
CHAPTER 16

Effective convergence bounds

In this chapter, we discuss some effective bounds on the solutions of p-adic differential
equations with nilpotent singularities; we put this chapter here partly to illustrate the im-
provement one gets in the bounds by accounting for a Frobenius structure. Just like their
archimedean counterparts, these are important for carrying out rigorous numerical calcula-
tions.

1. Nilpotent singularities in the p-adic setting

For applications in geometry, it is important to have effective bounds not just for nonsin-
gular differential equations, but also for some regular singular differential equations. How-
ever, in the p-adic case, the p-adic behavior of the exponents creates many headaches. The
case where the exponents are all zero is an important middle ground.

Proposition 16.1.1. Let N =
∑∞

i=0 Nit
i be an n× n matrix over K〈t/β〉 corresponding

to the differential system D(v) = Nv + d(v), where d = t d
dt

. Assume that N0 is nilpotent

with nilpotency index m; that is, Nm
0 = 0 but Nm−1

0 6= 0. Assume also that |N0| ≤ 1. Then
the fundamental solution matrix U =

∑∞
i=0 Uit

i over KJtK (as in Proposition 6.3.4) satisfies

(16.1.1.1) |Ui| ≤ |i!|−2m+1 max{|Nj| : 0 ≤ j ≤ i} (i = 1, 2, . . . ).

Consequently, U has entries in K〈t/(p−(2m−1)/(p−1)β)〉 (as does its inverse).

Note that this reproves the p-adic Cauchy theorem (Proposition 8.2.3).

Proof. Recall (6.3.4.1):

N0Ui − UiN0 + iUi = −

i−1
∑

j=0

Ni−jUj.

The map f(X) = NX − XN on n × n matrices is nilpotent with nilpotency index 2m − 1.
Hence the inverse of the map X 7→ iX + f(X) has inverse

X 7→

2m−2
∑

j=0

(−1)ji−j−1f j(X).

This gives the claim by induction on i. �

2. Effective bounds for solvable modules

We now give an improved version of Proposition 16.1.1 under the hypothesis that U has
entries in K〈t/β〉. The hypothesis is only qualitative, in that it implies that |Ui|β

i → 0 as
i → ∞ but does not give a specific bound on |Ui| for any particular i. Somewhat surprisingly,
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this hypothesis plus any explicit bound on N together imply a rather strong explicit bound
on |Ui|. We first suppose the bound on N is of a specific form.

Theorem 16.2.1. Let N =
∑∞

i=0 Nit
i, U =

∑∞
i=0 Uit

i be n × n matrices over KJtK such
that

(a) N has entries in K〈t/β〉;
(b) U0 = In;
(c) U−1NU + U−1t d

dt
(U) = N0;

(d) N0 is nilpotent;
(e) U and U−1 have entries in K〈t/β〉.

Then for every nonnegative integer i,

|Ui|β
i ≤ p(n−1)⌊logp i⌋ max{1, |N |n−1

β }.

The first step in the proof of Theorem 16.2.1 is to change basis to reduce |N |β; however,
we pay the price of decreasing β slightly.

Lemma 16.2.2. With notation as in Theorem 16.2.1, for any λ < 1, µ > 1, there exists
an invertible n × n matrix X =

∑∞
i=0 Uit

i over K〈t/(λβ)〉 such that

|X−1NX + U−1t
d

dt
(X)|λβ ≤ 1

|X−1|λβ ≤ µ

|X|λβ ≤ |N |n−1
β µ.

Proof. Let M be the differential module over K〈t/β〉 for the operator t d
dt

, with a basis
on which D acts via N , and let | · | be the supremum norm defined by this basis. Since the
fundamental solution matrix for M converges in the closed disc of radius β, M has generic
radius of convergence β. In particular,

|D|sp,M ≤

∣

∣

∣

∣

t
d

dt

∣

∣

∣

∣

Fβ

= 1.

By Proposition 5.2.11 plus the lattice lemma (Lemma 10.5.1), for any desired ǫ > 0, we may
find V ∈ GLn(K〈t/(λ1/2β)〉) such that for N ′ = V −1NV + V −1t d

dt
(V ),

|N ′|β ≤ 1 + ǫ

|V −1|β ≤ 1 + ǫ

|V |β ≤ |N |n−1
β (1 + ǫ).

