
CHAPTER 12

p-adic exponents

In this chapter, we discuss (without full proofs) what happens when one tries to analyze
p-adic differential modules on annuli for which the intrinsic generic radius of convergence is
equal to 1 everywhere; this is precisely the case where the techniques of the previous chapters
fail to deliver any information. It turns out that there is a notion of p-adic exponents in this
setting, but one must avoid exponents which are closely approximated by integers without
being integers themselves (p-adic Liouville numbers). This can already be seen by considering
p-adic differential modules on discs with one regular singularity, so we do that first.

1. p-adic Liouville numbers

Definition 12.1.1. For λ ∈ K, the type of λ, denoted type(λ), is the radius of conver-
gence of the p-adic power series

∞∑

m=0,m6=λ

xm

λ − m
.

This cannot exceed 1, as there are infinitely many m for which |λ − m| = 1 (namely those
not congruent to λ modulo p). Moreover, if λ /∈ Zp, then |λ − m| is bounded below, so
type(λ) = 1. We will thus mostly worry about λ ∈ Zp.

Definition 12.1.2. We say that λ is a p-adic Liouville number if either λ or −λ has
type less than 1, and a p-adic non-Liouville number otherwise. The reference to both λ and
−λ is not superfluous, as they may have different types (exercise).

The following alternate characterization of type may be helpful.

Definition 12.1.3. For λ ∈ Zp, let λ(m) be the unique integer in {0, . . . , pm−1} congruent
to λ modulo pm.

Proposition 12.1.4. For λ ∈ Zp not a nonnegative integer,

(12.1.4.1) −
1

logp type(λ)
= lim inf

m→∞

λ(m)

m
.

In particular, λ has type 1 if and only if λ(m)/m → ∞ as m → ∞.

Proof. It suffices to check that for 0 < η < 1, we have

(12.1.4.2) lim sup
m→∞

(m + λ(m) logp η) = −∞

when η < type(α) and

(12.1.4.3) lim sup
m→∞

(m + λ(m) logp η) = +∞

107



when η > type(α). Namely, (12.1.4.2) implies m + λ(m) logp η ≤ 0 for all large m, so

lim infm→∞
λ(m)

m
≥ −1/(logp η), whereas (12.1.4.3) implies m + λ(m) logp η ≥ 0 for infinitely

many m, so lim infm→∞
λ(m)

m
≤ −1/(logp η).

Suppose first that type(α) > η > 0; then as s → ∞, ηs/|λ − s| → 0 or equivalently
vp(λ − s) + s logp η → −∞. (Here vp denotes the renormalized valuation with v(p) = 1.)

Since λ is not a nonnegative integer, we have λ(m) → ∞ as m → ∞, so

vp(λ − λ(m)) + λ(m) logp η → −∞.

The left side does not increase if we replace vp(λ−λ(m)) by m, so we may deduce (12.1.4.2).
Suppose next that type(α) < η < 1; then we may choose a sequence sj such that as

j → ∞, vp(λ − sj) + sj logp η → +∞. Put mj = vp(λ − sj), so that sj ≥ λ(mj). Then

mj + λ(mj ) logp η → +∞,

yielding (12.1.4.3). �

The alternate characterization is convenient for such verifications as the fact that rational
numbers are non-Liouville (exercise), or this stronger result [DGS94, Proposition VI.1.1],
whose proof we omit.

Proposition 12.1.5. Any element of Zp algebraic over Q is non-Liouville.

We will encounter the p-adic Liouville property in yet another apparently different form.
(See exercises for an alternate proof of this lemma.)

Lemma 12.1.6. For λ not a nonnegative integer, we have an equality of formal power
series

∞∑

m=0

xm

λ(1 − λ)(2 − λ) · · · (m − λ)
= ex

∞∑

m=0

(−x)m

m!

1

λ − m
.

Proof. The coefficient of xm on the right side is a sum of the form
∑m

i=0 ci/(i − λ) for
some ci ∈ Q. It is thus a rational function of λ of the form P (λ)/(λ(1−λ) · · · (m−λ)), where
P has coefficients in Q and degree at most m. To check that in fact P (λ) = 1 identically,
we need only check this for λ = 0, . . . , m.

In other words, to check the original identity, it suffices to check after multiplying both
sides by λ − i and evaluating at λ = i, for each nonnegative integer i. On the left side, we
obtain

∞∑

m=i

−xm

(−1)i−1i!(m − i)!
.

