, thanks to Corollary 7 .

Proof. If such a basis exists, then Proposition 8 implies that $V$ is pure of norm $|\lambda|$. Conversely, if $V$ is irreducible of spectral norm $|\lambda|$, then Lemma 6 provides a basis of the desired form. Otherwise, we proceed by induction on $\operatorname{dim}_{F} V$. Suppose we are given a short exact sequence $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ in which $V_{1}, V_{2}$ admit bases of the desired form. Let $e_{1}, \ldots, e_{m} \in V$ form such a basis for $V_{1}$, and let $e_{m+1}, \ldots, e_{n} \in V$ lift such a basis for $V_{2}$. Then for $\mu \in F$ of sufficiently small norm,

$$
e_{1}, \ldots, e_{m}, \mu e_{m+1}, \ldots, \mu e_{n}
$$

will form a basis of $V$ of the desired form.

## 5 Hodge and Newton polygons

Let $V$ be a finite difference module over $F$ equipped with a norm defined as the supremum norm for some basis $e_{1}, \ldots, e_{n}$. Let $A$ be the basis via which $\Phi$ acts on this basis; define the Hodge polygon of $V$ as the Hodge polygon of the matrix $A$. Given the choice of the norm on $V$, this definition is independent of the choice of the basis: we can only change basis by a matrix $U \in \operatorname{GL}_{n}\left(\mathfrak{o}_{F}\right)$, which replaces $A$ by $U^{-1} A \phi(U)$, and $\phi$ being an isometry ensures that $\phi(U) \in \operatorname{GL}_{n}\left(\mathfrak{o}_{F}\right)$ also. As in the linear case, we list the Hodge slopes $s_{H, i}, \ldots, s_{H, n}$ in increasing order.

Define the Newton polygon of $V$ to have slopes $s_{N, 1}, \ldots, s_{N, n}$ such that $r$ appears with multiplicity equal to the dimension of the quotient in Theorem 14 of norm $e^{-r}$.

Lemma 16. Let $V$ be a finite difference module over $F$. We have

$$
\begin{array}{lr}
s_{H, 1}+\cdots+s_{H, i}=-\log |\Phi|_{\wedge^{i} V} & (i=1, \ldots, n) \\
s_{N, 1}+\cdots+s_{N, i}=-\log |\Phi|_{\mathrm{sp}, \wedge^{i} V} & (i=1, \ldots, n) .
\end{array}
$$

Proof. The first assertion follows from the corresponding fact in the linear case. The second assertion reduces to the fact that if $V$ is irreducible of dimension $n$ and spectral norm $s$, then $\wedge^{i} V$ has spectral norm $s^{i}$ for $i=1, \ldots, n$; this may be read off from the basis used in the proof of Lemma 6.

Corollary 17 (Newton above Hodge). We have

$$
s_{N, 1}+\cdots+s_{N, i} \geq s_{H, 1}+\cdots+s_{H, i} \quad(i=1, \ldots, n)
$$

with equality for $i=n$.

Beware that the Newton polygon, unlike the Hodge polygon, cannot be directly read off from the matrix via which $\Phi$ acts on some basis; see exercises for a counterexample. On the other hand, this works if the matrix of $\Phi$ is a companion matrix, i.e., a matrix of the form

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & a_{0} \\
1 & 0 & \cdots & 0 & a_{1} \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \cdots & 1 & a_{n-1}
\end{array}\right)
$$

with 1s on the subdiagonal, arbitrary entries in the last column, and zeroes elsewhere; this is a restatement of the following fact.

Proposition 18. If $V \cong F\{T\} / F\{T\} P$, then the Newton polygon of $V$ coincides with that of $P$.

Proof. This reduces to Lemma 6.