Since the constant coefficient N ′
0 of N ′ is nilpotent, it has spectral norm 0. By Proposi-

tion 3.4.6, there exists W ∈ GLn(K) with

|W−1| ≤ 1, |W | ≤ (1 + ǫ)n−1, |W−1N ′
0W | ≤ 1.
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We now take X = V W , so that X−1NX + X−1t d
dt

(X) = W−1N ′W . We then have

|(W−1N ′W )0| ≤ 1

|W−1N ′W |β ≤ (1 + ǫ)n

|X−1|β ≤ 1 + ǫ

|X|β ≤ |N |n−1
β (1 + ǫ)n.

For ǫ such that (1 + ǫ)n ≤ max{λ−1, µ}, we have the desired inequalities. �

Using Lemma 16.2.2, we prove Theorem 16.2.1 by using Frobenius antecedents to reduce
the index from i to ⌊i/p⌋. One can improve upon this argument if one has a Frobenius
structure on the differential module; see Lemma 16.3.2.

Lemma 16.2.3. With notation as in Theorem 16.2.1, suppose that |N |β ≤ 1. Then for
any λ < 1, µ > 1, there exist n×n matrices N ′, U ′ over K〈t/(λpβp)〉 satisfying the hypotheses
of Theorem 16.2.1, such that

|N ′|λβ ≤ p

max{|Uj|(λβ)j : 0 ≤ j ≤ i} ≤ max{|U ′
j|(λβ)pj : 0 ≤ j ≤ i/p}.

Proof. Define the invertible n×n matrix V =
∑∞

i=0 Vit
i over KJtK as follows. Start with

V0 = In. Given V0, . . . , Vi−1, if i ≡ 0 (mod p), put Vi = 0. Otherwise, put W =
∑i−1

j=0 Vjt
j

and NW = W−1NW +W−1t d
dt

(W ), and let Vi be the unique solution of the matrix equation

N0Vi − ViN0 + iVi = −(NW )i.

By induction on i, |Vi|β
i ≤ 1 for all i, so V is invertible over K〈t/(λ1/2β)〉.

Let φ : KJtK → KJtK denote the substitution t 7→ tp. Put N ′′ = V −1NV + V −1t d
dt

(V );
then N ′′ has entries in KJtpK, and |φ−1(N ′′)|λp/2βp ≤ 1. Put U ′′ = V −1U , so that |U ′′|λ1/2β = 1;
then

(U ′′)−1N ′′U ′′ + (U ′′)−1t
d

dt
(U ′′) = N ′′

0 = N0,

which forces U ′′ also to have entries in KJtpK. We may then take N ′ = p−1φ−1(N ′′) and
U ′ = φ−1(U ′′). �

We now put everything together.

Proof of Theorem 16.2.1. We prove the claim by induction on i, in three stages.
First, if i < p and |N |β ≤ 1, then the desired estimate follows from Proposition 16.1.1.
Second, for any given i, the desired estimate for general N follows from the estimate for the
same i in the case |N |β ≤ 1, by Lemma 16.2.2. (More precisely, for any λ < 1, µ > 1, replace
the pair N, U by X−1NX +X−1t d

dt
(X), X−1UX0; then take the limit as λ, µ → 1.) Third, if

|N |β ≤ 1, then the desired estimate for any given i follows from the corresponding estimate
for general N with i replaced by ⌊i/p⌋, by Lemma 16.2.3 (again applying the argument for
any λ < 1, µ > 1, then taking the limit as λ, µ → 1). �

We will often apply Theorem 16.2.1 through the following corollary (deduced by taking
β to be an arbitrary value less than 1).
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Theorem 16.2.4. Let N =
∑∞

i=0 Nit
i, U =

∑∞
i=0 Uit

i be n × n matrices over KJtK such
that:

(a) |N |1 < ∞ (i.e., |Ni| is bounded over all i);
(b) U0 = In;
(c) U−1NU + U−1t d

dt
(U) = N0;

(d) N0 is nilpotent;
(e) for all β < 1, U and U−1 have entries in K〈t/β〉.

Then for every nonnegative integer i,

|Ui| ≤ p(n−1)⌊logp i⌋|N |n−1
1 .