On the right side, we obtain

ex (−x)i

i!
,

which is the same thing. �

Corollary 12.1.7. If λ ∈ K is not a nonnegative integer, and type(λ) = 1, then the
series

∞∑

m=0

xm

λ(1 − λ)(2 − λ) · · · (m − λ)
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has radius of convergence p−1/(p−1).

2. p-adic regular singularities

We now consider a p-adic analogue of Theorem 6.3.5. Unlike its archimedean analogue,
it requires a hypothesis on exponents beyond simply being weakly prepared (which simply
meant that no two eigenvalues of the constant matrix differ by a nonzero integer).

Definition 12.2.1. We say that a finite set is p-adic non-Liouville if its elements are
p-adic non-Liouville number. We say the set has p-adic non-Liouville differences if the
difference between any two elements of the set is a p-adic non-Liouville number.

Theorem 12.2.2 (p-adic Fuchs theorem). For β > 0, let M be a finite differential module
on K〈t/β〉 for the derivation d = t d

dt
. Let N =

∑∞

i=0 Nit
i be the action of D on some basis.

Assume that N0 has eigenvalues which are weakly prepared and have p-adic non-Liouville
differences. Then there exists γ > 0 such that the fundamental solution matrix for N has
entries in K〈t/γ〉 (as does its inverse).

Proof. We proceed as in Proposition 16.1.1. Recall (6.3.4.1):

N0Ui − UiN0 + iUi = −

i−1∑

j=0

NjUi−j.

Because N0 has weakly prepared eigenvalues, U is uniquely determined. There is thus no
harm in enlarging K to ensure that the eigenvalues λ1, . . . , λn of N0 belong to K. Then the
map X 7→ N0X − XN0 + i has eigenvalues λg − λh + i for g, h ∈ {1, . . . , n}. If e is the
maximum number of pairwise equal eigenvalues, we obtain the bound

|Ui|β
i ≤ max

g,h
{|λg − λh + i|−2e+1}|N |β max

j<i
{|Uj|β

j}.

Thus to conclude the theorem, it suffices to verify that for each h, j ∈ {1, . . . , n}, the number
λ = λg − λh has the property that

m∏

i=1

max{1, |λ − i|−1}

grows at worst exponentially.
If λ /∈ Zp, then |λ − i|−1 is bounded above and the claim is verified. Otherwise, Corol-

lary 12.1.7 and the hypothesis that λ is a p-adic non-Liouville number give the desired
estimate. �

By a slight modification of the argument (which we omit), one may obtain the following
result of Clark [Cla66, Theorem 3].

Theorem 12.2.3 (Clark). Let M be a finite differential module over K〈t/β〉 for the
derivation t d

dt
, with a regular singularity at 0 whose exponents are p-adic non-Liouville num-

bers. Then for any x ∈ M and y ∈ M ⊗KJtK such that Dy = x, we have Dy ∈ M ⊗K〈t/ρ〉
for some ρ > 0.

The p-adic non-Liouville hypothesis in Theorem 12.2.2 turns out not to be superfluous,
as demonstated by the following example of Monsky.
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Example 12.2.4. Consider the rank 2 differential module over K〈t〉 for the derivation
t d

dt
associated to the differential polynomial p(1− t)T 2 − tT −a, where a ∈ Zp is constructed

so that

(12.2.4.1) type(a) = 1, type(−a) < 1.

(The existence of such a is left as an exercise, or see [DR77, §7.20].) It can then be shown
that the conclusion of Theorem 12.2.2 fails for the basis 1, T of M , that is, the fundamental
solution matrix does not converge in any disc. (The eigenvalues of N0 are 0, a, so the
hypothesis of non-Liouville differences is violated by this example.) See [DR77, §7] or
[DGS94, §IV.8] for further discussion.

3. The Robba condition

We are interested in the question: given a finite differential module on an annulus for the
derivation t d

dt
, under what circumstances is it necessarily isomorphic to a differential module

which can be defined over a disc?
In order to answer this question, we must identify properties of a differential module

on a disc which betray information about the exponents, but which are defined in terms of
information away from the center of the disc.

Definition 12.3.1. Let M be a finite differential module on the disc/annulus |t| ∈ I,
for I an interval. We say that M satsifies the Robba condition if IR(M ⊗ Fρ) = 1 for all
nonzero ρ ∈ I.

