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Discs and annuli

In this unit, we introduce p-adic closed discs and annuli, but in a purely ring-theoretic
fashion. This avoids having to introduce any p-adic analytic geometry.

Throughout the unit (and in all later units, unless explicitly contravened), let K be a field
complete for a nontrivial nonarchimedean valuation | · |. Assume that K has characteristic
0, but the residue field κK has characteristic p > 0. Also assume that things are normalized
so that |p| = p−1.

1 Power series on closed discs and annuli

We start by introducing some rings that should be thought of as the analytic functions on
a closed disc |t| ≤ β, or a closed annulus α ≤ |t| ≤ β. As noted in the introduction, this
is more properly done in a framework of p-adic analytic geometry, but we will avoid this
framework.

For α, β > 0, put

K〈α/t, t/β〉 =

{

∑

i∈Z

cit
i ∈ KJt, t−1K : lim

i→±∞
|ci|ρ

i = 0 (ρ ∈ [α, β]).

}

.

That is, consider formal bidirectional power series which converge whenever you plug in a
value for t with |t| ∈ [α, β], or in other words, when α/|t| and |t|/β are both at most 1; it
suffices to check for ρ = α and ρ = β. Although formal bidirectional power series do not
form a ring, the subset K〈α/t, t/β〉 does form a ring under the expected operations.

If α = 0, the only reasonable interpretation of the previous definition is to require ci = 0
for i < 0. When there are no negative powers of t, it is redundant to require the convergence
for ρ < β. In other words,

K〈0/t, t/β〉 = K〈t/β〉 =

{

∞
∑

i=0

cit
i ∈ KJtK : lim

i→∞
|ci|β

i = 0

}

.

One could also allow β = ∞ for a similar effect in the other direction. More succinctly put,
we identify K〈α/t, t/β〉 with K〈β−1/t−1, t−1/α−1〉.

2 Gauss norms and Newton polygons

The rings K〈α/t, t/β〉 quite a lot like polynomial rings (or Laurent polynomial rings, in case
α 6= 0) in one variable. The next few statements are all instances of this analogy.

1



From the definition of K〈α/t, t/β〉, we see that it carries a well-defined ρ-Gauss norm

∣

∣

∣

∣

∣

∑

i

cit
i

∣

∣

∣

∣

∣

ρ

= max
i

{|ci|ρ
i}

for any ρ ∈ [α, β]. For ρ = α = 0, this reduces to simply |c0|.
The additive version is this is to take r ∈ [− log β,− logα] and put

vr

(

∑

cit
i
)

= min
i
{v(ci) + ri},

where v(c) = − log |c|. This is the same formula as we had for the sloped valuation function
on a polynomial ring, so we may repeat the proof to obtain the following.

Lemma 1. For r ∈ [− log β,− logα], the function vr on K〈α/t, t/β〉 is a valuation; in par-
ticular, vr(xy) = vr(x)+vr(y). Equivalently, for ρ ∈ [α, β], the ρ-Gauss norm on K〈α/t, t/β〉
is really a norm; that is, it indeed satisfies |fg|ρ = |f |ρ|g|ρ.

One may define the Newton polygon for an element x =
∑

xit
i ∈ K〈α/t, t/β〉 as the

lower convex hull of the set

{(−i, v(xi)) : i ∈ Z, xi 6= 0},

except that we only keep the slopes in [− log β,− logα].

Proposition 2. Let x =
∑

i xit
i ∈ K〈α/t, t/β〉 be nonzero.

(a) The Newton polygon of x has finite width.

(b) The function r 7→ vr(x) on [− log β,− logα] is continuous, piecewise affine, and convex.

(c) The function ρ 7→ |x|ρ on [α, β] is continuous and log-concave. The log-concavity means
that ρ, σ ∈ [α, β] and c ∈ [0, 1], put τ = ρcσ1−c; then

|x|τ ≤ |x|cρ|x|
1−c
σ .

(d) If α = 0, then vr is decreasing on [− log β,∞); in other words, for all ρ ∈ [0, β],
|x|ρ ≤ |x|β.

Part (c) should be thought of as a nonarchimedean analogue of the Hadamard three circle
theorem.

Proof. We have (a) because there is a least i for which |ci|α
i is maximized, and there is a

greatest j for which |cj|β
j is maximized. This implies (b) because as in the polynomial case,

we may interpret vr(x) as the y-intercept of the supporting line of the Newton polygon of
slope r. This in turn implies (c), and (d) is a remark made earlier.
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When dealing with the ring K〈α/t, t/β〉, the following completeness property will be
extremely useful.

Proposition 3. The ring K〈α/t, t/β〉 is Fréchet complete for the norms | · |ρ for all ρ ∈ I.
That is, if {xn}

∞
n=0

is a sequence which is simultaneously Cauchy under | · |ρ for all ρ ∈ I,
then it is convergent. (By Proposition 2, it suffices to check the Cauchy property at each
nonzero endpoint of I.)

Proof. Exercise.

For instance, the completeness property is used in the construction of multiplicative
inverses.

Lemma 4. If α = 0 (resp. α > 0), a nonzero element f ∈ K〈α/t, t/β〉 is a unit if and only
if vr is constant (resp. affine) on [− log(β),− log(α)].

Proof. We will just consider the case α > 0; the other case is similar (and easier). Put
f =

∑

i∈Z
fit

i. Note that the following are equivalent:

(a) there is a single i for which |f |ρ = |fi|ρ
i for all ρ ∈ [α, β];

(b) the function r 7→ vr(f) on [− log(β),− log(α)] is affine;

(c) the Newton polygon of f has no slopes in [− log(β),− log(α)].