Example 16.2.5. It is easy to make an example that shows that one cannot signifi-
cantly improve the bound of Theorem 16.2.1 without extra hypotheses. (There is a tiny
improvement possible; see notes.) For instance, one can use the functions

fi =
1

i!
(log(1 + t))i (i = 0, . . . , n − 1)

which satisfy the differential system

d

dt
f0 = 0,

d

dt
fi =

1

1 + t
fi−1 (i = 1, . . . , n − 1),

in which the coefficients have 1-Gauss norm at most 1.

3. Frobenius structures

Although Theorem 16.2.4 is close to optimal under its hypotheses, it can be improved in
case the differential module in question admits a Frobenius structure.

Hypothesis 16.3.1. In this section, fix a power q of p, and let φ be a scalar-centered
q-power Frobenius lift on KJtK0.

The key here is to imitate the proof of Theorem 16.2.1 with the differential equation
replaced by a certain Frobenius equation.

Lemma 16.3.2. Let U =
∑∞

i=0 Uit
i, A =

∑∞
i=0 Ait

i be n × n matrices over KJtK such
that:

(a) |A|1 < ∞;
(b) U0 = In and A0 is invertible;
(c) U−1Aφ(U) = A0.

Then
max{|Uj| : 0 ≤ j ≤ i} ≤ |A|1|A

−1
0 |max{|Uj | : 0 ≤ j ≤ i/q}.

Consequently, for every nonnegative integer i,

|Ui| ≤ (|A|1|A
−1
0 |)⌈logq i⌉.

Proof. Note that (c) can be rewritten as

U = Aφ(U)A−1
0 .

This gives the first inequality. To deduce the second inequality, we proceed as in the proof
of Theorem 16.2.1, except that we iterate ⌈logq i⌉ times to get to the case i = 0 (rather than
iterating ⌊logq i⌋ times to get to the case 0 < i < p). �
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Theorem 16.3.3. Let N =
∑∞

i=0 Nit
i, U =

∑∞
i=0 Uit

i, A =
∑∞

i=0 Ait
i be n × n matrices

over KJtK such that:

(a) |A|1 < ∞;
(b) U0 = In and A0 is invertible;
(c) U−1NU + U−1t d

dt
(U) = N0;

(d) NA + t d
dt

(A) = qAφ(N).

Then U−1Aφ(U) = A0, and for every nonnegative integer i,

|Ui| ≤ (|A−1
0 ||A|1)

⌈logq i⌉.

Proof. As noted in Remark 15.1.2, the commutation relation (d) implies that N0A0 =
qA0φ(N0), which forces N0 to be nilpotent. Put B = U−1Aφ(U) =

∑∞
i=0 Bit

i. Then B0 = A0,
and N0B + t d

dt
(B) = qBφ(N0). Hence

N0Bi + iBi = qBiφ(N0) = BiA
−1
0 N0A0,

or

(16.3.3.1) N0(BiA
−1
0 ) + i(BiA

−1
0 ) = (BiA

−1
0 )N0.

As in the proof of Proposition 16.1.1, the operator X 7→ N0X −XN0 + iX on n×n matrices
is invertible for i 6= 0, so (16.3.3.1) implies Bi = 0 for i > 0.

We conclude that indeed U−1Aσ(U) = A0, so we may conclude by applying Lemma 16.3.2
to reduce to the case i < q, then applying Theorem 16.2.4. �

Remark 16.3.4. By combining Theorem 16.2.4 with Theorem 16.2.1 (applying the latter
for i < q), we can obtain the bound

|Ui| ≤ |N |n−1
1 p(n−1)⌊logp i−(logp q)⌊logq i⌋⌋(|A−1

0 ||A|1)
⌊logq i⌋.

Remark 16.3.5. In applications to Picard-Fuchs modules, the difference between the
bounds given by Theorem 16.2.4 and Theorem 16.3.3 can be quite significant. For instance,
given a Picard-Fuchs module arising from a family of curves of genus g, the bound of The-
orem 16.2.4 contains the factor p(2g−1)⌊logp i⌋, but the bound of Theorem 16.3.3 replaces the
factor of 2g − 1 by 1. In general, it should be possible to use Theorem 16.3.3 (and perhaps
also Theorem 16.3.6) to explain various instances in which a calculation of n terms of a
power series involves a precision loss of pO(log(n)), even though the accumulated factors of p
by which one divides throughout the calculation amount to pO(n). (A typical example of this
is [Ked03, Lemma 3].)