Proposition 12.3.2. Let M be a finite differential module on the open disc of radius β
for the derivation t d

dt
, satisfying the Robba condition in some annulus. Then the exponents

of the action of D on M/tM belong to Zp.

Proof. Let N =
∑∞

i=0 Nit
i be the matrix via which D acts on some basis of M . Suppose

N0 has an eigenvalue λ /∈ Zp; there is no harm in enlarging K to force λ ∈ K. Choose v ∈ M
such that the image of v in M/tM is a nonzero eigenvector of N0 of eigenvalue λ. Let D′ be
the derivation corresponding to d

dt
instead of t d

dt
. Then with notation as in Example 8.2.5,

we have for any ρ < β,

lim inf
s→∞

|(D′)sv|1/s > |D′|sp,Vλ,ρ > p−1/(p−1)ρ,

so IR(M ⊗ Fρ) < 1. �

We will establish a partial converse to Proposition 12.3.2 later (Theorem 12.7.1). In the
interim, we mention the following easy result.

Proposition 12.3.3. Let M be a finite differential module on the open disc of radius β
for the derivation t d

dt
, such that the action of D on some basis of M is given by a matrix N0

over K. Then M satisfies the Robba condition if and only if N0 has eigenvalues in Zp.

Proof. Exercise, or see [DGS94, Corollary IV.7.6]. �
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4. Abstract p-adic exponents

We now consider the question: given a finite differential module on an annulus for the
derivation t d

dt
satisfying the Robba condition, if it is isomorphic to a differential module over

a disc, how do we read off the exponents of that module by looking only at the original
annulus?

The answer to this question is complicated by the fact that the exponents are only well-
defined as elements of the quotient Zp/Z. This means we cannot hope to identify them using
purely p-adic considerations; in fact, we must use archimedean considerations to identify
them. Here are those considerations.

Definition 12.4.1. We will say that two elements A, B ∈ Zn
p are equivalent if there

exists a permutation σ of {1, . . . , n} such that Ai − Bσ(i) ∈ Z for i = 1, . . . , n. This is
evidently an equivalence relation.

Definition 12.4.2. We say that A, B ∈ Zn
p are weakly equivalent if there exists a constant

c > 0, a sequence σ1, σ2, . . . of permutations of {1, . . . , n}, and signs ǫi,m ∈ {±1} such that

(ǫi,m(Ai − Bσm(i)))
(m) ≤ cm (i = 1, . . . , n; m = 1, 2, . . . ).

In other words, the distance from Ai − Bσm(i) to the nearest multiple of pm is at most cm.
Again, this is clearly an equivalence relation, and equivalence implies weak equivalence.

Lemma 12.4.3. If A, B ∈ Zp (regarded as 1-tuples) are weakly equivalent, then they are
equivalent.

Proof. For some c > 0, we have

|ǫ1,m+1(ǫ1,m+1(A − B))(m+1) − ǫ1,m(ǫ1,m(A − B))(m)| ≤ 2cm + c,

and the left side is an integer divisible by pm. For m large enough, we have pm > 2cm + c
and so

ǫ1,m+1(ǫ1,m+1(A − B))(m+1) = ǫ1,m(ǫ1,m(A − B))(m).

Hence for m enough, ǫ1,m is constant and ǫ1,m(A − B) is a nonnegative integer. �

Corollary 12.4.4. Suppose A ∈ Zn
p is weakly equivalent to hA for some positive integer

h. Then A ∈ (Zp ∩ Q)n.

Proof. We are given that for some c > 0, some permutations σm, and some signs ǫi,m,

(ǫi,m(Ai − hAσm(i)))
(m) ≤ cm.

The order of σm divides n!, so we have

(±(Ai − hn!Ai))
(m) ≤ n!cm

for some choice of sign (depending on i, m). That is, for each i, the 1-tuple consisting of
(hn!−1)Ai is weakly equivalent to zero. By Lemma 12.4.3, (hn!−1)Ai ∈ Z, so Ai ∈ Zp∩Q. �

Proposition 12.4.5. Suppose that A, B ∈ Zn
p are weakly equivalent and that B has

p-adic non-Liouville differences. Then A and B are equivalent.
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Proof. There is no harm in replacing A by an equivalent tuple in which Bi −Bj ∈ Z if
and only if Bi = Bj.

