p-adic differential equations 18.787, Kiran S. Kedlaya, MIT, fall 2007 Discs and annuli

In this unit, we introduce p-adic closed discs and annuli, but in a purely ring-theoretic fashion. This avoids having to introduce any p-adic analytic geometry.

Throughout the unit (and in all later units, unless explicitly contravened), let K be a field complete for a nontrivial nonarchimedean valuation $|\cdot|$. Assume that K has characteristic 0, but the residue field κ_K has characteristic p > 0. Also assume that things are normalized so that $|p| = p^{-1}$.

1 Power series on closed discs and annuli

We start by introducing some rings that should be thought of as the analytic functions on a closed disc $|t| \leq \beta$, or a closed annulus $\alpha \leq |t| \leq \beta$. As noted in the introduction, this is more properly done in a framework of *p*-adic analytic geometry, but we will avoid this framework.

For $\alpha, \beta > 0$, put

$$K\langle \alpha/t, t/\beta \rangle = \left\{ \sum_{i \in \mathbb{Z}} c_i t^i \in K[[t, t^{-1}]] : \lim_{i \to \pm \infty} |c_i| \rho^i = 0 \quad (\rho \in [\alpha, \beta]). \right\}.$$

That is, consider formal bidirectional power series which converge whenever you plug in a value for t with $|t| \in [\alpha, \beta]$, or in other words, when $\alpha/|t|$ and $|t|/\beta$ are both at most 1; it suffices to check for $\rho = \alpha$ and $\rho = \beta$. Although formal bidirectional power series do not form a ring, the subset $K\langle \alpha/t, t/\beta \rangle$ does form a ring under the expected operations.

If $\alpha = 0$, the only reasonable interpretation of the previous definition is to require $c_i = 0$ for i < 0. When there are no negative powers of t, it is redundant to require the convergence for $\rho < \beta$. In other words,

$$K\langle 0/t, t/\beta \rangle = K\langle t/\beta \rangle = \left\{ \sum_{i=0}^{\infty} c_i t^i \in K[[t]] : \lim_{i \to \infty} |c_i|\beta^i = 0 \right\}.$$

One could also allow $\beta = \infty$ for a similar effect in the other direction. More succinctly put, we identify $K\langle \alpha/t, t/\beta \rangle$ with $K\langle \beta^{-1}/t^{-1}, t^{-1}/\alpha^{-1} \rangle$.

2 Gauss norms and Newton polygons

The rings $K\langle \alpha/t, t/\beta \rangle$ quite a lot like polynomial rings (or Laurent polynomial rings, in case $\alpha \neq 0$) in one variable. The next few statements are all instances of this analogy.

From the definition of $K\langle \alpha/t, t/\beta \rangle$, we see that it carries a well-defined ρ -Gauss norm

$$\left|\sum_{i} c_{i} t^{i}\right|_{\rho} = \max_{i} \{|c_{i}|\rho^{i}\}$$

for any $\rho \in [\alpha, \beta]$. For $\rho = \alpha = 0$, this reduces to simply $|c_0|$.

The additive version is this is to take $r \in [-\log \beta, -\log \alpha]$ and put

$$v_r\left(\sum c_i t^i\right) = \min_i \{v(c_i) + ri\},\$$

where $v(c) = -\log |c|$. This is the same formula as we had for the sloped valuation function on a polynomial ring, so we may repeat the proof to obtain the following.

Lemma 1. For $r \in [-\log \beta, -\log \alpha]$, the function v_r on $K\langle \alpha/t, t/\beta \rangle$ is a valuation; in particular, $v_r(xy) = v_r(x) + v_r(y)$. Equivalently, for $\rho \in [\alpha, \beta]$, the ρ -Gauss norm on $K\langle \alpha/t, t/\beta \rangle$ is really a norm; that is, it indeed satisfies $|fg|_{\rho} = |f|_{\rho}|g|_{\rho}$.

One may define the Newton polygon for an element $x = \sum x_i t^i \in K\langle \alpha/t, t/\beta \rangle$ as the lower convex hull of the set

$$\{(-i, v(x_i)) : i \in \mathbb{Z}, x_i \neq 0\},\$$

except that we only keep the slopes in $[-\log \beta, -\log \alpha]$.

Proposition 2. Let $x = \sum_{i} x_i t^i \in K\langle \alpha/t, t/\beta \rangle$ be nonzero.