We record also a sharper form of Theorem 16.3.3 for use in the discussion of logarithmic
growth in the next section.

Theorem 16.3.6. Let v be a column vector of length n over KJtK, let A =
∑∞

i=0 Ait
i be

an n × n matrix over KJtK, and let λ ∈ K be such that:

(a) |A|1 < ∞;
(b) A0 is invertible;
(c) Aσ(v) = λv.
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Then

max{|vj| : 0 ≤ j ≤ i} ≤ |A|1|λ
−1|max{|vj| : 0 ≤ j ≤ i/q}.

Consequently, for every nonnegative integer i,

|vi| ≤ |v0|(|A|1|λ
−1|)⌈logq i⌉.

Proof. Rewrite (c) as v = λ−1Aσ(v) and proceed as in Lemma 16.3.2. �

4. Logarithmic growth

Definition 16.4.1. For δ ≥ 0, let KJtKδ be the subset of KJtK consisting of those
f =

∑∞
i=0 fit

i for which

|f |δ = sup
i

{

|fi|

(i + 1)δ

}

< ∞;

note that KJtKδ forms a Banach space under the norm | · |δ. (The notation for δ = 0 is
consistent with our earlier usage.) However, KJtKδ is not a ring for δ > 0; rather, we have

KJtKδ1 · KJtKδ2 ⊂ KJtKδ1+δ2 .

Also, KJtKδ is stable under d
dt

, but antidifferentiation carries it into KJtKδ+1. Put

KJtKδ+ =
⋂

δ′>δ

KJtKδ′ .

We also consider a logarithmic version:

KJtK[log t]δ =

⌊δ⌋
⊕

i=0

KJtKδ−i(log t)i.

For another useful characterization of KJtKδ, see the exercises.

Definition 16.4.2. For f ∈ KJtK[log t], we say that f has order of log-growth δ if
f ∈ KJtK[log t]δ but f /∈ KJtK[log t]δ′ for any δ′ < δ. We say f has order of log-growth δ+ if
f /∈ KJtK[log t]δ but f ∈ KJtK[log t]δ′ for any δ′ > δ. We have similar definitions for vectors
or matrices over KJtK[log t], and for elements of M ⊗KJtK[log t] if M is a finite free module
over KJtK0 (by computing in terms of a basis, the choice of which will not affect the answer).

We then deduce the following from Theorem 16.2.4.

Proposition 16.4.3. Let M be a differential module of rank n over KJtK0 for the operator
t d

dt
, which is nilpotent at the origin. Then M ⊗ KJtKn−1[log t] is trivial.

Corollary 16.4.4. Let M be a differential module of rank n over KJtK0 for the operator
t d

dt
, which is nilpotent at the origin with index of nilpotency e. Then any element of H0(M ⊗

KJtK[log t]) has order of log-growth at most n − 1 + e.

Remark 16.4.5. In Corollary 16.4.4, it should be possible to reduce n − 1 + e to n.

In the presence of a Frobenius structure, one obtains a much sharper bound.
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Theorem 16.4.6. Let M be a differential module of rank n over KJtK0 for the operator
t d

dt
, equipped with a Frobenius structure for a q-power Frobenius lift as in Remark 15.1.2.

Then any element v ∈ H0(M ⊗ KJtK[log t]) satisfying Φ(v) = λv for some λ ∈ K has order
of log-growth at most (− log |λ| − s0)/(log q), where s0 is the least generic Newton slope of
M .

Proof. By replacing the Frobenius lift by some power, we can reduce to the case where
s0 is a multiple of − log p. We can then twist into the case s0 = 0. By Proposition 13.5.8,
we can choose a basis of M such that the least generic Hodge slope of M is also 0. Then the
claim follows immediately from Theorem 16.3.6. �

Remark 16.4.7. Refining a conjecture of Dwork, Chiarellotto and Tsuzuki [CT06] have
conjectured that if M is indecomposable, then Theorem 16.4.6 is optimal. That is, in the
notation of Theorem 16.4.6, v should have order of log-growth exactly (− log |λ|−s0)/(log q));
Chiarellotto and Tsuzuki have proven this for rank(M) ≤ 2 [CT06, Theorem 7.2]. It should
be possible to extend their proof to all cases where − log |λ| is less than or equal to s1 (the
least Newton slope of M greater than s0, not counting multiplicity), but it is less clear what
happens in general.