For some c and σm, we have for all m,

(±(Ai − Bσm(i)))
(m) ≤ cm

(±(Ai − Bσm+1(i)))
(m+1) ≤ c(m + 1)

and so
(±(Bσm(i) − Bσm+1(i)))

(m) ≤ 2cm + c.

By hypothesis, the difference Bσm(i)−Bσm+1(i) is either zero or a p-adic non-Liouville number
which is not an integer; for m large, the previous inequality is inconsistent with the second
option, so Bσm(i) = Bσm+1(i). That is, for m large we have σm = σ for some fixed σ, so

(±(Ai − Bσ(i)))
(m) ≤ cm (m = 1, 2, . . . ).

By Lemma 12.4.3, Ai − Bσ(i) ∈ Z, so A and B are equivalent. �

5. Exponents for annuli

Definition 12.5.1. Let M be a finite differential module of rank n over K〈α/t, t/β〉
satisfying the Robba condition, and fix a basis e1, . . . , en of M . An exponent for M is an
element A ∈ Zn

p for which there exist a sequence {Sm}
∞
m=1 of n×n matrices over K〈α/t, t/β〉

satisfying the following conditions.

(a) For j = 1, . . . , n, under the action of ζpm on M via Taylor series (which converge

because of the Robba condition), the vector vm,j =
∑

i(Sm)ijei is carried to ζ
Aj

pmvm,j .

(b) For some k, we have |Sm|ρ ≤ pmk for all m and all ρ ∈ [α, β].
(c) Writing Sm =

∑
h∈Z

Sm,ht
h, we have |Sm,0|ρ ≥ 1 for all ρ ∈ [α, β].

Note that the property of being an exponent does not depend on the choice of the basis
(although the choice of the matrices Sm does).

Proposition 12.5.2. Let M be a finite differential module of rank n over K〈α/t, t/β〉
satisfying the Robba condition.

(a) There exists an exponent for M .
(b) Any two exponents for M are weakly equivalent. In particular, if M admits an

exponent with non-Liouville differences, then (by Lemma 12.4.3) any other exponent
for M is strongly equivalent to it.

Proof. For (a), see [Dwo97, Lemma 3.1, Corollary 3.3]. For (b), see [Dwo97, Theo-
rem 4.4]. �

Remark 12.5.3. If M is a differential module of rank n over K〈t/β〉 for the derivation t d
dt

,
such that the eigenvalues of the action of D on M/tM are in Zp, then it is easy to check (using
shearing transformations) that these eigenvalues form an exponent for M ⊗ K〈α/t, t/β〉 for
any α ∈ (0, β).

The following is straightforward to verify.

Lemma 12.5.4. Let M be a finite differential module of rank n over K〈α/t, t/β〉 satisfying
the Robba condition, and let φ : K〈α/t, t/β〉 → K〈α1/q/t, t/β1/q〉 be the substitution t 7→ tq.
If A is an exponent of M , then qA is an exponent of φ∗M .
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Corollary 12.5.5. Let M be a finite differential module on an open annulus with outer
radius 1, admitting a Frobenius structure. Then any exponent for M consists of rational
numbers.

Proof. This holds by Lemma 12.5.4 and Corollary 12.4.4. �

6. The p-adic Fuchs theorem for annuli

Having sufficiently well understood the definition of exponents for a differential module
on an open annulus, one then obtains the following theorem. We omit its proof; see notes
for further discussion.

Theorem 12.6.1 (Christol-Mebkhout). Let M be a finite differential module on an open
annulus for the derivation t d

dt
satisfying the Robba condition, admitting an exponent with

non-Liouville differences. Then M is isomorphic to a differential module in which D acts on
some basis via a matrix N0 with coefficients in K, whose eigenvalues represent the exponents
of M (and hence are in Zp). Consequently, M admits a canonical decomposition

M =
⊕

α∈Zp/Z

Mα

in which each Mα has exponents identically equal to α.

Remark 12.6.2. The exponent differences condition is difficult to verify in general be-
cause of the indirect nature of the definition of exponents. However, if M is a finite differential
admits a Frobenius structure, then Corollary 12.5.5 implies that the exponents are rational.
This leads to a quasiunipotence result (Theorem 18.3.1) which can be used to establish the
p-adic local monodromy theorem (Theorem 18.1.8).

7. Transfer to a regular singularity

As an application of Theorem 12.6.1, we obtain a transfer theorem in the presence of a
regular singularity, in the spirit of Theorem 8.5.1 and Theorem 8.5.4 but with a somewhat
weaker estimate.