- (a) The Newton polygon of x has finite width.
- (b) The function $r \mapsto v_r(x)$ on $[-\log \beta, -\log \alpha]$ is continuous, piecewise affine, and convex.
- (c) The function $\rho \mapsto |x|_{\rho}$ on $[\alpha, \beta]$ is continuous and log-concave. The log-concavity means that $\rho, \sigma \in [\alpha, \beta]$ and $c \in [0, 1]$, put $\tau = \rho^c \sigma^{1-c}$; then

$$|x|_{\tau} \le |x|_{\rho}^{c} |x|_{\sigma}^{1-c}.$$

(d) If $\alpha = 0$, then v_r is decreasing on $[-\log\beta, \infty)$; in other words, for all $\rho \in [0, \beta]$, $|x|_{\rho} \leq |x|_{\beta}$.

Part (c) should be thought of as a nonarchimedean analogue of the Hadamard three circle theorem.

Proof. We have (a) because there is a least i for which $|c_i|\alpha^i$ is maximized, and there is a greatest j for which $|c_j|\beta^j$ is maximized. This implies (b) because as in the polynomial case, we may interpret $v_r(x)$ as the y-intercept of the supporting line of the Newton polygon of slope r. This in turn implies (c), and (d) is a remark made earlier.

When dealing with the ring $K\langle \alpha/t, t/\beta \rangle$, the following completeness property will be extremely useful.

Proposition 3. The ring $K\langle \alpha/t, t/\beta \rangle$ is Fréchet complete for the norms $|\cdot|_{\rho}$ for all $\rho \in I$. That is, if $\{x_n\}_{n=0}^{\infty}$ is a sequence which is simultaneously Cauchy under $|\cdot|_{\rho}$ for all $\rho \in I$, then it is convergent. (By Proposition 2, it suffices to check the Cauchy property at each nonzero endpoint of I.)

Proof. Exercise.

For instance, the completeness property is used in the construction of multiplicative inverses.

Lemma 4. If $\alpha = 0$ (resp. $\alpha > 0$), a nonzero element $f \in K\langle \alpha/t, t/\beta \rangle$ is a unit if and only if v_r is constant (resp. affine) on $[-\log(\beta), -\log(\alpha)]$.

Proof. We will just consider the case $\alpha > 0$; the other case is similar (and easier). Put $f = \sum_{i \in \mathbb{Z}} f_i t^i$. Note that the following are equivalent:

- (a) there is a single *i* for which $|f|_{\rho} = |f_i| \rho^i$ for all $\rho \in [\alpha, \beta]$;
- (b) the function $r \mapsto v_r(f)$ on $[-\log(\beta), -\log(\alpha)]$ is affine;
- (c) the Newton polygon of f has no slopes in $[-\log(\beta), -\log(\alpha)]$.

By (c), these conditions all hold if f is a unit. Conversely, if these conditions hold, then the series

$$(f_i t_i)^{-1} (1 - (f_i t^i - f) / (f_i t^i))^{-1} = \sum_{j=0}^{\infty} (f_i t^i - f)^j (f_i t_i)^{-j-1}$$

converges by Proposition 3, and its limit is an inverse of f.

3 Factorization results

Proposition 5 (Weierstrass preparation). Suppose that $f = \sum_{i \in \mathbb{Z}} f_i t^i \in K\langle \alpha/t, t/\beta \rangle$, and that $\rho \in [\alpha, \beta]$ is such that there is a unique $m \in \mathbb{Z}$ maximizing $|f_m|\rho^m$. Then there is a unique factorization $f = f_m t^m gh$ with

$$g \in K\langle \alpha/t, t/\beta \rangle \cap K[[t]] = K\langle t/\beta \rangle, h \in K\langle \alpha/t, t/\beta \rangle \cap K[[t^{-1}]] = K\langle \alpha/t \rangle,$$

 $|g|_{\rho} = |g_0| = 1, and |h-1|_{\rho} < 1.$

Proof. The master slope factorization applies thanks to Property 3.

In light of the finite width property of the Newton polygon, the following should not be a surprise.

Proposition 6 (More Weierstrass preparation). For $f \in K\langle \alpha/t, t/\beta \rangle$, there exists a polynomial $P \in K[t]$ and a unit $g \in K\langle \alpha/t, t/\beta \rangle^{\times}$ such that f = Pg. In particular, $K\langle \alpha/t, t/\beta \rangle$ is a principal ideal domain.

Proof. Using Proposition 5, we may reduce to two instances of the case $\alpha = 0$, so we restrict to that case hereafter. Put $f = \sum_i f_i t^i$, and choose m maximizing $|f_m|\beta^m$. Let R be the ring of formal sums $\sum_i c_i t^i$ of series with $|c_i|\beta^i$ bounded as $i \to -\infty$ and tending to 0 as $i \to +\infty$. Let e be the inverse of $\sum_{i=0}^m f_i t^i$ in R, and apply master slope factorization to factor ef = gh in R, in which g is a unit in $K\langle t/\beta \rangle$ by Lemma 4. Now $h \sum_{i=0}^m f_i t^i = fg^{-1}$ belongs to

$$K[t] \cap t^m K[t^{-1}]$$

It is thus a polynomial of degree m, proving the claim.

