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Frobenius structures on differential modules

In this unit, we construct Frobenius structures for differential modules on discs and annuli.
We then explain how they arise for differential modules coming from geometry (Picard-Fuchs
modules).

1 A few more rings

It will be useful to hybridize some notations for rings that I have already introduced. Recall
that

K〈α/t, t/β〉 =

{

∑

i∈Z

cit
i : ci ∈ K, lim

i→−∞

|ci|α
i = 0, lim

i→+∞

|ci|β
i = 0

}

.

We will also need

KJtK0 =

{

∞
∑

i=0

cit
i : ci ∈ K, sup

i
{|ci|} < ∞

}

K{{t}} =

{

∞
∑

i=0

cit
i : ci ∈ K, lim

i→∞

|ci|ρ
i = 0 (ρ ∈ (0, 1))

}

.

We will allow the following hybrids:

K〈α/t, tK0 =

{

∑

i∈Z

cit
i : ci ∈ K, lim

i→−∞

|ci|α
i = 0, sup

i
{|ci|} < ∞

}

K〈α/t, t}} =

{

∑

i∈Z

cit
i : ci ∈ K, lim

i→−∞

|ci|α
i = 0, lim

i→+∞

|ci|ρ
i = 0 (ρ ∈ (0, 1))

}

.

2 Frobenius structures

Let q be a power of p. Let φK : K → K be any isometric endomorphism of K. Let R be
one of the following rings:

• K〈t〉, KJtK0, or K{{t}};

• the union of K〈α/t, t〉, K〈α/t, tK0, or K〈α/t, t}} over all α ∈ (0, 1);

• F1, the completion of K(t) for the 1-Gauss norm;

• E , the completion of KJtK0[t
−1] for the 1-Gauss norm.
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By a q-power Frobenius lift on R, we will mean a map φ : R → R of the form
∑

i

cit
i 7→

∑

i

φK(ci)u
i,

where φK : K → K is an isometry, and u ∈ R satisfies |u − tq|1 < 1. (Note that if
R = ∪α>0K〈α/t, t}}, then the norm | · |1 is only defined on the subring ∪α>0K〈α/t, tK0.) We
do not require φK itself to lift the q-power Frobenius on κK ; if it does, we say that φ is an
absolute Frobenius lift. (One could work somewhat more generally, allowing φK to carry K
isometrically into KJtK0 in such a way that its composition with reduction modulo t is again
an isometry.)

For M a finite free differential module over R, a Frobenius structure on M with respect
to a Frobenius lift φ on R is an isomorphism Φ : φ∗M ∼= M of differential modules. In more
explicit terms, we must equip M with the structure of a dualizable difference module over
(R, φ), such that

D(Φ(m)) =
dφ(t)

dt
Φ(D(v)) (m ∈ M).

In even more explicit terms, if A, N are the matrices via which Φ, D act on some bases, they
must satisfy

NA +
dA

dt
=

dφ(t)

dt
Aφ(N).

It is not easy to directly construct Frobenius structures except in a few simple examples.
However, they can be shown to exist in many cases by more abstract methods; see below.

3 Frobenius structures and generic radius of conver-

gence

In this section, let φ be a Frobenius lift on ∪α>0K〈α/t, tK0.

Lemma 1. There exists ǫ ∈ (0, 1) depending on φ, such that for β, γ ∈ [ǫ, 1) with β ≤ γ, φ
carries K〈β/t, t/γ〉 to K〈β1/q/t, t/γ1/q〉, and

|f |β = |φ(f)|β1/q .

We can thus also talk about Frobenius structures with respect to φ on finite differential
modules on the half-open annulus with closed inner radius α and open outer radius 1, whether
or not they are not represented by finite free modules over K〈α/t, t}}0. One of Dwork’s early
discoveries is that the presence of a Frobenius structure in this case forces solvability at the
boundary.