Theorem 12.7.1. Let M be a finite differential module of rank n over KJtK0 for the
derivation t d

dt
, with a regular singularity at t = 0 whose exponents are in Zp and have non-

Liouville differences. Then the fundamental solution matrix of M converges in the open disc
of radius R(M ⊗ F1)

n. In particular, if M has generic radius of convergence 1, then the
fundamental solution matrix of M converges in the open unit disc.

Proof. By Theorem 12.2.2, the fundamental solution matrix of M converges in a disc
of positive radius. From this and Proposition 12.3.3, it follows that R(M ⊗ Fρ) = ρ for
ρ ∈ (0, 1) sufficiently small.

Let λ be the supremum of ρ ∈ (0, 1) for which R(M ⊗ Fρ) = ρ. Note that the function
f1(r) = − log R(M ⊗ Fe−r) is convex by Theorem 10.3.2, is equal to r for r sufficiently large
by the previous paragraph, and is also equal to r for r = − log λ by continuity. Consequently,
f1(r) = r for all r ≥ − log λ.

Choose α, β ∈ (0, λ) with α < β, such that the fundamental solution matrix of M
converges in the open disc of radius β. By Theorem 12.6.1, it also converges in the open
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annulus of inner radius α and outer radius 1. By patching, we deduce that the fundamental
solution matrix converges in the open disc of radius λ.

To conclude, it suffices to give a lower bound for λ. By Theorem 10.3.2, for r ∈ [0,− log λ],
the function f1 is continuous and piecewise affine, with slopes belonging to 1

1
Z ∪ · · · ∪ 1

n
Z.

Since the slope for r > − log λ is equal to 1, the slopes for r ≤ − log λ cannot exceed 1;
moreover, there cannot be a slope equal to 1 in this range, as otherwise it would occur as
the left slope at r = − log λ, so there would exist ρ > λ for which R(M ⊗ Fρ) = ρ, contrary
to how λ was defined. Consequently, f1 has all slopes less than or equal to (n − 1)/n for
r ∈ [0,− log λ], yielding

− log λ = f1(− log λ) ≤ f1(0) +
n − 1

n
(− log λ).

From this we deduce λ ≥ R(M ⊗ F1)
n, as desired. �

Remark 12.7.2. We do not have in mind an example where one does not get convergence
on the open disc of radius R(M ⊗ F1).

Notes

The definition of a p-adic Liouville number was introduced by Clark [Cla66]; our pre-
sentation follows [DGS94, §VI.1].

The cited theorem of Clark [Cla66, Theorem 3] is actually somewhat stronger than
Theorem 12.2.3, as it allows differential operators of possibly infinite order.

Proposition 12.3.2 is originally due to Christol; compare [DGS94, Proposition IV.7.7].
The theory of exponents for differential modules on a p-adic annulus satisfying the Robba

condition was originally developed by Christol and Mebkhout [CM97, §4–5]; in particular,
Theorem 12.6.1 appears therein as [CM97, Théorème 6.2–4]. A somewhat more stream-
lined development was later given by Dwork [Dwo97], in which Theorem 12.6.1 appears as
[Dwo97, Theorem 7.1]. (Dwork coyly notes that he did not verify the equivalence between
the two constructions; we do not recommend losing any sleep over this.) A useful expository
article on the topic is that of Loeser [Loe96].

A somewhat more elementary treatment of Theorem 12.7.1 than the one given here is
given in [DGS94, §6]; it does not rely on the p-adic Fuchs theorem for annuli. However, it
gives a weaker result: it only establishes convergence of the fundamental solution matrix in
the open disc of radius R(M ⊗ F1)

n2
. A similar treatment is [Chr83, Théorème 6.4.7].

Exercises

(1) Prove that rational numbers are p-adic non-Liouville numbers.
(2) Give another proof of Lemma 12.1.6 (as in [DGS94, Lemma VI.1.2]) by first ver-

ifying that both sides of the desired equation have the same coefficients of x0 and
x1, and are killed by the second-order differential operator d

dx
( d

dx
− λ − x).

(3) Show that Theorem 12.2.2 can be deduced from Theorem 12.2.3. (Hint: show that
if H0(M) 6= 0, then 0 must occur as an eigenvalue of N0.)

(4) Prove that there exists a ∈ Zp satisfying (12.2.4.1).
(5) Prove Proposition 12.3.3.
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