By (c), these conditions all hold if f is a unit. Conversely, if these conditions hold, then the
series

(fiti)
−1(1 − (fit

i − f)/(fit
i))−1 =

∞
∑

j=0

(fit
i − f)j(fiti)

−j−1

converges by Proposition 3, and its limit is an inverse of f .

3 Factorization results

Proposition 5 (Weierstrass preparation). Suppose that f =
∑

i∈Z
fit

i ∈ K〈α/t, t/β〉, and
that ρ ∈ [α, β] is such that there is a unique m ∈ Z maximizing |fm|ρ

m. Then there is a
unique factorization f = fmt

mgh with

g ∈ K〈α/t, t/β〉 ∩KJtK = K〈t/β〉,

h ∈ K〈α/t, t/β〉 ∩KJt−1K = K〈α/t〉,

|g|ρ = |g0| = 1, and |h− 1|ρ < 1.

Proof. The master slope factorization applies thanks to Property 3.

In light of the finite width property of the Newton polygon, the following should not be
a surprise.
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Proposition 6 (More Weierstrass preparation). For f ∈ K〈α/t, t/β〉, there exists a poly-
nomial P ∈ K[t] and a unit g ∈ K〈α/t, t/β〉× such that f = Pg. In particular, K〈α/t, t/β〉
is a principal ideal domain.

Proof. Using Proposition 5, we may reduce to two instances of the case α = 0, so we restrict
to that case hereafter. Put f =

∑

i fit
i, and choose m maximizing |fm|β

m. Let R be the
ring of formal sums

∑

i cit
i of series with |ci|β

i bounded as i → −∞ and tending to 0 as
i → +∞. Let e be the inverse of

∑m

i=0
fit

i in R, and apply master slope factorization to
factor ef = gh in R, in which g is a unit in K〈t/β〉 by Lemma 4. Now h

∑m

i=0
fit

i = fg−1

belongs to
KJtK ∩ tmKJt−1K.

It is thus a polynomial of degree m, proving the claim.

We will make frequent and often implicit use of the following patching lemma.

Lemma 7 (Patching lemma). Suppose α ≤ γ ≤ β ≤ δ. Let M1 be a finite free module over
K〈α/t, t/β〉, let M2 be a finite free module over K〈γ/t, t/δ〉, and suppose we are given an
isomorphism

ψ : M1 ⊗K〈γ/t, t/β〉 ∼= M2 ⊗K〈γ/t, t/β〉.

Then we can find a finite free module M over K〈α/t, t/δ〉 and isomorphisms M1
∼= M ⊗

K〈α/t, t/β〉, M2
∼= M ⊗K〈γ/t, t/δ〉 inducing ψ. Moreover, M is determined by this require-

ment up to unique isomorphism.

Proof. We will only explain the case α > 0; the case α = 0 is similar.
Choose bases of M1 and M2 and let A be the n × n matrix defining ψ; then A must be

invertible over K〈γ/t, t/β〉. Choose ρ ∈ [γ, β]; since det(A) is a unit in K〈γ/t, t/β〉, we can
find an invertible n× n matrix W over K〈γ/t, t/β〉 such that det(WA) = 1. (For instance,
take W = Diag(det(A)−1, 1, . . . , 1).)

It is then possible (see exercises) to find invertible matrices U, V over K[t, t−1] such that
|UWAV − In|ρ < 1. By changing the initial choices of bases, we can force ourselves into the
case |A− In|ρ < 1.

By using the master slope factorization in the matrix ring over K〈γ/t, t/β〉, we can split
A as a product of an invertible matrix over K〈t/β〉 and an invertible matrix over K〈γ/t〉.
Using these to change basis in M1 and M2, respectively, we can put ourselves in the situation
where A = In, in which case we may identify the bases of M1 and M2. Take M to be the
free module over K〈α/t, t/δ〉 with the same basis.

4 Notes

The Hadamard three circles theorem (Proposition 2(c)) is a special case of the fact that the
Shilov boundary of the annulus α ≤ |t| ≤ β consists of the two circles |t| = α and |t| = β.
For much amplification of this remark, including a full-blown theory of harmonic functions
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on Berkovich analytic curves, see [Thu05]. For an alternate presentation, restricted to the
Berkovich projective line but otherwise more detailed, see [BR07].

The patching lemma (Lemma 7) is a special case of the glueing property of coherent
sheaves on affinoid rigid analytic spaces, i.e., the theorems of Kiehl and Tate [BGR84, Theo-
rems 8.2.1/1 and 9.4.2/3]. The factorization argument in the proof, however, is older still; it
is the nonarchimedean version of what is called a Birkhoff factorization over an archimedean
field.

5 Exercises

1. Prove Proposition 3. (Hint: it may be easiest to first construct the limit using a single
ρ ∈ [α, β], then show that it must also work for the other ρ.)

2. Let R be the ring of formal power series over K which converge for |t| < 1. Prove that
R is not noetherian; this is why I avoided introducing it.

3. Suppose K is complete for a discrete valuation. Prove that any element of oKJtK⊗oK
K

(that is, a power series with bounded coefficients) is equal to a polynomial in t times
a unit. Then prove that this fails if K is complete for a nondiscrete valuation.

4. Let A be an n × n matrix over K〈ρ/t, t/ρ〉 such that | det(A) − 1|ρ < 1. Prove that
there exist invertible matrices U, V over K[t, t−1] such that |U−1AV − In|ρ < 1. (Hint:
perform approximate Gaussian elimination. An analogous argument, but in more
complicated notation, is [Ked04, Lemma 6.2]. We will see a similar result in the unit
on numerical analysis.)
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