Remark 16.4.8. By contrast, if M does not carry a Frobenius structure, then the order
of log-growth of a horizontal section behaves much less predictably. For instance, it need
not be rational, and it can have the form δ+ instead of δ [CT06, §5.2].

5. Nonzero exponents

So far, we only have considered regular differential systems with all exponents equal to
zero. Concerning nonzero exponents, we limit ourselves to two remarks.

Remark 16.5.1. Suppose the eigenvalues of N0 are rational numbers with least common
denominator dividing m. One can then apply Theorem 16.2.1 after making the substitution
t 7→ tm, resulting in the bound

|Ui|β
i ≤ p(n−1)⌊logp(im)⌋ ≤ p(n−1)⌊logp m⌋p(n−1)⌊logp i⌋.

Note that as i varies, the difference between the bound in this case and in the nilpotent case
is only a constant multiplicative factor.

Remark 16.5.2. Suppose that the eigenvalues of N0 all belong to Zp. (One might want
to consider this remark instead of Remark 16.5.1 even if the eigenvalues are rational, in case
one does not have an a priori bound on their denominators.) One can then prove an effective
bound by imitating the proof of Theorem 16.2.1, but using shearing transformations to force
the exponents to be multiples of p before forming the Frobenius antecedent. However, the
best known bound using this technique is worse than in Remark 16.5.1; it has the form
p(n2+cn)⌊logp i⌋ for some constant c. See [DGS94, Theorem V.9.1] for more details.

Notes

In the case of no singularities (N0 = 0), the effective bound of Theorem 16.2.4 is due
to Dwork and Robba [DR80], with a slightly stronger bound: one may replace p(n−1)⌊logp i⌋

with the maximum of |j1 · · · jn−1|
−1 over j1, . . . , jn−1 ∈ Z with 1 ≤ j1 < · · · < jn−1 ≤ i. See

also [DGS94, Theorem IV.3.1].
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The general case of Theorem 16.2.1 is due to Christol and Dwork [CD91], except that
their bound is significantly weaker: it is roughly pc(n−1)⌊logp i⌋ with c = 2 + 1/(p − 1). The
discrepancy comes from the fact that the role of Proposition 5.2.11 is played in [CD91] by
an effective version of the cyclic vector theorem, which does not give optimal bounds. As
usual, use of cyclic vectors also introduces singularities which must then be removed, leading
to some technical difficulties. See also [DGS94, Theorem V.2.1]. (The poor estimate in the
case of exponents in Zp does not appear to be due to use of cyclic vectors.)

In the case of no singularities, Proposition 16.4.3 was first proved by Dwork; it appears
in [Dwo73a] and [Dwo73b]. (See also [Chr83].) The nilpotent case appears to be orig-
inal; as noted above, the effective bounds in [CD91] are not strong enough to imply this.
Theorems 16.3.3 and 16.3.6 are original, but they owe a great debt to the proof of [CT06,
Theorem 7.2]; the main difference is that we prefer to argue in terms of matrices rather than
cyclic vectors.

The theory of logarithmic growth in the p-adic setting (which may be viewed as loosely
analogous to its archimedean counterpart, as in [Del70]) emerged from some close analysis
made by Dwork [Dwo73a, Dwo73b] of the finer convergence behavior of solutions of certain
p-adic differential equations. The subject languished until the recent work of Chiarellotto and
Tsuzuki [CT06]; inspired by this, André [And07] proved a conjecture of Dwork [Dwo73b,
Conjecture 2] analogizing the specialization property of Newton polygons (Theorem 14.3.2)
to logarithmic growth.

Exercises

(1) Prove that for δ ≥ 0,

KJtKδ = {f ∈ KJtK : lim sup
ρ→1−

|f |ρ
(− log ρ)δ

< ∞.}

(Hint: the inequality

sup
i
{(i + 1)δρi} ≤ ρ−1

(

δ

e

)δ

(− log ρ)−δ

may be helpful.)
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