Proposition 2. Let M be a finite differential module on the half-open annulus with closed
inner radius α and inner outer radius 1, equipped with a Frobenius structure. Then

lim
ρ→1−

IR(M ⊗ Fρ) = 1,
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that is, M is solvable at the outer boundary. More precisely, for ρ ∈ (0, 1) sufficiently close
to 1,

IR(M ⊗ Fρ1/q) ≥ IR(M ⊗ Fρ)
1/q.

Proof. By imitating the proof from the unit on Frobenius antecedents and descendants, we
can show that for ρ ∈ (0, 1) sufficiently close to 1,

IR(M ⊗ Fρ1/q) ≥ min{IR(M ⊗ Fρ)
1/q, qIR(M ⊗ Fρ)}.

The function f(s) = min{s1/q, qs} on (0, 1] is strictly increasing, and any sequence of the
form s, f(s), f(f(s)), . . . converges to 1. This proves the first claim; for the second claim,
note that once s is sufficiently close to 1, f(s) = s1/q.

The following corollary is sometimes called “Dwork’s trick”.

Corollary 3 (Dwork). Let M be a finite differential module on the open unit disc, equipped
with a Frobenius structure. Then M admits a basis of horizontal sections.

Proof. By Proposition 2, for each λ < 1, there exists ρ ∈ (λ, 1) such that R(M ⊗ Fρ) > λ.
By Dwork’s transfer theorem, M ⊗ K〈t/λ〉 admits a basis of horizontal sections. Taking λ
arbitrarily close to 1 yields the claim.

4 Independence from the Frobenius lift

Another key property of Frobenius structures is that the exact shape of the Frobenius lift is
immaterial.

Proposition 4. Let φ1, φ2 be two Frobenius lifts on R. Let M be a finite free differential
module over R equipped with a Frobenius structure for φ1. Then there is a functorial way to
equip M with a Frobenius structure for φ2.

Proof. The Frobenius structure for φ2 is defined by

Φ2(m) =

∞
∑

i=0

(φ2(t) − φ1(t))
i

i!
Φ1

(

di

dti
(m)

)

,

where the series converges under | · |ρ for ρ ∈ (0, 1) sufficiently close to 1, and also under | · |1
if | · |1 is defined on all of R.

Corollary 5. Let φ1, φ2 be two Frobenius lifts on R. Then there is a canonical equivalence
between the categories of finite free differential modules over R equipped with Frobenius struc-
ture with respect to φi for i = 1, 2; this equivalence is the identity functor on the underlying
difference modules.

3



5 Picard-Fuchs modules

The reason for introducing Frobenius structures is that differential equations “arising from
geometry” carry such structures. Here is what I mean by this.

Let t be a coordinate on P
1
K . Let f : X → P

1
K be a proper, flat, generically smooth

morphism of algebraic varieties. Let S ⊂ P
1
K be a zero-dimensional subscheme containing ∞

(for convenience) and all points over which f is not smooth. The Picard-Fuchs module on
P

1
K \ S associated to f is a finite locally free differential module M over R = Γ(P1

K \ S,O)
with respect to the derivation d

dt
; it also has regular singularities at each point of S.

Although the classical construction of the Picard-Fuchs module is analytic (it involves
viewing f as an analytically locally trivial fibration and integrating differentials against
moving homology classes), there is an algebraic construction due to Katz and Oda [KO68],
involving a Leray spectral sequence for the algebraic de Rham cohomology of the total space.

As originally noticed by Dwork by explicitly calculating some examples, Picard-Fuchs
modules often carry Frobenius structures. A systematic explanation of this is given by
p-adic cohomology; here is an explicit statement.