We will make frequent and often implicit use of the following patching lemma.

Lemma 7 (Patching lemma). Suppose $\alpha \leq \gamma \leq \beta \leq \delta$. Let M_1 be a finite free module over $K\langle \alpha/t, t/\beta \rangle$, let M_2 be a finite free module over $K\langle \gamma/t, t/\delta \rangle$, and suppose we are given an isomorphism

$$\psi: M_1 \otimes K\langle \gamma/t, t/\beta \rangle \cong M_2 \otimes K\langle \gamma/t, t/\beta \rangle.$$

Then we can find a finite free module M over $K\langle \alpha/t, t/\delta \rangle$ and isomorphisms $M_1 \cong M \otimes K\langle \alpha/t, t/\beta \rangle$, $M_2 \cong M \otimes K\langle \gamma/t, t/\delta \rangle$ inducing ψ . Moreover, M is determined by this requirement up to unique isomorphism.

Proof. We will only explain the case $\alpha > 0$; the case $\alpha = 0$ is similar.

Choose bases of M_1 and M_2 and let A be the $n \times n$ matrix defining ψ ; then A must be invertible over $K\langle \gamma/t, t/\beta \rangle$. Choose $\rho \in [\gamma, \beta]$; since det(A) is a unit in $K\langle \gamma/t, t/\beta \rangle$, we can find an invertible $n \times n$ matrix W over $K\langle \gamma/t, t/\beta \rangle$ such that det(WA) = 1. (For instance, take $W = \text{Diag}(\text{det}(A)^{-1}, 1, \dots, 1)$.)

It is then possible (see exercises) to find invertible matrices U, V over $K[t, t^{-1}]$ such that $|UWAV - I_n|_{\rho} < 1$. By changing the initial choices of bases, we can force ourselves into the case $|A - I_n|_{\rho} < 1$.

By using the master slope factorization in the matrix ring over $K\langle \gamma/t, t/\beta \rangle$, we can split A as a product of an invertible matrix over $K\langle t/\beta \rangle$ and an invertible matrix over $K\langle \gamma/t \rangle$. Using these to change basis in M_1 and M_2 , respectively, we can put ourselves in the situation where $A = I_n$, in which case we may identify the bases of M_1 and M_2 . Take M to be the free module over $K\langle \alpha/t, t/\delta \rangle$ with the same basis.

4 Notes

The Hadamard three circles theorem (Proposition 2(c)) is a special case of the fact that the *Shilov boundary* of the annulus $\alpha \leq |t| \leq \beta$ consists of the two circles $|t| = \alpha$ and $|t| = \beta$. For much amplification of this remark, including a full-blown theory of harmonic functions

on Berkovich analytic curves, see [Thu05]. For an alternate presentation, restricted to the Berkovich projective line but otherwise more detailed, see [BR07].

The patching lemma (Lemma 7) is a special case of the glueing property of coherent sheaves on affinoid rigid analytic spaces, i.e., the theorems of Kiehl and Tate [BGR84, Theorems 8.2.1/1 and 9.4.2/3]. The factorization argument in the proof, however, is older still; it is the nonarchimedean version of what is called a *Birkhoff factorization* over an archimedean field.

5 Exercises

- 1. Prove Proposition 3. (Hint: it may be easiest to first construct the limit using a single $\rho \in [\alpha, \beta]$, then show that it must also work for the other ρ .)
- 2. Let R be the ring of formal power series over K which converge for |t| < 1. Prove that R is not noetherian; this is why I avoided introducing it.
- 3. Suppose K is complete for a discrete valuation. Prove that any element of $\mathfrak{o}_K[t] \otimes_{\mathfrak{o}_K} K$ (that is, a power series with bounded coefficients) is equal to a polynomial in t times a unit. Then prove that this fails if K is complete for a nondiscrete valuation.
- 4. Let A be an $n \times n$ matrix over $K\langle \rho/t, t/\rho \rangle$ such that $|\det(A) 1|_{\rho} < 1$. Prove that there exist invertible matrices U, V over $K[t, t^{-1}]$ such that $|U^{-1}AV - I_n|_{\rho} < 1$. (Hint: perform approximate Gaussian elimination. An analogous argument, but in more complicated notation, is [Ked04, Lemma 6.2]. We will see a similar result in the unit on numerical analysis.)