## 6 The Dieudonné-Manin classification theorem

For $\lambda \in F$ and $d$ a positive integer, let $V_{\lambda, d}$ be the difference module over $F$ with basis $e_{1}, \ldots, e_{d}$ such that

$$
\Phi\left(e_{1}\right)=e_{2}, \quad \ldots, \quad \Phi\left(e_{d-1}\right)=e_{d}, \quad \Phi\left(e_{d}\right)=\lambda e_{1} .
$$

Lemma 19. Suppose $\lambda \in F^{\times}$and the positive integer $d$ are such that there is no $i \in$ $\{1, \ldots, d-1\}$ such that $|\lambda|^{i / d} \in\left|F^{\times}\right|$. Then $V_{\lambda, d}$ is irreducible.

Proof. Note that

$$
\Phi^{d} e_{i}=\phi^{i-1}(\lambda) e_{i} \quad(i=1, \ldots, n)
$$

Hence by Proposition 15, $V_{\lambda, d}$ is pure of norm $\lambda^{1 / d}$, as then is any submodule. But if the submodule were proper and nonzero, we would have a violation of Corollary 7.

Theorem 20. Let $F$ be a complete discretely valued field equipped with an isometric endomorphism $\phi$, such that $\kappa_{F}$ is strongly difference-closed. Then every dualizable finite difference module over $F$ can be split (non-uniquely) as a direct sum of submodules, each of the form $V_{\lambda, d}$ for some $\lambda, d$. Moreover, for $\pi$ any fixed uniformizer of $F$, we can force each $\lambda$ to be a power of $\pi$.

Proof. We first check that if $V$ is pure of norm 1, then $V$ is trivial. We must show that for any $A \in \mathrm{GL}_{n}\left(\mathfrak{o}_{F}\right)$, there exists a convergent sequence $U_{1}, U_{2}, \cdots \in \mathrm{GL}_{n}\left(\mathfrak{o}_{F}\right)$ such that

$$
U_{m}^{-1} A \phi\left(U_{m}\right) \equiv I_{n} \quad\left(\bmod \pi^{m}\right)
$$

Specifically, we will insist that $U_{m+1} \equiv U_{m}\left(\bmod \pi^{m}\right)$. Finding $U_{1}$ amounts to trivializing a dualizable difference module of dimension $m$ over $\kappa_{F}$. For $m>1$, given $U_{m}$, we must have $U_{m+1}=U_{m}\left(I_{n}+\pi^{m} X_{m}\right)$ for some $m$, and

$$
\left(I_{n}+\pi^{m} X_{m}\right)^{-1}\left(U_{m}^{-1} A \phi\left(U_{m}\right)\right)\left(I_{n}+\pi^{m} X_{m}\right) \equiv I_{n} \quad\left(\bmod \pi^{m+1}\right)
$$

Since already $U_{m}^{-1} A \phi\left(U_{m}\right) \equiv I_{n}\left(\bmod \pi^{m}\right)$, this amounts to solving

$$
-X_{m}+\pi^{-m}\left(U_{m}^{-1} A \phi\left(U_{m}\right)-I_{n}\right)+\phi\left(X_{m}\right) \equiv 0 \quad(\bmod \pi),
$$

which we solve by applying criterion (c) from Lemma 3.
By similar (but easier) arguments, we also show that:

- $\phi$ is surjective on $\mathfrak{o}_{F}$, so $F$ is inversive;
- if $V$ is trivial, then $H^{1}(V)=0$.

In particular, we may apply Theorem 13 to reduce the desired result to the case where $V$ is pure of norm $s>0$.

Let $d$ be the smallest positive integer such that $s^{d}=\left|\pi^{m}\right|$ for some integer $m$. Then the first paragraph implies that $\pi^{-m} \Phi^{d}$ fixes some nonzero element of $V$; this gives us a nonzero map from $V_{\pi^{m}, d}$ to $V$. By Lemma 19, this map must be injective. Repeating this argument, we write $V$ as a successive extension of copies of $V_{\pi^{m}, d}$. However, $V_{\pi^{m}, d}^{\vee} \otimes V_{\pi^{m}, d}$ is pure of norm 1, so has trivial $H^{1}$ as above. Thus $V$ splits as a direct sum of copies of $V_{\pi^{m}, d}$, as desired.