Theorem 6. With notation as above, suppose that f extends to a proper morphism X → P
1
oK

such that the intersection of P
1
k with the nonsmooth locus is contained in the intersection of

P
1
k with the Zariski closure of S (i.e., the morphism is smooth over all points of P

1
k which

are not the reductions of points in S). Let Vi be the i-th Picard-Fuchs module for f , and
let φ : P

1
oK

→ P
1
oK

be a Frobenius lift (e.g., t 7→ tp) that acts on oK as a lift of the absolute
Frobenius. Then for some α ∈ (0, 1), there exists an isomorphism φ∗Vi

∼= Vi over a ring R
which is the Fréchet completion of Γ(P1

K \S,O) for (for ρ ∈ [α, 1)) the ρ−1-Gauss norm and
the Gauss norms |t − λ| = ρ for λ ∈ S.

Geometrically, the Frobenius structure is defined on the complement in P
1
K of a union of

discs around the points of S, each of radius less than 1 (where a disc of radius less than 1
around ∞ corresponds to the complement of a disc of radius greater than 1 around 0). In
particular, by working in a unit disc not containing any points of S, we obtain a differential
module with Frobenius structure over KJtK0. In a unit disc containing one or more points
of S, we only obtain a differential module with Frobenius structure over ∪α>0K〈α/t, tK0. (If
the disc contains exactly one point of S and the exponents at that point are all 0, we can
also get a differential module with Frobenius structure over KJtK0 for the derivation t d

dt
.)

For example, for the Legendre family of elliptic curves y2 = x(x − 1)(x − λ), we take
S = {0, 1,∞} and obtain a module corresponding to the hypergeometric equation discussed
in the introduction. For p 6= 2, that equation admits a Frobenius structure by the above
theorem. (For p = 2, we cannot make the reduction modulo p generically smooth.)

6 Relationship with zeta functions

The Frobenius structure on a Picard-Fuchs equation can be used to compute zeta functions;
this is closely related to the example of Dwork in the introduction. (The condition on λ
allows for a unique choice in each residue disc; see exercises.)
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Theorem 7. Retain notation as in Theorem 6, and assume now that κK = Fq with q = pa,
and that φ is a q-power Frobenius lift on P

1
oK

. Suppose that λ ∈ oK satisfies φ(t − λ) ≡ 0
(mod t − λ), and suppose that f extends smoothly over the residue disc containing λ. Then

ζ(f−1(λ), T ) =

2 dim(f)
∏

i=0

det(1 − TΦ, (Vi)λ)
(−1)i+1

.

This suggests an interesting strategy for computing zeta functions, advanced by Alan
Lauder. Suppose you have in hand the differential module, plus the matrix of the action of
Φ on some individual (Vi)λ. If you view the equation

NA +
dA

dt
=

dφ(t)

dt
Aφ(N)

as a differential equation with initial condition provided by (Vi)λ, you can then solve for A,
and then evaluate at another λ.

More explicitly, let’s say for simplicity that λ = 0 is the starting value. In the open unit
disc around 0, you can compute U such that

U−1NU + U−1 dU

dt
= 0

and then write down
A = UA0φ(U−1).

This only gives you a power series representation around 0 with radius of convergence 1,
which does not give you any way to specialize to, say, λ = 1.

However, Theorem 6 implies that the entries of A can be written as uniform limits of
rational functions with limited denominators. Once you recover a sufficiently good rational
function approximation to A, you can specialize at λ = 1. (I plan to put a more detailed
discussion of this technique in the compiled notes.)

7 Notes

Dwork’s trick (Corollary 3) still holds without the differential structure, in the following
sense. If M is a finite free difference module over K{{t}} for a Frobenius lift, then there
exists an isomorphism M ∼= (M/tM) ⊗K K{{t}} of difference modules. However, this is
somewhat more subtle to prove; see [Ked05c].

The differential operator on a Picard-Fuchs module is also called a Gauss-Manin connec-
tion.

8 Exercises

1. Prove that for any Frobenius lift φ on KJtK0, there exists a unique λ ∈ mK such that
φ(t − λ) ≡ 0 (mod t − λ).
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