By Proposition 4, Theorem 20 has the following immediate corollary.
Corollary 21. Let $F$ be a complete discretely valued field, normalized so that the additive value group is $\mathbb{Z}$, such that $\kappa_{F}$ is algebraically closed of characteristic $p>0$. Let $\phi: F \rightarrow F$ be an isometric automorphism lifting a power of the absolute Frobenius on $\kappa_{F}$. Then every dualizable finite difference module over $F$ can be split (non-uniquely) as a direct sum of difference submodules, each of the form $V_{\lambda, d}$ for some $\lambda \in F^{\times}$and some positive integer $d$ coprime to the valuation of $\lambda$. Moreover, for $\pi$ any fixed uniformizer of $F$, we can force each $\lambda$ to be a power of $\pi$.

The case in which $k$ is an algebraically closed field of characteristic $p, W(k)$ is the ring of $p$-typical Witt vectors (i.e., the unique complete discrete valuation ring with residue field $k$ and maximal ideal $(p)), F=\operatorname{Frac}(W(k))$, and $\phi$ is the Witt vector Frobenius is the Dieudonné-Manin theorem, i.e., the classification theorem of rational Dieudonné modules over an algebraically closed field.

## 7 Notes

The parallels between difference and differential algebra are quite close, enough so that a survey of references for difference algebra strongly resembles its differential counterpart. An older, rather dry reference is [Coh65]; a somewhat more lively modern reference, which develops difference Galois theory under somewhat restrictive conditions, is [SvdP97]. We again mention [And01] as a unifying framework for difference and differential algebra.

In the special case of the difference field $\operatorname{Frac}(W(k))$, with $k$ perfect of characteristic $p>0$, most of the results of this section appear in [Kat79] in some form, but it is awkward to give direct references since we have organized our presentation rather differently.

Proposition 4 can be found in SGA7 [DK73, Exposé XXII, Corollaire 1.1.10], wherein Katz attributes it to Lang. Indeed, it is a special case of the nonabelian Artin-Schreier theory associated to an algebraic group over a field of positive characteristic (in our case $\mathrm{GL}_{n}$ ), via the Lang torsor; see [Lan56].

For the original classification of rational Dieudonné modules over an algebraically closed field, see Manin's original paper [Man63] or the book of Demazure [Dem72].

## 8 Exercises

1. Let $F$ be a difference field of characteristic zero containing an element $x$ such that $\phi(x)=\lambda x$ for some $\lambda$ fixed by $\phi$. Prove that every finite difference module for $M$ admits a cyclic vector. (Hint: under these hypotheses, one can readily imitate the proof of the cyclic vector theorem for differential modules.)
2. Let $F$ be the completion of $\mathbb{Q}_{p}(t)$ for the 1-Gauss norm, viewed as a difference field for $\phi$ equal to the substitution $t \mapsto t^{p}$. Let $V$ be the difference module corresponding to the matrix

$$
A=\left(\begin{array}{cc}
1 & t \\
0 & p
\end{array}\right)
$$

Prove that there is a nonsplit short exact sequence $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ with $V_{1}, V_{2}$ pure of slopes $s_{1}, s_{2}$ with $s_{1}<s_{2}$.
3. Here is a beautiful example from [Kat79, §1.3] (attributed to B. Gross). Let $p$ be a prime congruent to 3 modulo $p$, put $F=\mathbb{Q}_{p}(i)$ with $i^{2}=-1$, and let $\phi$ be the automorphism $i \mapsto-i$ of $F$ over $\mathbb{Q}_{p}$. Define a difference module $M$ of rank 2 over $F$ using the matrix

$$
A=\left(\begin{array}{cc}
1-p & (p+1) i \\
(p+1) i & p-1
\end{array}\right)
$$

Compute the Newton polygons of $A$ and $M$ and verify that they do not coincide. (Hint: find another basis of $M$ on which $\Phi$ acts diagonally.)
4. Prove that every difference field can be embedded into a difference-closed field. (This requires your favorite equivalent of the axiom of choice, e.g., Zorn's lemma.)

